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ABSTRACT

Virtual reality (VR) technologies have huge potential to enable rad-

ically new applications, among which spherical panoramic (a.k.a.,

360°) video streaming is on the verge of hitting the critical mass.

Current VR systems treat 360° VR content as plain RGB pixels, sim-

ilar to conventional planar frames, resulting in significant waste

in data transfer and client-side processing. In this paper, we make

the case that next-generation VR platforms can take advantage of

semantics information inherent to VR content so as to improve the

streaming and processing efficiency. To that end, we present SVR,

a semantic-aware VR system that utilizes the object information

in VR frames for content indexing and streaming. SVR exploits

the key observation that end-users’ viewing behaviors tend to be

object-oriented. Instead of streaming entire frames, SVR delivers

miniature frames that cover only the tracked visual objects in VR

videos. We implement SVR prototype with a real hardware board

and demonstrate that it achieves up to 34% network bandwidth

reduction along with 21% device power saving.

1 INTRODUCTION

Virtual Reality (VR) has been generating profound social impact

in transformative ways. For instance, immersive VR experience

is shown to reduce patient pain [6] more effectively than tradi-

tional medical treatments and is seen as a promising alternative to

addictive painkillers like opioids [9].

Among all VR use cases, a particularly promising one is 360°

VR video streaming. 360° videos present a spherical panoramic

view of the scene and are usually viewed through dedicated VR

devices such as a head-mounted display (HMD). As users change

the viewing orientation, the display will render different parts of

the scene, creating an immersive experience for users.

The most salient characteristic of VR video streaming is that

users’ current viewable area is only a small portion of a full spherical

frame [19]. The viewable area is characterized by the Field-of-View

(FOV), which is an intrinsic parameter of a VR HMD that captures

the degrees of horizontal and vertical viewing angles provided by

the HMD. For instance, under a typical 120°×90° FOV, the viewable

area is one-sixth of the full spherical frame.

Off-the-shelf VR delivery systems, e.g., YouTube and Facebook,

inherit the techniques used in delivering conventional planar videos.

Specifically, they always fetch full frames, both areas inside and out-

side of the FOV. Although this strategy accelerates the deployment

of VR videos by reusing the existing video delivery infrastructure,

it leads to two major system-level inefficiencies.
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First, transferring VR videos from the cloud to client devices

imposes massive bandwidth requirement. For instance, streaming

VR videos for a perceived 720p resolution on a VR device with a

120° × 90° FOV requires a network bandwidth that is 6× higher

than that of streaming a conventional planar video under the same

perceived resolution. The bandwidth requirement will only grow

as users demand better user experience.

Second, rendering 360° videos on VR devices in real-time con-

sumes excessive power, presenting a practical challenge to the

energy- and thermal-constrained mobile VR devices [24]. Our mea-

surements show that rendering 720p VR videos in 30 frames per

second (FPS) consumes over 4 W power, which is twice as much

power than rendering conventional planar videos and exceeds the

Thermal Design Point (TDP) of typical mobile devices [24].

Recent VR video delivery research [21, 26, 33] mostly focuses on

reducing the network bandwidth using view-dependent streaming.

For instance, VisualCloud [26] decomposes each frame intomultiple

tiles and transmits tiles that are predicted to be within a user’s FOV

in high resolution and transmits other tiles in lower resolution.

However, view-dependent streaming increases the device power

need since tiles from the same frame have to be stitched together

before rendering, further exacerbating the power issue.

This paper proposes a comprehensive VR delivery system design

that simultaneously reduces the network bandwidth requirement

and power consumption on VR device. We achieve so by transfer-

ring and processing only the necessary pixels that fall within a

user’s FOV. Our major insight is that we can provide accurate pre-

diction of user FOVs by leveraging semantics information inherent
in VR content that is previously ignored. As a first-attempt toward

semantics-aware VR streaming, we focus on one particular form

of semantics information: visual objects. Based on real user data

study, we find that VR users tend to focus on visual objects in their

FOVs, and track the same set of objects across frames. Therefore,

user FOVs mostly align with object trajectories within a VR video.

Harnessing this insight, we propose a semantic-aware VR (SVR)

system that extracts visual object information in VR content to

assist VR video streaming. Leveraging recent advances in computer

vision, the cloud component of SVR extracts object semantics from

VR videos upon ingestion. Object information is stored as metadata

associated with the original VR video. SVR leverages the object

information to create a miniature video that contains only the user

FOVs aswell as to perform essential processing that originally has to

be executed on the VR client. Upon client request, the cloud service

streams the miniature video with object semantics. In this way, SVR

minimizes data volume while simplifying client-side processing.
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Fig. 1: Illustration of today’s VR video delivery system.

We implement our design in a prototyped system, where the

cloud service is hosted on an AWS instance and the client is de-

ployed on an Nvidia TX2 development board to emulate real VR

end users. Evaluating on a set of common VR videos based on real

system measurement, SVR reduces the network bandwidth require-

ment by up to 34% while saving client-side power consumption by

up to 21%. Overall, this paper makes the following contributions:

• We provide a comprehensive power analysis of VR devices. We

show that frame projective transformation is a significant power

overhead that is uniquely introduced by VR videos.

• We quantitatively demonstrate, for the first time, that VR users’

viewing behavior strongly correlates with visual object move-

ments in VR content based on real-user studies.

• We propose a semantics-aware VR (SVR) system that extracts and

persists visual object semantics from VR content, and leverage

the object semantics for efficient content indexing and streaming.

• We implement SVR on a real-world cloud-client setup and demon-

strate significant reductions in network bandwidth requirement

and mobile device power consumption.

2 VR VIDEO STREAMING BACKGROUND

Different from conventional planar video content, 360° VR content

provides an immersive experience by encoding spherical panoramic

views in videos frames. With more information provided in each

frame, users can choose different focus point on the spherical

panoramic surface, introducing a diversified viewing experience.

Spherical frames are created by special capturing systems such as an

omnidirectional camera [15, 27] or a multi-camera rig [3], and then

delivered to a user’s HMD for playback. This paper primarily fo-

cuses on the VR delivery and playback system, i.e., after a VR video

is captured. This section introduces the necessary background.

Figure 1 shows a today’s off-the-shelf VR video delivery system.

When spherical frames are uploaded to a VR content provider such

as YouTube or Facebook, spherical frames are projected to the

conventional planar format using one of the various projection

formats such as equirectangular projection [21], and thus form

a conventional planar video. The spherical-to-planar projection

is performed so as to leverage the well-established planar video

compression and streaming algorithms. Upon user requests, the

(projected) planar video is streamed to the client for display.

Once on the client device and decoded by the codec, each planar

frame goes through a sequence of projective transformations before
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Fig. 2: Network bandwidth and power consumption bottle-

necks in today’s off-the-shelf VR solutions.

it is eventually rendered on the HMD. A planar frame is first re-

projected back from the planar format to the spherical format,

which is then used to produce the current viewing area, a.k.a., FOV,

based on the head orientation sensor data. The FOV area then goes

through another projection to the planar format that can then be

can be viewed from user’s perspective [2]. In modern VR client

software, both the projective transformation and rendering are

executed using a combination of CPU and GPU.

The design philosophy of today’s VR delivery system is to reuse

existing planar video streaming infrastructure as much as possible

so as to accelerate the adoption of VR videos. For instance, although

the FOV occupies only a small portion of a full frame, today’s

VR delivery systems always stream the entire video and rely on

endpoint devices to project the frame and extract FOV to minimize

disruptions to existing server infrastructure. As we show later, this

strategy introduces tremendous inefficiencies, putting pressure on

devices with limited resources.

3 BOTTLENECKS AND OPPORTUNITIES

This section identifies and quantifies two main bottlenecks in VR

video delivery: network bandwidth and device power consump-

tion. Using a large-scale user study (§ 3.1), we show that existing

solutions waste network bandwidth (§ 3.2) and device processing

power (§ 3.3) by transmitting and processing unnecessary pixels.

We then show that exploiting VR video semantics, especially visual

objects, offers an opportunity to mitigate both bottlenecks (§ 3.4).

3.1 Methodology

We conduct studies on a recently published VR video dataset [19],

which consists of head movement traces from 59 real users viewing

five different 360° VR videos. The dataset records the real-time head

movements, through which we obtain each user’s FOV in every

2
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Fig. 3:Measurement study on a real-world VR video dataset consisted of 59 users viewing five different 360° videos. Each < x ,y >
point represents the percentage of frames (y) in which at least one of the x identified/detected objects appears in users’ FOV.

Results indicate that users’ attention centers around visual objects in VR content.

frame. The dataset is collected using the Razer Open Source Virtual

Reality (OSVR) HDK2 HMD with a typical FOV of 110° × 110° [10].

We use the NVIDIA Jetson TX2 board [7] as the client computing

platform since it represents the hardware that high-end VR devices

possess. We directly measure TX2’s power consumption using the

Texas Instruments INA 3221 voltage monitor IC on TX2. We use

YouTube as a representative off-the-shelf VR delivery system.

3.2 Network Bandwidth Characterizations

Today’s off-the-shelf VR delivery systems transmit pixels out of

user’s FOV, and thus introduce bandwidth inefficiencies. We quan-

tify the network bandwidth requirement using the total amount of

data transferred as a proxy. Figure 2a compares the total amount of

transferred data between three schemes: (1) streaming full frames

under the highest resolution (4K) for the best viewing experience,

(2) streaming full frames under a lower-resolution (1080p) to trade-

off bandwidth requirement for user experience, and (3) streaming

only the FOV part of each frame, but in the highest resolution (4K).

Lowering the frame resolution leads to about 67% bandwidth

reduction, which however comes at a cost of user experience degra-

dation [18]. In contrast, streaming only the FOVs in the highest

resolution reduces bandwidth by 78% (110°×110° FOV is about one-

fifth of the full frame size) with no impact on viewing experience.

Finding 1:Off-the-shelf VR delivery solutions (e.g., YouTube) trans-
fer redundant pixels that are outside of users’ FOV, leading to 78%
bandwidth waste. Lowering the resolution improves the bandwidth
usage, but still transmits more data that is necessary.

3.3 Device Power Characterizations

Playing VR videos consumes excessive power on the client-side de-

vice, which is particularly problematic for HMDs and smartphones

that are energy and thermal constrained. In our measurements, the

device consistently draws over 4 W power across all five videos.

The power consumptions are obtained when streaming VR videos

at a 720p (1280 × 720) resolution for the FOV (4K, or 3840 × 2160 for

the full frame), which is the minimal requirement for an immersive

VR experience. As a comparison, the Thermal Design Point (TDP),

i.e., the power that the cooling system is designed to sustainably

dissipate, of a mobile device is around 3.5 W [24], clearly indicating

the need to reduce power consumption of VR playback.

We breakdown the device power consumption of VR playback

into three parts: network, projective transformation (PT), and ren-

dering. Recall from Figure 1 that PT is the step that is unique to VR
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video playback. It generates planar FOV frames from spherical full

frames before the former are rendered on the display. The power

breakdown is shown in Figure 2b.

We find that rendering and PT are the two major power con-

sumers. Although rendering is a necessary step for video streaming

that occurs even for conventional planar videos, the frame projec-

tive transformation step is a pure overhead, 40% on average, intro-

duced by VR videos. In particular, the preparation step processes

out-of-sight pixels that are not in users’ FOVs but are transmitted

as an artifact of today’s VR delivery system. Removing the PT step

and directly rendering the FOV frames would significantly reduce

the device power consumption.

Finding 2: VR devices consume excessive power. Over 40% of the
power consumption is attributed to the frame PT step that processes
redundant pixels outside of users’ FOV.

3.4 Object-Oriented Viewing Behaviors

Existing VR solutions are inefficient mainly because they transfer

and process redundant pixels outside of FOV. This sectionmotivates

the feasibility of transferring and processing only the absolutely
necessary pixels in VR content with little impact on user experience.

Our key insight is that users tend to focus on objects in VR content,

and object movement provides a proxy for predicting user FOVs.

We use the state-of-art object detection tool [35] and manually

adjust the objects annotation in the VR video dataset to quantify the

correlation between users’ FOV and visual objects in VR content in

Figure 3. We reach two key conclusions.

First, users tend to pay attention to objects in VR videos. Even if

only one object is identified in the video, users’ FOVs cover that sin-

gle object in 40% (Paris and Timelapse) to 60% (Elephant, Rhino,
RS) of the frames. As the number of identified objects increase, the

3
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percentage of frames in which users focus on identified objects in-

crease to at least 80%, and reaches almost 100% in cases of Elephant
and Rhino. This indicates that frame areas that contain a group of

visual objects are likely to be watched by end-users, and therefore

streaming those frame areas will likely satisfy users’ needs.

We further confirm that users track the same set of objects across

frame rather than frequently switching objects. Specifically, we

measure the time durations during which users keep tracking the

movement of the same object, and show the results in Figure 4 as

a cumulative distribution plot. Each < x ,y > point in the figure

denotes the percentage of time (y) during which users track an

object for at least a particular time duration (x ). On average, users

spend about 47% of time tracking an object for at least 5 seconds.

Second, the near 100% FOV coverage in many videos as the

number of identified objects increases indicates that the cloud can

effectively predict user FOVs solely based on the VR video content

(i.e., objects) without sophisticated client-side machine learning

models. This observation frees the resource-constrained VR clients

from predicting FOVs and simplifies the client design.

Finding 3: VR users tend to track object movement. Users’ FOVs
can thus be predicted and tracked by object trajectories without using
specifically-trained head-movement models.

4 SVR DESIGN

SVR’s design objective is to minimize the network bandwidth re-

quirement and device power consumption of VR video delivery

with little impact on user-experience. To that end, SVR attempts to

transmit and process only the absolutely necessary pixels that are

in users’ FOV. We first provide an SVR overview by describing its

design principles and the various components on both the cloud

and client sides (§ 4.1). We then discuss in detail the cloud VR ser-

vice (§ 4.2) and client-side playback software augmentations (§ 4.3).

4.1 Overview

Today’s VR platforms fall short because they treat VR content as

plain RGB pixels while largely ignoring the rich semantics informa-

tion in the video. Video semantics, however, can assist VR content

streaming and processing [37]. SVR focuses on one particular form

of semantics information: visual object. By leveraging key object

information, SVR reduces the data communication volume while

simplifying the VR client processing.

The system architecture of SVR is illustrated in Figure 5. The

cloud architecture of SVR has two major components: a static and

offline analysis component, and a dynamic and runtime serving

component. The static component extracts visual objects from the

uploaded VR video and generates different miniature videos, each

of which corresponds to one trajectory of an object cluster.

Critically, each miniature video frame is already converted from

the spherical format to the planar format and contains only the

user’s FOV. Thus, miniature videos are much smaller in size com-

pared to the original video and can be directly rendered on the client

device, bypassing the power-hungry projective transformation step.

The dynamic component, at runtime, streams miniature videos

to the client. In cases where the client requests a wrong miniature

video initially, which we define as a FOV-miss, the dynamic compo-

nent corrects it by transferring the original full frames, essentially

falling back to the normal VR streaming mode. We augment the

new miniature video with metadata that corresponds to the head

orientation for each frame. The miniature video along with associ-

ated metadata explicitly contains essential object semantics of the

original video, and thus can ease future object-based processing.

Once the miniature video together with its associated metadata is

on the client side and before a miniature frame is rendered to the dis-

play, the VR client compares the desired FOV indicated by the head

movement motion sensor with the metadata associated with the
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frame. If the two match, i.e., a FOV-hit, the client renders the frame

on the display. Otherwise, the client system requests the original

video segment from the cloud. To ease the penalty for requesting

original segments, there might be a resolution adjust period for

transmitting full segments and smooth laggy experience. We ex-

pect that the former case is far more common, thus significantly

reducing the overall bandwidth and client power consumption.

4.2 Cloud Service Architecture

Users tend to track object movement. In addition, they tend to track

not one object, but most often a group of objects. This motivates

the fundamental idea behind the cloud architecture design: extract

object information and group objects into different clusters. Each

cluster contains a unique set of objects that users tend to watch

together. By tracking the same cluster of objects across frames, we

can accurately predict the FOV of end-users.

Miniature Video Figure 6 provides an overview of how a VR

video is processed in the cloud by SVR. First, we decompose the

video into multiple t-second temporal segments. We categorize the

frames of each video segment into two types: key frame and tracking
frame. A key frame is always the first frame of a segment; it is a

frame in which objects are explicitly detected and clustered. Objects

within the same cluster are then tracked across subsequent tracking

frames, effectively creating a trajectory of the object cluster.

SVR creates a miniature frame for each cluster. The miniature

frame has a size that matches the end-user’s FOV on the client VR

device and is converted from the spherical format to the planar

format that can be directly rendered on the client device upon a

FOV-hit. In the end, the server creates a miniature video from all

the miniature frames of the same object cluster. If multiple clusters

exist in the original video, multiple miniature videos are created.

Temporal Segmentation The size of the temporal segment

determines the granularity of miniature videos. In one extreme

design, one could create a miniature video for the entire video. This

design would lead to high video compression rate [16], but is less

flexible in that any single FOV-miss would lead to re-streaming of

the entire original video. In contrast, we divide the original video

into many segments, each of which has its own miniature videos.

In this way, only one segment of the original video needs to be

transmitted upon a FOV-miss.

SVR Store The miniature videos is stored in log-structured man-

ner. We place the associated metadata in a separate log rather than

mixing them with frame data. This allows us to decouple metadata

with normal video encoding, and thus simplify the system design

as well as miniature management. SVR generates the miniature

videos statically beforehand to reduce runtime latency, but this

incurs storage overhead. An alternative design is to generate minia-

ture videos on-demand when receiving user requests. We believe

that sacrificing storage for lower latency is a desirable trade-off

as the storage becomes cheaper [5] and more scalable while users

demand higher viewing experience. The exact storage overhead is

proportional to the number of miniature videos created, which is

in turn proportional to the number of object clusters in a frame. As

users’ view region of interest is usually covered within certain area

such as horizontal area [19], we empirically find that choosing a

cluster number of three leads to decent savings with reasonable

cloud storage overhead and user-view coverage.

HandlingClientRequests SVR differentiate between two types

of client requests: requests for miniature videos and requests for the

original video. The former is made at the beginning of each video

segment when the client decides what object cluster the user is

most likely interested in, and then SVRwill serve the corresponding

miniature video from the cloud. The latter request is made when a

FOV-miss happens, upon which SVR serves the original segment.

4.3 Client Architecture

On the VR client, for each (miniature) frame that will be rendered,

the playback application will check the real-time head pose and

compare it against the associated metadata of the frame. If the

desired FOV indicated by the current head pose is covered by the

corresponding miniature frame (FOV-hit), the miniature frame can

be directly rendered onto the display. Otherwise (FOV-miss), the

client will request the entire original video segment that contains

the correct frame. It might initially seem to be wasteful to stream an

entire segment although only themissing frame is needed. However,

this strategy ismore bandwidth-friendly because video compression

ratio is much higher than image compression ratio [16]. It is worth

noting that upon a FOV-miss, the current frame that induces the

miss is dropped so as to minimize the impact on user experience.

FOV Thresholding An important requirement of the client

architecture makes is to reduce the FOV-misses in order to minimize

network transmission and local processing power. We propose

an optimization that significantly reduces the FOV-miss ratio by

leveraging the unique characteristics of human perception systems.

We observe that, although at a given moment the miniature

frame may not perfectly overlap with the user’s FOV, the “missing”

pixels in the non-overlap region are necessarily at the edges of the

user’s FOV. Numerous studies on human peripheral vision have

shown that human vision acuity declines steeply when contents are

at the edges of the visual field [14, 17]. Therefore, the missing pixels

can be approximated without impacting user experience while

avoiding unnecessary FOV-misses. An FOV-miss is generated only

when the non-overlap region size is above a certain threshold.

Specifically, the client approximately reconstructs the missing

pixels by extrapolating the edge pixels in the transmitted miniature

frames. This strategy has the advantage of being computationally

efficient. We plan to explore more sophisticated approaches such

as reconstruction using motion estimation [28].

5 IMPLEMENTATION DETAILS

We build an end-to-end SVR system which is distributed across a

VR cloud server and a playback client. In particular, we choose the

NVIDIA Jetson TX2 board [7] as the client computing platform as

it represents the hardware that high-end VR devices possess. We

compare against the real user head movement trace [19] and faith-

fully generate the FOV-hit/miss statistics, from which we obtain

performance and device power consumption.

Object Extraction The VR server uses convolutional neural

network (CNN)-based framework for object detection for its supe-

rior accuracy. In our implementation, we choose YOLOv2 [13, 35],

which achieves state-of-the-art detection accuracy.

5



Object Clustering The server uses the classic k-means algo-

rithm [25] for object clustering. Currently, the clustering considers

only the object location with the intuition that users tend to watch

objects that are close to each other within segments. In future work,

we will investigate more advanced clustering techniques that can

leverage richer object semantics such as object category.

Temporal Segmentation We statically set the segment length

to 20 frames, which roughly match the Group of Pictures (GOP) size

in video compression [36] and thus retains reasonable compression

ratio. We plan to explore adaptive temporal decomposition methods.

6 PRELIMINARY RESULTS

We evaluate SVR using three metrics: network bandwidth saving,

power reduction, and user experience degradation. The baseline we

compare against is the YouTube VR platform (as described in Fig-

ure 1), which represents today’s off-the-shelf VR video delivery

systems [21]. Although we are still optimizing SVR design, our

preliminary evaluation has shown promising results.

Bandwidth SavingsWe quantify the bandwidth savings in Fig-

ure 7a, which shows the bandwidth saving of SVR compared to the

baseline system that always streams full frames.SVR reduces the

bandwidth requirement by up to 34% and 28% on average.

Power ReductionsWe overlay the average power consumption

reduction of the VR client on the right y-axis in Figure 7a. SVR

achieves on average 11% and up to 21% power reduction. The power

reduction not only increases the VR viewing time, but also reduces

the heat dissipation and thus provides a better viewing experience.

User Experience Impact We use FPS drop rate as a first-order

proxy to evaluate user experience. Figure 7b shows the frame drop

rate averaged across 59 users. Overall, SVR introduces less than 1%

FPS drop, indicating negligible loss of user experience. In future

work, we plan to perform subjective user study to further confirm

our quantitative conclusion.

Sensitivity StudyWe study SVR’s sensitivity to the FOV thresh-

old, which is a client-side parameter that determines when a FOV-

miss is generated (§ 4.3). Figure 8a and Figure 8b show how the

device power consumption and bandwidth saving varies as the FOV

threshold increases from 80% to 100%, respectively. For comparison

purposes, we overlay the baseline power consumption in Figure 8a.

Not surprisingly, as FOV threshold increases the power con-

sumption increases and the bandwidth saving decreases as more

FOV misses are generated. We note that even with 100% overlap

threshold SVR is still able to outperform the baseline. In future work

we will investigate advanced mechanisms to control the threshold.

We also compare SVR with VisualCloud [26], which represents

the recent view-guided VR systems that use machine learning (ML)

techniques to predict user FOVs. According to the results reported

in VisualCloud, SVR achieves a similar bandwidth saving. However,

SVR’s main advantage is that it also reduces the power consump-

tion of client devices dramatically. This is because SVR removes the

power-intensive PT step from the critical path (see § 3.3). Unlike the

ML-based VR systems that require significant effort on model train-

ing and powerful computing resources for intelligent processing,

SVR presents a lightweight and power-efficient solution by leverag-

ing the inherent semantic information in VR content. Future work
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(b) FPS drop rate.

Fig. 7: Mobile device power saving, bandwidth reduction, and im-

pact on user experience, averaged across 59 users.

will conduct a more comprehensive comparison to further quantify

SVR’s advantages over view-guided, ML-based VR systems.

7 RELATEDWORK

VR Content Delivery Today’s VR systems such as YouTube and

Facebook treat VR videos the same as ordinary planar videos while

being agnostic to end-users’ FOVs. To improve bandwidth efficiency,

they typically apply conventional planar video streaming optimiza-

tions such as Dynamic Adaptive Streaming over HTTP (DASH) [38].

DASH lowers the resolution of an entire frame segment when the

network is congested. In our experience of using YouTube VR, reso-

lution is reduced frequently when streaming videos in a 720p FOV

resolution (4k for full frames), degrading user experience.

Recently, researchers have started taking into account user FOV

and investigating view-guided optimizations for serving VR videos [20,

23]. For instance, Haynes et al. [26] and Zare et al. [39] both propose

to predict user head movement and thereby reducing the resolution

of out-of-sight areas in a frame. Similarly, Khiem et al. [29, 34]

proposes to predicts users’ Region-of-Interest (ROI) and streams

the ROIs with high resolution. Qian et al. [33], Fan et al. [22], and

Liu et al. [31] propose to stream only the FOV tiles.

SVR can also be categorized as an view-guided approach. How-

ever, compared to existing FOV-based approaches, SVR has two key

advantages. First, most of these schemes still require transferring

the whole area of the frames. As a result, the power-hungry PT

step is still a necessary step. In contrast, SVR offloads the PT step

to the cloud and reduces the device power. Second, they all require

training and running specific machine learning models to predict

user FOVs. In contrast, SVR leverages semantics inherent in VR

content to predict FOVs.

VRContent Representation Projecting from the spherical for-

mat to the planar format is a critical VR delivery component that

affects network bandwidth efficiency and visual distortions. This

paper assumes the most widely used Equirectangular projection.

However, the SVR design is independent of the projection, and

thus can be readily integrated with recently proposed projection

formats such as CubeMap [12], Equi-Angular Cubemap [1], and

Pyramid [8].

General VR Optimizations There has also been recent work

on improving VR video capturing. Google [4], Facebook [3], and

Samsung [11] have all released hardware and software to stream-

line the VR video capturing process. Recently, Mazumdar et al.,
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Fig. 8: Power and bandwidth reduction sensitivity to FOV threshold.

proposes specialized hardware to accelerate bilateral solver[32],

which is a compute bottleneck while capturing VR videos. Konrad

et al., proposes a system that natively generates spherical VR videos

while bypassing most of the compute-intensive processing in con-

ventional VR capture systems[30]. Orthogonal to the capturing

systems, SVR instead, focuses on the streaming and playback stage.

8 CONCLUSION AND PROSPECTIVES

Delivering 360° VR content presents a tall order for future cloud and

mobile systems. We posit that the rich object semantics inherent

in VR content offer critical information that help build efficient VR

systems. This paper presents one such system called SVR, which

extracts key object semantics from VR videos, and uses the ob-

ject information to guide VR content streaming. Our prototype

demonstrates significant bandwidth and processing power reduc-

tion with little loss of user-experience with regard to user focus

and streaming quality.

In the long run, 360° video is just one form of the myriad of

visual contents that are being generated and consumed. Computer

systems researchers should fundamentally rethink how visual data

is organized, managed, and processed. Distilling semantics infor-

mation from visual data is a particular promising approach. Future

developments should examine other forms of visual semantics and

look beyond optimizing VR content streaming, but also processing,

display, etc. We hope our work serves the first step in a promising

new direction of research.
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