
Project Almanac: A Time-Traveling Solid-State Drive

Xiaohao Wang Yifan Yuan Chance C. Coats Jian Huang

Systems and Platform Research Group

You Zhou



Retaining Past Storage States is Important

User file operations such as multi-versioning



Retaining Past Storage States is Important

Recovering files following a system crash



Retaining Past Storage States is Important

Storage forensics and police investigations



Software-Based Approaches to Retain Past Storage States

Journaling and 

Logging



Software-Based Approaches to Retain Past Storage States

Journaling and 

Logging

Local and Cloud 

Backups



Software-Based Approaches to Retain Past Storage States

Journaling and 

Logging

Local and Cloud 

Backups
Snapshots and 

Checkpointing



Software-Based Approaches to Retain Past Storage States

Journaling and 

Logging

Local and Cloud 

Backups
Snapshots and 

Checkpointing

Software-based approaches not only reduce storage 

performance, but also increase storage cost!



The Security Problem with Software-Based Approaches



The Security Problem with Software-Based Approaches

Software systems are vulnerable to malware



The Security Problem with Software-Based Approaches

Malware may obtain kernel privileges and stop 

or destroy backups and logging functions



The Underlying Problem: Threat Model Analysis

Block Interface Driver

Kernel Space

User Space

Applications

Block I/O Storage Device

Read/Write Requests



The Underlying Problem: Threat Model Analysis

Block Interface Driver

Kernel Space

User Space

Applications

Block I/O Storage Device

Read/Write Requests

Software cannot be trusted to retain storage states 

in the presence of malware attacks!



The Underlying Problem: Threat Model Analysis

Block Interface Driver

Kernel Space

User Space

Applications

Block I/O Storage Device

Read/Write Requests

We therefore turn to hardware solutions to improve 

the security of retaining storage states!



Project Almanac: Our Goals 

Firmware-isolated 

Protection



Project Almanac: Our Goals 

Firmware-isolated 

Protection

Minimal 

Performance 

Overhead



Project Almanac: Our Goals 

Firmware-isolated 

Protection

Preserving 

Software 

Functionality

Minimal 

Performance 

Overhead



Hardware Protection Motivated by Flash Technology

Block Interface Driver

Kernel Space

User Space

Applications

Read/Write Requests

Block I/O Storage Device



Hardware Protection Motivated by Flash Technology

Block Interface Driver

Kernel Space

User Space

Applications

Read/Write Requests

Hard Disk Drive



Hardware Protection Motivated by Flash Technology

Block Interface Driver

Kernel Space

User Space

Applications

Read/Write Requests

Hard Disk Drive Flash-based SSD



Why Solid-State Drives?

Lower Latency and 

Higher Throughput



Why Solid-State Drives?

Lower Latency and 

Higher Throughput

Massive 

Parallelism



Why Solid-State Drives?

Lower Latency and 

Higher Throughput

Massive 

Parallelism
Commodity Pricing

$0.20/GB



Why Solid-State Drives?

Lower Latency and 

Higher Throughput

Massive 

Parallelism
Commodity Pricing

$0.20/GB

Flash is widely used in modern computing systems!



Solid-State Drive: A Perfect Candidate 

SSD Controller/Firmware

Embedded 

ProcessorBlock I/O

Interface

DRAM

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Channel 0

Channel 1

Channel 2

Channel 3



Solid-State Drive: A Perfect Candidate 

SSD Controller/Firmware

Embedded 

ProcessorBlock I/O

Interface

DRAM

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Channel 0

Channel 1

Channel 2

Channel 3

Firmware-Isolated Interface



Solid-State Drive: A Perfect Candidate 

SSD Controller/Firmware

Embedded 

ProcessorBlock I/O

Interface

DRAM

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Channel 0

Channel 1

Channel 2

Channel 3

Embedded Processor with DRAM



Solid-State Drive: A Perfect Candidate 

SSD Controller/Firmware

Embedded 

ProcessorBlock I/O

Interface

DRAM

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Flash 

Chip

Channel 0

Channel 1

Channel 2

Channel 3

Massive Parallelism from Flash Channels



How SSDs Used in Modern Computer Systems?

User Applications



How SSDs Used in Modern Computer Systems?

User Applications

File System



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash-based Disk



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

Write A



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

Write A

A



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

A



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

A

Write A’



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

A

Write A’

A A’



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

AA A’



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

AA A’

Garbage 

Collection



How SSDs Used in Modern Computer Systems?

User Applications

File System

Flash Translation Layer (FTL)

Flash Chips

Out-of-Place Updates

AA A’

Garbage 

Collection



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Write A

Blocks Blocks



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Write A

Blocks Blocks

A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Write A

Blocks Blocks

A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Write A

Blocks Blocks

A A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

Write A’



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

Write A’

A’

A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

A’

A



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

A’

A

Write A’



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

A’

A

Write A’

A’



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

A’

A A’



Retaining Storage-States with Out-of-Place Update

Solid-State Drive Hard Disk Drive

Blocks Blocks

A A

A’

A A’

Past Storage States are Inherently Retained in Flash!



Limited Storage Capacity? Compression is Key!

Differences between pages are encoded as deltas



Limited Storage Capacity? Compression is Key!

Page 

A’

Reference Flash 

Page

Differences between pages are encoded as deltas



Limited Storage Capacity? Compression is Key!

Page 

A’

Reference Flash 

Page

+

Retained Invalid 

Flash Page

Page   

A

Differences between pages are encoded as deltas



Limited Storage Capacity? Compression is Key!

Page 

A’

Reference Flash 

Page

+ =
Page 

A

Delta

Compressed Delta

with CR of ~0.2

Retained Invalid 

Flash Page

Page   

A

Differences between pages are encoded as deltas



Limited Storage Capacity? Compression is Key!

Page 

A’

Reference Flash 

Page

+ =
Page 

A

Delta

Compressed Delta

with CR of ~0.2

Retained Invalid 

Flash Page

Page   

A

Multiple deltas are coalesced into delta blocks



Limited Storage Capacity? Compression is Key!

Page 

A’

Reference Flash 

Page

+ =
Page 

A

Delta

Compressed Delta

with CR of ~0.2

Retained Invalid 

Flash Page

Page   

A

Delta Compression allows for retaining more storage state!



How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region



How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region

LPA



How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region

LPATimestamp



How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region

LPATimestampBack-Pointer



PPA Y

Null

A’

A

Page X

Page Y

How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region

Maintain Chains of 

Back-Pointers

LPATimestampBack-Pointer



D → Z

C → Y

B → X

A → W

...PPA Y

Null

A’

A

Page X

Page Y

How to Achieve the Time-Traveling Property?   

Flash Page

OOB Region

Data

Utilize Out-of-Band 

Region

Maintain Chains of 

Back-Pointers

Quickly Traverse 

with Mapping Tables

LPATimestampBack-Pointer



Maintaining a Complete Chain    

Data page chains are vulnerable to Garbage Collection

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Data page Y is selected for garbage collection!



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Data page Y is selected for garbage collection!

Data Page A



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Data page Y is selected for garbage collection!

Data page A and Z will be 

lost!

Data Page A



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Delta page chains are NOT vulnerable to garbage collection!

Data Page A



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Page Y and Z are compressed to create a delta chain

Data Page A



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

Page Y and Z are compressed to create a delta chain

...

B → Q

...

Index Mapping 

Table

... ... ... ...

Delta Page Q Delta Page P

Delta Compress

Data Page A



Maintaining a Complete Chain    

...

B → X

...

Address 

Mapping Table

Data Y Data Z Data --

Data Page X Data Page Y Data Page Z

--

...

B → Q

...

Index Mapping 

Table

... ... ... ...

Delta Page Q Delta Page P

All storage states can be retained with data and delta chains!

Data Page A



Reclaiming Garbage Data in Time Order

Garbage collection must quickly find the state of invalid pages



Reclaiming Garbage Data in Time Order

Garbage collection must quickly find the state of invalid pages

Page 

A

Page   

B



Reclaiming Garbage Data in Time Order

Garbage collection must quickly find the state of invalid pages

Page 

A

Retained Invalid 

Page → Keep

Page   

B



Reclaiming Garbage Data in Time Order

Garbage collection must quickly find the state of invalid pages

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

A table could be used to track page invalidation timestamps

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

Even for reasonable SSD sizes, this table is too large to cache 



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

We need a space-efficient solution!



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

We use Bloom filters to track invalid pages efficiently

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2

Invalid pages are added to the active Bloom filter



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2

0

1

1

...

0

1

0

Inactive Bloom 

Filter

More Bloom filters are created as pages are invalidated



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2

0

1

1

...

0

1

0

Inactive Bloom 

Filter

All filters are checked for hits during garbage collection



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2

0

1

1

...

0

1

0

Inactive Bloom 

Filter

Any pages which hit in the filters must be retained



Reclaiming Garbage Data in Time Order

Page 

A

Retained Invalid 

Page → Keep

Expired Page → 

Reclaimable

Page   

B

Physical Page 

Address

Invalidation Time

0 T0

1 T11

...

N-2 T2

N-1 T5

0

1

1

...

0

1

0

Active Bloom 

Filter

Invalid PPAs

Hash Functions

h0

h1

h2

0

1

1

...

0

1

0

Inactive Bloom 

Filter

Bloom filters quickly identify expired data and save space!



Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time



Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time



Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time



Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time

Retention 

Duration 

Manager

Garbage 

Collection

Garbage Collection 

Feedback



Retrievable Time Window

0
1
1
...

0
1
0

T0

0
1
1
...

0
1
0

T1

BF
0

BF
1

0
1
1
...

0
1
0

T2

BF
2

Invalid 

PPAs

Hash Functions

h0

h1

h2

Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time

Bloom Filters Hold 

PPAs in Order

Retention 

Duration 

Manager

Garbage 

Collection

Garbage Collection 

Feedback



Retrievable Time Window

0
1
1
...

0
1
0

T0

0
1
1
...

0
1
0

T1

BF
0

BF
1

0
1
1
...

0
1
0

T2

BF
2

Invalid 

PPAs

Hash Functions

h0

h1

h2

Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time

Bloom Filters Hold 

PPAs in Order

Retention 

Duration 

Manager

Garbage 

Collection

Garbage Collection 

Feedback



Retrievable Time Window

0
1
1
...

0
1
0

T0

0
1
1
...

0
1
0

T1

BF
0

BF
1

0
1
1
...

0
1
0

T2

BF
2

Invalid 

PPAs

Hash Functions

h0

h1

h2

Workload Variations: Keeping an Adaptive Window    

Trade-off Between 

Performance and 

Retention Time

Bloom Filters Hold 

PPAs in Order

Retention 

Duration 

Manager

Garbage 

Collection

Garbage Collection 

Feedback



TimeKits: State Query    

Perform fast state queries by leveraging back-pointer chains



TimeKits: State Query    

Per-address state queries retrieve the history of a given LPA



TimeKits: State Query    

Time-range state queries retrieve all LPA changes in a range of time



TimeKits: State Rollback    

Possible to rollback any address to a previous state



A 
Timestamp

T1

TimeKits: State Rollback    

Possible to rollback any address to a previous state



A 
Timestamp

T1

TimeKits: State Rollback    

Possible to rollback any address to a previous state

Update to A



A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

Possible to rollback any address to a previous state

Update to A



A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

Possible to rollback any address to a previous state



A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

Possible to rollback any address to a previous state

Rollback A to previous timestamp



A
Timestamp

T2

A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

A 
Timestamp

T1

Possible to rollback any address to a previous state

Rollback A to previous timestamp



A
Timestamp

T2

A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

A 
Timestamp

T1

Possible to rollback any address to a previous state



A
Timestamp

T2

A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

A 
Timestamp

T1

Channel parallelism allows fast rollback of multiple addresses



A
Timestamp

T2

A
Timestamp

T2

A 
Timestamp

T1

A
Timestamp

T1

TimeKits: State Rollback    

A 
Timestamp

T1

Channel parallelism allows fast rollback of multiple addresses

B 
Timestamp

T3

B 
Timestamp

T3

B 
Timestamp

T4



Implementation and Experimental Setup   
HW Platform

Cosmos+ OpenSSD FPGA 

development Board

1TB SSD, 4KB page 

with 12B OOB data

Benchmarks

Storage traces from MSR and FIU

IOZone benchmarks

PostMark benchmark

OLTP database engine

Ransomware malware samples

Experiment 

Setup



Performance: TimeSSD vs. Regular SSDs    



Performance: TimeSSD vs. Regular SSDs    

<10% performance 

overhead



Device Lifetime: TimeSSD vs. Regular SSDs    



Device Lifetime: TimeSSD vs. Regular SSDs    

10 - 15% increase in 

write traffic



Device Lifetime: TimeSSD vs. Regular SSDs    

10 - 15% increase in 

write traffic

SW solutions have 

WA factors of 2.5-6!



TimeSSD vs. Software-Based Solutions



TimeSSD vs. Software-Based Solutions

Similar Performance



TimeSSD vs. Software-Based Solutions

Similar Performance
1.5 - 2.2x better 

performance



Workload-Adaptive State Retention



Workload-Adaptive State Retention

Guaranteed 3 day 

retention window



Workload-Adaptive State Retention



Workload-Adaptive State Retention

Retained for > 50 

days



Data Recovery Time After Ransomware Attacks



Data Recovery Time After Ransomware Attacks

14% overhead
TimeSSD must 

decompress past states



Data Recovery Time After Ransomware Attacks

14% overhead
TimeSSD must 

decompress past states

Future work using HW 

accelerators!



Project Almanac Summary   

Firmware Isolation 

Increased Security



Project Almanac Summary   

Firmware Isolation 

Increased Security

Minimal Impact on 

Performance and 

Lifetime



Achieved Software 

Functionality

Project Almanac Summary   

Firmware Isolation 

Increased Security

Minimal Impact on 

Performance and 

Lifetime



Thanks!

Q&A

Xiaohao Wang Yifan Yuan Chance C. Coats Jian Huang

Systems and Platform Research Group

You Zhou


