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Storage forensics and police investigations
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Logging

Local and Cloud 

Backups
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Software-based approaches not only reduce storage 

performance, but also increase storage cost!
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The Security Problem with Software-Based Approaches

Malware may obtain kernel privileges and stop 

or destroy backups and logging functions
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Software cannot be trusted to retain storage states 

in the presence of malware attacks!



The Underlying Problem: Threat Model Analysis

Block Interface Driver

Kernel Space

User Space
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Block I/O Storage Device

Read/Write Requests

We therefore turn to hardware solutions to improve 

the security of retaining storage states!
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Hardware Protection Motivated by Flash Technology

Block Interface Driver

Kernel Space

User Space

Applications

Read/Write Requests

Hard Disk Drive Flash-based SSD
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Lower Latency and 

Higher Throughput

Massive 

Parallelism
Commodity Pricing

$0.20/GB

Flash is widely used in modern computing systems!
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Massive Parallelism from Flash Channels
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Solid-State Drive Hard Disk Drive

Blocks Blocks
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Past Storage States are Inherently Retained in Flash!
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Limited Storage Capacity? Compression is Key!
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Delta Compression allows for retaining more storage state!
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with Mapping Tables

LPATimestampBack-Pointer
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Data page Y is selected for garbage collection!

Data page A and Z will be 
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Data Page A
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Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

--

...

B → Q

...

Index Mapping 

Table

... ... ... ...

Delta Page Q Delta Page P

All storage states can be retained with data and delta chains!

Data Page A
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Even for reasonable SSD sizes, this table is too large to cache 
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We need a space-efficient solution!
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Bloom filters quickly identify expired data and save space!
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Time-range state queries retrieve all LPA changes in a range of time
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Implementation and Experimental Setup   
HW Platform

Cosmos+ OpenSSD FPGA 

development Board

1TB SSD, 4KB page 

with 12B OOB data

Benchmarks

Storage traces from MSR and FIU

IOZone benchmarks

PostMark benchmark

OLTP database engine

Ransomware malware samples

Experiment 

Setup
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10 - 15% increase in 

write traffic

SW solutions have 

WA factors of 2.5-6!
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TimeSSD vs. Software-Based Solutions

Similar Performance
1.5 - 2.2x better 

performance
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Workload-Adaptive State Retention

Retained for > 50 

days
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Data Recovery Time After Ransomware Attacks

14% overhead
TimeSSD must 

decompress past states

Future work using HW 

accelerators!
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