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Retaining Past Storage States is Important

User file operations such as multi-versioning
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Retaining Past Storage States is Important

Recovering files following a system crash
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Storage forensics and police investigations
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Software-Based Approaches to Retain Past Storage States

Journaling and
Logging
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Software-Based Approaches to Retain Past Storage States
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Software-Based Approaches to Retain Past Storage States
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The Security Problem with Software-Based Approaches

WannaCry

Ransomware Attack
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The Underlying Problem: Threat Model Analysis

Applications
User Space

Kernel Space

Block Interface Driver

Read/Write Requests

[ Block I/O Storage Device J
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The Underlying Problem: Threat Model Analysis

Read/Write Requests

Block I/O Storage Device

Software cannot be trusted to retain storage states
In the presence of malware attacks!
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The Underlying Problem: Threat Model Analysis

Read/Write Requests

Block I/O Storage Device

We therefore turn to hardware solutions to improve
the security of retaining storage states!
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Project Almanac: Our Goals

Firmware-isolated
Protection
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Project Almanac: Our Goals

Minimal
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Overhead
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Hardware Protection Motivated by Flash Technology

Applications
User Space

Kernel Space

Block Interface Driver

Read/Write Requests

Block 1/O Storage Device

\_ /

10 ECE ILLINOIS




Hardware Protection Motivated by Flash Technology
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Hardware Protection Motivated by Flash Technology

Applications
User Space

Kernel Space

Block Interface Driver

Read/Write Requests

\ Hard Disk Drive Flash-based SSD /
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Why Solid-State Drives?

Lower Latency and
Higher Throughput
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Why Solid-State Drives?

Flash is widely used in modern computing systems!
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Solid-State Drive: A Perfect Candidate
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Block I/O Processor
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Solid-State Drive: A Perfect Candidate
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Firmware-Isolated Interface
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Solid-State Drive: A Perfect Candidate
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Embedded Processor with DRAM

10 ECE ILLINOIS




Solid-State Drive: A Perfect Candidate

| Flash | | Flash | | Flash | | Flash

Chip || chip || chip || chip | Channel 0

Embedded

Block I/0 Processor | Flash | | Flash || Flash | | Flash Channel 1
Interface I Chip || Chip || Chip || Chip
Flash | | Flash | | Flash | | Flash

DRAM chip || chip || chip || chip | Channel 2

| Flash | | Flash | | Flash | | Flash Channel 3

SSD Controller/Firmware Chip || Chip || Chip || Chip anne

Massive Parallelism from Flash Channels
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How SSDs Used in Modern Computer Systems?

{ User Applications J
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Retaining Storage-States with Out-of-Place Update

\ Solid-State Drive / \ Hard Disk Drive /
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Retaining Storage-States with Out-of-Place Update
/ Blocks \ / Blocks \
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Retaining Storage-States with Out-of-Place Update
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Retaining Storage-States with Out-of-Place Update
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Retaining Storage-States with Out-of-Place Update
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Retaining Storage-States with Out-of-Place Update
/ Blocks \ / Blocks \

A A

\ Solid-State Drive / \ Hard Disk Drive /

Past Storage States are Inherently Retained in Flash!
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Limited Storage Capacity? Compression is Key!

Differences between pages are encoded as deltas
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Limited Storage Capacity? Compression is Key!

Reference Flash
Page

Differences between pages are encoded as deltas

ECE ILLINOIS



Limited Storage Capacity? Compression is Key!

AN N\
Pag 4 Page
A A
Reference Flash Retained Invalid
Page Flash Page

Differences between pages are encoded as deltas
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Limited Storage Capacity? Compression is Key!

N\ N\
Page\
Pag 4 Page _ A
A A Delta
Reference Flash Retained Invalid Compressed Delta
Page Flash Page with CR of ~0.2

Differences between pages are encoded as deltas
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Limited Storage Capacity? Compression is Key!

N\ N\
Page\
Pag 4 Page _ A
A A Delta
Reference Flash Retained Invalid Compressed Delta
Page Flash Page with CR of ~0.2

Multiple deltas are coalesced into delta blocks
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Limited Storage Capacity? Compression is Key!

N\ N\
Page\
Pag 4 Page _ A
A A Delta
Reference Flash Retained Invalid Compressed Delta
Page Flash Page with CR of ~0.2

Delta Compression allows for retaining more storage state!
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How to Achieve the Time-Traveling Property?

Flash Page

N

Data

OOB Region

Utilize Out-of-Band

Region
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How to Achieve the Time-Traveling Property?
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How to Achieve the Time-Traveling Property?

Flash Page

N

Data

Back-Pointer

Utilize Out-of-Band

Region

10 ECE ILLINOIS




How to Achieve the Time-Traveling Property?

Flash Page N
AN A
\
Data PPAY A
Page X
Null
Back-Pointer Page Y

Utilize Out-of-Band Maintain Chains of
Region Back-Pointers
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How to Achieve the Time-Traveling Property?

Flash Page N
\ A’ AW — )T )
‘ N\ B — X — —
Data PPA Y - -
Page X T ]
Null C—Y —
Back-Pointer Page Y D-Z ——1

Utilize Out-of-Band Maintain Chains of Quickly Traverse

Region Back-Pointers with Mapping Tables
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Maintaining a Complete Chain

B X > Data Y — Data Z F— Data

Data Page X Data Page Y Data Page Z
Address

Mapping Table

Data page chains are vulnerable to Garbage Collection
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B X > Data Y — Data Z F— Data

Data Page X Data Page Y Data Page Z
Address

Mapping Table

Data page Y is selected for garbage collection!
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Maintaining a Complete Chain

B X > Data Y — Data Z F— Data

Data Page X Data Page A Data Page Z
Address

Mapping Table

Data page Y is selected for garbage collection!
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Maintaining a Complete Chain

B X > Data Y * Data Z F— Data

Data Page X Data Page A Data Page Z
Address

Mapping Table

Data page A and Z will be
lost!

Data page Y is selected for garbage collection!
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Maintaining a Complete Chain

B X > Data Y * Data Z F— Data

Data Page X Data Page A Data Page Z
Address

Mapping Table

Delta page chains are NOT vulnerable to garbage collection!
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Maintaining a Complete Chain

B X > Data Y * Data Z F— Data

Data Page X Data Page A Data Page Z
Address

Mapping Table

Page Y and Z are compressed to create a delta chain
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Maintaining a Complete Chain

(
B X > Data Y * Data Z F— Data

|

|

\

Data Page X
Address

Mapping Table

B—Q

———— e —

Index Mapping: Delta Page Q
Table N e e -

Page Y and Z are compressed to create a delta chain
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Maintaining a Complete Chain

B—- X > Data

Data Page X
Address

Mapping Table

B—Q - -

Index I\.)I.apping Delta Page Q Delta Page P
Table

All storage states can be retained with data and delta chains!
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Reclaiming Garbage Data in Time Order

Garbage collection must quickly find the state of invalid pages
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Reclaiming Garbage Data in Time Order

N\ N\

Page Page
A B

Retained Invalid
Page — Keep

Garbage collection must quickly find the state of invalid pages
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Reclaiming Garbage Data in Time Order

N\ N\
Page Page
A B
Retained Invalid Expired Page —
Page — Keep Reclaimable

Garbage collection must quickly find the state of invalid pages
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Reclaiming Garbage Data in Time Order

Physical Page Invalidation Time
Address
0 T,
1 T4

A table could be used to track page invalidation timestamps
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Reclaiming Garbage Data in Time Order

Physical P
Addre

I lidation Time

0

1

Even for reasonable SSD sizes, this table is too large to cache
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Reclaiming Garbage Data in Time Order

We need a space-efficient solution!
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Reclaiming Garbage Data in Time Order

Active Bloom Hash Functions
Filter
0
1 V\\ ’,/”‘ ho R\
1
h, fe----- > Invalid PPAs
0
1 =---___
== h, P
0

We use Bloom filters to track invalid pages efficiently
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Reclaiming Garbage Data in Time Order

Active Bloom Hash Functions
Filter
0
1 V\\ ’,/”‘ ho R\
1
h, fe----- > Invalid PPAs
0
1 =---___
== h, P
0

Invalid pages are added to the active Bloom filter
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Inactive Bloom Active Bloom
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Hash Functions

Reclaiming Garbage Data in Time Order

Invalid PPASs

More Bloom filters are created as pages are invalidated
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Inactive Bloom Active Bloom
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Hash Functions

Reclaiming Garbage Data in Time Order

Invalid PPASs

All filters are checked for hits during garbage collection
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Reclaiming Garbage Data in Time Order

Inactive Bloom Active Bloom

Filter

Filter
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Hash Functions

Invalid PPASs

Any pages which hit in the filters must be retained
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Inactive Bloom Active Bloom

Filter

Filter

0
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Hash Functions

Reclaiming Garbage Data in Time Order

Invalid PPASs

Bloom filters quickly identify expired data and save space!
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Workload Variations: Keeping an Adaptive Window

Trade-off Between

Performance and
Retention Time
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Workload Variations: Keeping an Adaptive Window
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Workload Variations: Keeping an Adaptive Window

BF BF BF Hash Functions
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Garbage Collection Bloom Filters Hold

Feedback PPAS in Order
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Garbage Collection Bloom Filters Hold

Feedback PPAS in Order




Workload Variations: Keeping an Adaptive Window

BF Hash Functions

Retention 2
Duration 1 wﬂ'
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TimeKits: State Query

Perform fast state queries by leveraging back-pointer chains
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TimeKits: State Query

Per-address state queries retrieve the history of a given LPA
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TimeKits: State Query

Time-range state queries retrieve all LPA changes in a range of time
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TimeKits: State Rollback

Possible to rollback any address to a previous state
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TimeKits: State Rollback

Update to A

Possible to rollback any address to a previous state
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TimeKits: State Rollback

N\ N\
A A
Timestamp | Timestamp
T1 T2
Update to A

Possible to rollback any address to a previous state
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TimeKits: State Rollback

N\ N
A A
Timestamp Timestamp
T1 T2

Rollback A to previous timestamp

Possible to rollback any address to a previous state
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TimeKits: State Rollback

\
A

Timestamp
T1

~—_
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Timestamp
T2

\

A

Timestamp
T1

N

I

Rollback A to previous timestamp

Possible to rollback any address to a previous state
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TimeKits: State Rollback

N\ N\ N
A A A
Timestamp Timestamp Timestamp
T1 T2 T1

Possible to rollback any address to a previous state
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TimeKits: State Rollback

N\ N\ N
A A A
Timestamp Timestamp Timestamp
T1 T2 T1

Channel parallelism allows fast rollback of multiple addresses
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TimeKits: State Rollback

N\ N\ N
A A A
Timestamp Timestamp Timestamp
T1 T2 T1
N\ \ N
B B B
Timestamp Timestamp Timestamp
T3 T4 T3
\ /

Channel parallelism allows fast rollback of multiple addresses
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HW Platform

Cosmos+ OpenSSD FPGA
development Board
1TB SSD, 4KB page

Experiment with 12B OOB data
Setup

Benchmarks

Storage traces from MSR and FIU
|OZone benchmarks
PostMark benchmark

OLTP database engine
Ransomware malware samples
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Performance: TimeSSD vs. Regular SSDs
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Performance: TimeSSD vs. Regular SSDs

I Regular SSD I TimeSSD
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Device Lifetime: TimeSSD vs. Regular SSDs
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Device Lifetime: TimeSSD vs. Regular SSDs

B Regular SSD I TimeSSD
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Device Lifetime: TimeSSD vs. Regular SSDs

B Regular SSD I TimeSSD
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TimeSSD vs. Software-Based Solutions

W Ext4 B F2FS  TimeSSD
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TimeSSD vs. Software-Based Solutions
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TimeSSD vs. Software-Based Solutions

WM F2FS  TimeSSD
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Similar Performance =2
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Workload-Adaptive State Retention
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Workload-Adaptive State Retention

9 hm % rsrch % SIC stg 9 {s % usr @ wdev

Guaranteed 3 day
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Workload-Adaptive State Retention
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Workload-Adaptive State Retention
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Data Recovery Time After Ransomware Attacks
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Data Recovery Time After Ransomware Attacks
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Data Recovery Time After Ransomware Attacks

10 ECE ILLINOIS

W FlashGuard W TimeSSD
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Future work using HW
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Project Almanac Summary

Firmware Isolation
Increased Security
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Project Almanac Summary

Minimal Impact on
Performance and
Lifetime

10 ECE ILLINOIS

Firmware Isolation
Increased Security




Project Almanac Summary
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