Learning to Drive Software-Defined Solid-State Drives

Daixuan Li
University of Illinois
Urbana-Champaign

daixuan2@illinois.edu

ABSTRACT

Thanks to the mature manufacturing techniques, flash-based solid-
state drives (SSDs) are highly customizable for applications today,
which brings opportunities to further improve their storage per-
formance and resource utilization. However, the SSD efficiency is
usually determined by many hardware parameters, making it hard
for developers to manually tune them and determine the optimized
SSD hardware configurations.

In this paper, we present an automated learning-based SSD hard-
ware configuration framework, named AutoBlox, that utilizes both
supervised and unsupervised machine learning (ML) techniques
to drive the tuning of hardware configurations for SSDs. Auto-
Blox automatically extracts the unique access patterns of a new
workload using its block I/O traces, maps the workload to previous
workloads for utilizing the learned experiences, and recommends
an optimized SSD configuration based on the validated storage
performance. AutoBlox accelerates the development of new SSD
devices by automating the hardware parameter configurations and
reducing the manual efforts. We develop AutoBlox with simple yet
effective learning algorithms that can run efficiently on multi-core
CPUs. Given a target storage workload, our evaluation shows that
AutoBlox can deliver an optimized SSD configuration that can im-
prove the performance of the target workload by 1.30x on average,
compared to commodity SSDs, while satisfying specified constraints
such as SSD capacity, device interfaces, and power budget. And
this configuration will maximize the performance improvement for
both target workloads and non-target workloads.

CCS CONCEPTS

« Hardware — External storage; - Computer systems orga-
nization — Architectures; « Computing methodologies —
Machine learning algorithms.

KEYWORDS

Learning-Based Storage, Solid State Drive, Software-Defined Hard-
ware, Machine Learning for Systems

ACM Reference Format:

Daixuan Li, Jinghan Sun, and Jian Huang. 2023. Learning to Drive Software-
Defined Solid-State Drives. In 56th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO °23), October 28—November 01, 2023,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10...$15.00
https://doi.org/10.1145/3613424.3614281

Jinghan Sun
University of Illinois
Urbana-Champaign

js39@illinois.edu

Jian Huang
University of Illinois
Urbana-Champaign

jianh@illinois.edu

Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3613424.3614281

1 INTRODUCTION

Flash-based solid-state drive (SSDs) have become the backbone of
modern storage infrastructures in various computing platforms, as
they offer orders-of-magnitude better performance than hard disk
drives (HDDs), while their cost is approaching to that of HDDs [1,
21, 25, 38, 51]. Thanks to the development of manufacturing and
shrinking process technology, the industry has been able to rapidly
produce SSD devices with different hardware configurations.

Although SSD devices are becoming highly customizable to meet
the ever-increasing demands on storage performance and capacity
for new applications (i.e., software-defined SSDs) [25, 38], iden-
tifying optimized device configurations is on the critical path of
SSD development. This is because the SSD hardware configurations
are usually determined by the requirements from applications and
customers [7, 31], and these configurations involve many compo-
nents in the storage controller, such as flash chip specifications,
chip layout, block/page sizes, device buffer sizes, and others.

In order to deliver optimized performance, storage vendors usu-
ally use typical application workloads as their benchmarks to help
determine the device configurations. However, an SSD device usu-
ally has hundreds of hardware parameters, and these parameters
normally have dependencies (i.e., the update of one parameter may
affect others), making it hard for hardware engineers to tune the
device configurations and identify the optimized ones quickly. This
significantly hurts the productivity of new SSD device development.

There is an increasing demand for customized storage devices
for applications. This is for two major reasons. First, computing
platforms always wish to deploy the best-fit storage devices for
their workloads. This is especially true for cloud platforms that
require highly customized SSDs to support their cloud services [12,
14, 25, 38], such as Database-as-a-Service [56] and web services [3].
As applications evolve quickly, we need to revolutionize the config-
uration tuning procedure to shorten the lifecycle of producing new
SSDs. Second, our study shows that storage workloads can be cate-
gorized with learning algorithms (see Figure 2), which shows that it
is feasible to customize storage devices for a specific workload type,
especially considering SSD manufacturing becomes mature today.
However, there is still a long-standing gap between application
demands and SSD productions.

In this paper, we develop an automated learning-based SSD hard-
ware configuration framework named AutoBlox, which exploits
both supervised and unsupervised machine learning (ML) tech-
niques to drive the hardware configurations for new SSDs, with
specified hardware constraints. Specifically, given a type of target
storage workload, AutoBlox will recommend an SSD configura-
tion that delivers optimized storage performance. Similarly, given

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3613424.3614281
https://doi.org/10.1145/3613424.3614281
https://doi.org/10.1145/3613424.3614281

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SSD Controller/Firmware Channel
Flash
p Controller I 1
Flash | Flash | Flash Flashﬂ
Embedded | | |
] § Processor Flash Channel
S = ‘ Controller | | 1
Z | &lerinemarsus [Flash [Flash [Flash [Flash ﬂ
g e
) = ERA Flash Channel
Controller I I I

Flash | Flash | Flash | Flash ﬂ

Figure 1: Internal architecture of flash-based SSDs.

a performance target for a type of target workload, AutoBlox can
identify the optimized configurations with what-if analysis (see
§4). It leverages linear regression to expose the device configura-
tions that have the strongest correlation to storage performance.
To present reasonable device configurations, we formulate different
types of hardware parameters and performance metrics in the SSD,
transfer them into vectors in a customized Bayesian optimization
model, and utilize learning techniques to explore the optimization
space and identify optimized options, with specified constraints
such as SSD capacity, device interfaces (NVMe or SATA), flash
memory types, and power budget of the storage device.

To reduce the time of learning an optimized SSD configuration
while ensuring the learning accuracy, we develop pruning algo-
rithms to identify the most important SSD parameters for different
workloads. Our study leads to interesting insights. We turn them
into learning rules that can aid AutoBlox to adjust the tuning pro-
cedure. For instance, (1) the sensitivity of device configurations
to different optimization targets (e.g., latency and throughput) de-
pends on the workload characteristics. AutoBlox quantifies the
trade-offs with a unified optimization target to guide the tuning
procedure. (2) Not all SSD parameters are equal. Some SSD pa-
rameters have non-linear correlations with storage performance,
and these parameters vary for different workload types. (3) Not
all parameters are sensitive to storage performance, and different
sensitivities of different parameters can be utilized to improve the
turning efficiency (see the detailed discussion in §3.3).

AutoBlox also maintains a configuration database called AutoDB
to store the learned workloads and SSD configurations. For a new
workload, AutoBlox will extract its features and compare them with
the records in the AutoDB using clustering. If it identifies a similar
workload in its AutoDB, it will recommend the corresponding SSD
configuration directly, thus, we can utilize the previously learned
experience. Otherwise, AutoBlox will learn a new SSD configuration
for the workload, and add it into AutoDB for future references.

To evaluate AutoBlox, we implemented our proposed techniques
using PyTorch [42], scikit-learn [6], and a production-level SSD
simulator MQSim [55]. We perform experiments with various stor-
age workloads. Our experimental results show that, out of a search
space of billions of possible configurations, AutoBlox can learn a
new optimized configuration in 670.89 seconds, and finalize it in 89
iterations on average. We also show that AutoBlox delivers an SSD
configuration that can achieve 1.25-1.93x performance improve-
ment for a target workload, and 1.09x improvement on average for
non-target workloads with up to 16% energy saving, compared to

Daixuan Li, Jinghan Sun, and Jian Huang

the configurations specified in commodity SSDs. Overall, we make
the following contributions:

e We present the first study of SSD hardware parameters and pop-
ular storage workloads with learning in mind, and demonstrate
the feasibility of applying the learning-based approach for iden-
tifying optimized SSD specifications.

e We formulate the tuning problem of SSD device configurations
using both supervised and unsupervised learning techniques, and
develop an automated framework that can learn optimized SSD
configurations for different workloads with defined constraints.

e We summarize a set of learning rules that can facilitate the hard-
ware configurations and development of new SSDs, based on our
study with AutoBlox.

o We examine the efficiency of AutoBlox and show its benefits for
a variety of target data-intensive workloads, in comparison with
different commodity SSD settings.

2 BACKGROUND AND MOTIVATION

2.1 SSD Architecture

We present the internal architecture of a typical SSD in Figure 1.
An SSD consists of five major components: a set of flash memory
packages, an SSD controller having embedded processors like ARM,
off-chip DRAM (SSD DRAM), flash controllers, and the I/O inter-
face that includes SATA and NVMe protocols [13, 20, 28, 46]. The
flash packages are organized in a hierarchical manner. Each SSD
has multiple channels where each channel can process read/write
commands independently. Each channel is shared by multiple flash
packages. Each package has multiple flash chips. Within each chip,
there are multiple planes. Each plane includes multiple flash blocks,
and each block has multiple flash pages. The page size varies in dif-
ferent SSDs. When a free flash page is written once, that page is no
longer available for future writes until that page is erased. However,
erase operation is expensive and performed at block granularity. As
each flash block has limited endurance, it is important for blocks to
age uniformly (i.e., wear leveling). Modern SSD controllers employ
out-of-place write, GC, and wear leveling to overcome these short-
comings and maintain indirections for the address translation in
their flash translation layer (FTL) [26, 58].

2.2 SSD Manufacturing Procedure

According to the interviews with SSD product managers [7] and our
discussions with SSD vendors, finalizing SSD configurations is on
the critical path in the SSD design. These configurations are usually
determined by the requirements from applications and customers.

To finalize the SSD specifications, a simple approach is to test
and profile application workloads with different hardware configu-
rations. However, this is not scalable as we target different appli-
cations. With the confirmation from SSD vendors, there are more
than a hundred tunable parameters in an SSD. Given an applica-
tion, it is challenging for developers to explore all the combinations
of device parameters. Likewise, given a new SSD specification, it
requires significant manual effort to quantify the effectiveness of
the selected parameters. In this work, we use the learning-based ap-
proach to automate the SSD hardware configurations. It helps both

Learning to Drive Software-Defined Solid-State Drives

100

BatchDataAnalytics & SearchEngine
754 @ KVStore ® Database
Advertisement A LiveMaps
o 901
8
g 259 * q
& »
04
A
—254
T T T 1

T T T
=75 -50 -25 0 25 50 75 100
Factor 1

Figure 2: A clustering of popular storage workloads.

storage vendors and platform operators who want to efficiently
identify optimized SSD configurations for their target workloads,
accelerates their decision-making process for device configurations,
and further benefits the manufacturing process of customized SSDs.

2.3 Software-Defined Solid-State Drive

With the increasing demands on storage performance from appli-
cations, storage systems are embracing software-defined hardware
techniques [12, 14]. This allows upper-level applications to achieve
maximum performance benefits and resource efficiency with cus-
tomized storage devices. For instance, the recent development of
software-defined flash [25, 38] enables platform operators to cus-
tomize the number of flash channels and chips in an SSD, with the
cooperation with SSD vendors.

The emerging demands of typical applications also motivate
the need to customize hardware design for specific applications
[4, 16, 48]. Applications such as Database-as-a-Service [56], web
services [3], web search [25], and batch data analytics [15], can be
highly classified. For instance, we use our learning-based workload
characterization approach (see §3.1) to study the storage traces from
a set of popular application workloads (see Table 2). Our experi-
ments show that each workload type has its unique characteristics,
and I/O traces from the same workload type have similarities in their
data access pattern, as we used Principal Component Analysis [66]
to map them into two dimensions in Figure 2. This shows that it is
feasible to customize storage devices for a specific category of ap-
plications. Also, it is known that different workloads have different
performance behaviors on the same SSDs, and the same workload
will perform differently on different SSDs [29, 30, 39, 44, 65], which
further motivates the need for customized storage devices. How-
ever, we lack a framework that can efficiently transfer application
demands and characteristics into the hardware configurations of
SSDs. In this work, we will use both supervised learning and unsu-
pervised learning to develop AutoBlox framework.

Note that the software-defined SSD in this paper refers to the
concept of allowing developers to customize SSD hardware based
on the application needs. The OpenSSD [52] is different, as its
purpose is to allow upper-level software to manage underlying flash
chips. OpenSSD does not fit for our purpose, since its hardware
configuration has been fixed and cannot be adjusted at runtime
(e.g., its flash chip layout).

3 DESIGN AND IMPLEMENTATION

Our goal is to enable the automated tuning of SSD configurations
for a specific workload with learning techniques.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

o It should generate an optimized SSD configuration for a target
workload, while this hardware configuration has minimal nega-
tive impact on other non-target workloads.

e It should identify an optimized SSD configuration quickly, with-
out introducing much computation overhead.

e It should scale to support diverse target workloads as well as
different device constraints.

We show the system architecture of AutoBlox in Figure 3, and
discuss each component in detail as follows.

3.1 Learning-Based Workload Clustering

To categorize storage workloads, traditional methods usually use
the read/write ratio and I/O patterns (e.g., sequential and random
read/write). However, they cannot capture the whole picture of
workload characteristics. Instead, we develop a learning-based clus-
tering approach based on block I/O traces. This approach does not
have system dependencies and does not require software semantics.

To facilitate the learning-based workload clustering, we first
remove the information irrelevant to the workload characteristics
in ablock I/O trace. As the absolute value of a block address depends
on the block allocation algorithm, we transfer the absolute block
addresses of each workload to relative addresses (i.e., offsets) in a
uniform block address space. We keep the I/O size and type (i.e.,
read/write) unmodified.

We then partition each I/O trace into small windows, each win-
dow represents the access pattern of a time period within the work-
load. According to our study of diverse workloads, we use 3,000
trace entries in each window by default. This is because using fewer
entries will result in the loss of important data access patterns, while
a larger number of entries will slow down the workload clustering
procedure consisting of normalization, PCA and clustering.

The trace information used to conduct the workload charac-
terization include the I/O timestamp, I/O size, block address, and
operation types. We focus on their relative values by normalizing
them with the values of the starting entry of each window. Since
each window of I/O trace has multiple entries and each entry have
multiple fields, we use Principal Component Analysis (PCA) [66]
to transfer each window into 5 dimensions. This will simplify the
learning of I/O workload patterns by transferring the complex char-
acteristics of I/O traces into fewer dimensions. AutoBlox can learn
traditional workload characteristics by default. These character-
istics are quantified and differentiated by the PCA and k-means
clustering on the block I/O trace. For example, for sequential/ran-
dom access patterns, the vectors of adjacent logical page addresses
will have monotonic increasing values and random values respec-
tively. These different patterns are captured by PCA. Similarly, for
I/0 intensity, a more intensive workload will have larger I/O sizes
and smaller time gaps between I/O requests within the same trace
window. Our results show that selecting 5 dimensions capture
70.4% of the explainable variance of the dataset, and the maximum
explainable variance of other dimensions is less than 1%.

After that, we use k-means to cluster these data points. We
calculate the distance between the center of the examined data
points and the center of an existing cluster. If the distance is below
a configurable threshold (20 in AutoBlox), we claim that the new
workload belongs to this cluster. This threshold corresponds to the

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

K-Means Workload
Clustering (I1I-B)

New
Workload

Performance
Regression (llI-E)

Parameter Pruning
(llI-C & 111-D)

Similarity
Comparison

Not Found

/lnitialize

Daixuan Li, Jinghan Sun, and Jian Huang

Recommended

Configuration Configuration

Database: AutoDB

Update

Converged

Heuristic Simulator
Tuning (Ill-E) Validation (llI-E)

Not Converged

Figure 3: System overview of AutoBlox. It first learns new workload features with workload clustering (§3.1). If the new
workload is similar to workloads in existing clusters in the configuration database AutoDB, AutoBlox will recommend an
optimized configuration stored in the database. If not, AutoBlox will first conduct parameter pruning (§3.2 and §3.3) to identify
performance-critical parameters of SSDs. Then perform three automated tunings: performance regression with Gaussian

process, heuristic tuning, and efficiency validation (§3.4).

minimum distance between existing clusters, ensuring that a new
cluster is only formed when the distance exceeds this threshold. If
AutoBlox cannot identify a similar cluster, it will retrain the kmeans
model with one more cluster. As shown in Figure 2, our learning-
based workload clustering can successfully identify a cluster with
the same or similar storage workloads.

To verify the effectiveness of the learning-based workload clus-
tering, we collect multiple traces from different application cate-
gories. Each trace lasts 15-240 hours, covering multiple execution
phases of an application. We divide each workload into training
and validation datasets. We empirically set the number of cluster
of k-means clustering algorithm to the number of workload cate-
gories, since a larger number of cluster could not differentiate the
traces from different workload categories, and a smaller number of
clusters may further separate traces from the same workload cate-
gory. We observe that 95% of the validation data points fall into the
same workload cluster on average. This shows that our approach is
sufficient to identify an appropriate cluster for new workloads, and
also can tolerate workload variations at different execution phases.
It also offers the insight that it is feasible to develop an SSD that
can deliver optimized performance for a category of workloads.

Note that it is rare that a new application belongs to one category
but cannot be clustered into that category. For the rare case in
which an application belongs to a category but it does not fall into
the workload cluster, AutoBlox will treat it as a workload outlier.
AutoBlox will still identify optimized SSD configurations for the
majority of applications within that category, as it targets a category
of applications. As AutoBlox receives a certain number (e.g., 20 by
default) of such applications, AutoBlox will create a new category
and learn optimized configurations for it.

3.2 Transfer SSD Tuning into ML Models

We now discuss how we can transfer the tuning problem of SSD
configurations for a type of workload into an ML problem, such
that we can automate the tuning procedure. To achieve this, we
follow two steps: (1) develop an appropriate ML model for auto-
tuning the SSD hardware configurations, and (2) formulate the SSD

specifications and performance metrics into parameters of the ML
model we will develop.

We develop a customized Bayesian optimization (BO) model
for tuning SSD parameters. Based on the performance of known
configurations, our model can predict the performance of similar
unseen configurations, and deliver optimized configuration un-
der certain constraints (e.g., storage capacity and power budget).
As BO model can deliver similar performance compared to deep
neural networks, but with low performance overhead and high
explainability [11, 57], it is a natural fit for solving SSD tuning prob-
lem [67], especially for the cases that have search space constraints
(e.g., capacity constraints). Similar to the predicted rewards used
in DNN-based algorithms, BO quantifies the exploration trade-offs
with predicated mean and variance values in the turning procedure,
therefore, it can find near-optimal configurations within a certain
number of iterations. It sometimes performs even faster than DNNs
like deep Q-networks (DQN), as the DNNs usually need multiple
iterations to train/retrain their reward functions [11].

In our customized BO learning model, we transfer SSD specifica-
tions and performance metrics into parameters of the BO model.
This procedure is not easy. For the SSD specifications, we have to
ensure the parameter formulation does not lose valid SSD hardware
configurations, and the ML parameters can represent the character-
istics of different device parameters as well as their correlations. For
the performance metrics, we need to unify different performance
trade-offs (e.g., latency and throughput) into one unified optimiza-
tion target, therefore, the BO model can find the optimized solution
with different trade-offs under defined constraints.

To model the SSD configurations and performance metrics, we
formulate them into three major parts in the ML model: (1) the
unified efficiency metrics used as the optimization targets for SSDs;
(2) SSD configurations that can be vectorized as parameters; and
(3) the constraints (e.g., the SSD capacity and power budget) that
bound the optimization space. We discuss them as follows.
Efficiency metrics used in the ML model. As for storage effi-
ciency, AutoBlox focuses on the storage latency and throughput
under the SSD capacity and power budget constraints. To quantify
whether an SSD configuration delivers the optimized performance

Learning to Drive Software-Defined Solid-State Drives

or not, we use reference performance as the baseline (i.e., the latency
and throughput obtained from a commercial SSD’s configurations),
and the relative performance improvements as the evaluation met-
rics. Given a workload W, we have a target configuration target,
and a reference configuration refer, we have the following perfor-
mance optimization goal:

Performancey, (target) =

Latency .z,

Throughput y,ee) (1)

) +axlog Throughput

(1-a)xlog| ———
Latency target refer

where « is a tunable hyperparameter for balancing the latency
and throughput improvement at proper scale. We set « = 0.5 by
default, based on our study of different coefficients (see §4.6).
Transfer SSD hardware specifications into ML parameters.
To represent SSD hardware specifications in the ML models, we
transfer them into four types of ML parameters and use different
ways to set their values. They include continuous, discrete, boolean,
and categorical parameters.

e Continuous parameter: They include SSD data cache size, cached
mapping table size, over-provisioning ratio for GC, and others.
To set the value of these type of parameters, we identify a range
of possible values it could take in advance, and divide the range
uniformly into N small pieces. Therefore, AutoBlox can take
N endpoints as the possible values. We set the range to cover
all common values in commodity SSDs to ensure the learned
configurations are practical.

o Discrete parameter: its typical examples include the number of
flash channels and PCle bandwidth. We select the possible values
and store them in a list. Their possible values also cover all the
common values. Each discrete parameter follows different rules.
For instance, the number of flash channels follows the possible
values from commodity SSDs and the PCle bandwidth follows
the PCle specifications defined in industry [40].

e Boolean parameter: We use the boolean parameters (0/1) to indi-
cate whether a feature (e.g., statistic wear leveling, and greedy
GC) will be enabled in the SSD or not.

o Categorical parameter: we convert it to the dummy variable. For
example, there are 16 possible values for the plane allocation
scheme, we create a list with a length of 16. When AutoBlox
selects one scheme, it will set the value of the corresponding
index to 1, and others to 0.

Configuration constraints. AutoBlox allows users to specify the
configuration constraints. Typical examples include the SSD storage
capacity, the interface (e.g., NVMe or SATA) supported by the SSD
for interacting with the host machine, and the power budget for
the SSD device. When AutoBlox sets different values for the device
parameters while tuning of hardware configurations, it will simply
abandon those configurations that violate the specified constraints
at the efficiency validation stage. In the follow-up searching process,
these configurations will be skipped. AutoBlox mainly works on
the tunable parameters in SSD specifications. AutoBlox does not
cover the lower-level circuit-relevant specifications that are strictly
limited by the hardware.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

3.3 Learning-based Parameter Pruning

After we transfer the SSD specifications and performance metrics
into ML parameters, we can start to train the model. However, mod-
ern SSDs usually have hundreds of hardware parameters. Although
ML models today can handle a large set of parameters, it is still
desirable to develop efficient and lightweight models for reducing
the learning time, and saving computation cycles [57]. For example,
we develop a model covering 48 SSD device specifications or pa-
rameters; it takes 30.7 hours for the model to converge on a modern
multi-core server (see the experimental setup in §4.1). We also find
that not all SSD device parameters are strongly correlated to the
storage performance, and these insensitive parameters may even
hurt the learning efficiency. To this end, we develop a parameter
pruning approach to identify the impactful device parameters.

We have to overcome two major challenges within the param-
eter pruning. First, we need an accurate method to measure the
importance of a parameter. This is challenging because SSD param-
eters usually have dependencies. If we tune one parameter while
keeping the values of other parameters fixed, it may violate the con-
figuration constraints. For example, increasing the number of flash
channels could violate the constraint of the SSD capacity. On the
other hand, as we tune one parameter while updating the values of
other device parameters accordingly for meeting the configuration
constraints, we cannot accurately determine which parameters af-
fect the storage performance significantly. Second, removing some
of the SSD device parameters may hurt the overall accuracy of the
learning model. And it is challenging to quantify how each param-
eter could affect the learning accuracy. To address these challenges,
we conduct the parameter pruning procedure within two stages.
Coarse-grained parameter pruning. We first use a coarse-grained
pruning method that adjusts the values of continuous and discrete
numerical device parameters with a large stride length. In this stage,
we only prune parameters that have almost no impact on the perfor-
mance even if they break the configuration constraints. As shown
in Figure 4, we increase the values of the 35 numerical parame-
ters of SSDs from their baseline setting to 16X, and measure the
storage performance with different workloads. We identify insensi-
tive device parameters that do not affect the storage performance
significantly (those flat lines in Figure 4).

We also find that these insensitive device parameters vary for dif-
ferent workload types, therefore, AutoBlox will conduct the coarse-
grained parameter pruning for each type of workload and iden-
tify the corresponding insensitive parameters. In general, we iden-
tify 12 insensitive parameters, such as Page _Metadata_Capacity,
Static_Wearleveling_Threshold, and Suspend_Program_Time (see Fig-
ure 4). And also, we do not observe any pair of insensitive SSD
parameters have impact on the storage performance when tuning
them simultaneously. This is because the hardware modules of
SSDs are usually independent. As for these insensitive SSD param-
eters, they will not affect SSD performance whatever we tune them
together or independently.

Fine-grained parameter pruning. After eliminating redundant
parameters in coarse-grained pruning, we continue the pruning
with a fine-grained approach. We employ the linear regression tech-
nique Ridge [41] to identify the linear correlations between the SSD

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada Daixuan Li, Jinghan Sun, and Jian Huang

~@- Flash Channel Count
W~ Chip No_Per Channel
=~ Die_No_Per_Chip
~- Plane No Per Die
<~ Block No_Per Plane
Page No_Per Block

W= PCle Lane Bandwidth

=~ PCle_Lane Count

=~ Data_Cache_Capacity

= Data_Cache DRAM Row_Size

~@- Data Cache DRAM Data Busrt Size

¥~ CMT Capacity
Overprovisioning_Ratio
= GC_Exec_Threshold
=P Static Wearleveling Threshold
~@- Preferred suspend erase time for read

=W~ Preferred suspend_erase_time_for write
~f— Preferred suspend write_time for read
=~ Flash Channel Width

Channel Transfer Rate
=@~ Page Read Latency LSB

¥~ Page Read Latency CSB
=&~ Page Read Latency MSB
=4 Page_Program_Latency LSB
=P~ Page Program Latency CSB
~@- Page Program Latency MSB

Block Erase Latency
=~ Block PR Cycles Limit
=~ Suspend Erase Time

=P Suspend_Program_time
~@- Page Metadat Capacity

CloudStorage Recomm LiveMaps KVStore DataBase BatchAnalytics WebSearch

@ 2 2

o

=]

©

Ex

€3 14 14 14 1 1 14 14 14

&g

k=21

g a

g 0 0 0 0 0 0 0

@ = <

g

=

=]

< -1 -1 -1+y~— -1+ -1+ -1+ "7 -1+

1x 2x 4x 8x 16x 1x 2x 4x 8x 16x 1x 2x 4x 8x 16x 1x 2x 4x 8x 16x 1x 2x 4x 8x 16x 1x 2x 4x 8x 16x 1x 2x 4x 8x 16x
Figure 4: A study of coarse-grained parameter pruning for different storage workloads.

CloudStorage 0000 0030 0006 0005 -0.000 -0.000 0000 0000 0000 -0.017 [EECANEEEE 0030 EEEEEFEIEEEE
Recomm 0012 0012 0009 0007 0001 0000 0000 -0.000 -0.001 -0.036 -0.081 -0.087 -0.088 0220 -0.239
LiveMaps 0014 0009 0.010 0096 -0.003 0000 -0.000 | -0.064 -0.070 -0.096 0.036 -0.102
KVStore 0002 0003 0010 0007 0009 0008 0000 0002 0.000 | -0.102 0.173 | -0.145
DataBase 0009 0002 0005 0004 -0006 0000 0000 -0.029 -0.001 -0.049 0108 -0.104 -0.081 |SOREENEWEEGN -0.057

BatchAnalytics -0.000 0007 0018 0013 0003 -0.000 0000 0001 -0.001 -0.078 -0.087 -0.096 WEELUN -0.004 -0.004 0.005
WebSearch ~ -0.005 -0.013 0.031 0.031 0006 0015 0011 0000 -0.000 0000 [[0:07971 -0.001 [EUEENN -0.007 -0.001 [JEGKEER -0.000 -0.000 0017 0.009

annet ount ount idth 2oty size Rate Wit a0 nold \enc\l 20ty 5\1 (D cne V) \ S8 WSB__ glock \ane
No P ov\a““?;o(\:e vare Sl BenCione Cori 81 T Onane oo e ‘“\‘f’ms Mo St RO ‘e;‘w“’e N e o PV ey Tae o S tiad
onip et polet oa\:\ ORAN cann®—" prash— oyer® acacx\ ,Page Daget Reage pro@‘g Progd™—" pagt— glo
pata S Dav s P

Figure 5: A study of fine-grained parameter pruning with linear regression. As we increase the values of device parameters
with linear regression, some device parameters have a positive impact on the storage performance (blue colors), while some
have a negative impact (red colors). We consider all these important ones in automated tuning,.

parameters and performance. We set a regression space by maintain-
ing the constraints of SSD capacity and power budget. We vary the
values of device parameters and measure the regression coefficient
for each parameter. A higher coefficient score of a parameter means
it has a stronger correlation with the SSD performance. We abandon
the parameter whose score is below a threshold (+0.001 by default)
as shown in Figure 5. Thus, we can focus on parameter tuning for
the important ones. These parameters have different correlations
with the SSD performance. Specifically, the parameters that have
linear correlation with performance include the number of channels
and chips, and queue depth. The parameters that have non-linear
correlations with SSD performance include the data cache size, and
the number of dies/planes. Instead of limiting the search space for
optimized configurations by tuning these parameters in a simple
order, we use the regression coefficient of each parameter to guide
the tuning order to improve the model efficiency.

In addition, we also order the parameters based on the absolute
value of their coefficient scores, and use the orderings as learning
rules to guide the turning order of device parameters (see §3.4). Our
experimental results show that these learning rules can significantly
improve the learning efficiency of AutoBlox (see the discussion in
§4 and Figure 9).

Key observations. The learning-based parameter pruning not
only helps us to eliminate the insensitive parameters but also of-
fers interesting insights that would benefit SSD development. We
observe that: (1) as we consider multiple optimization targets (e.g.,
latency, throughput, target workload, and non-target workloads)
and constraints (e.g., SSD capacity and power) in the tuning of SSD
configurations, the sensitivity of device configurations to different

optimization targets depends on the workload characteristics. For
example, latency-critical workloads like WebSearch are less sen-
sitive to the flash chip layout, while the I/O-intensive workloads
like KVStore and LiveMaps are extremely sensitive to the chip lay-
out. This is because flash chip layout will significantly affect the
SSD bandwidth. AutoBlox quantifies these trade-offs with a uni-
fied optimization target to guide the tuning procedure. (2) Not all
SSD parameters are equal. Some SSD parameters have non-linear
correlations with storage performance, and these parameters vary
for different workload types. For example, the data cache size, and
the number of dies and planes in an SSD. This observation reflects
the complexity of SSD parameter tuning, motivating us to leverage
learning-based techniques in AutoBlox. (3) Not all parameters are
sensitive to storage performance, and some of them can be con-
figured the same as commodity SSDs. By ordering the parameters
based on their sensitivity to storage performance, AutoBlox can
significantly reduce the learning time.

3.4 Automated Tuning of SSD Configurations

We now explain the details of the customized Bayesian optimiza-
tion model for learning optimized SSD configurations. We present
the system workflow of AutoBlox in Figure 6. Given a workload,
AutoBlox will first use the configurations stored in the AutoDB as
the initial configuration set, and leverage both Gaussian Process
Regression (GPR) [45] and discrete Stochastic Gradient Descent
(SGD) [35, 63] algorithms to explore optimized configurations. For
each optimized configuration proposed by the model, AutoBlox
will use a cycle-accurate SSD simulator to validate its performance

Learning to Drive Software-Defined Solid-State Drives

Learning Target

Converged

Cluster1 Config1 Perf1 |
Cluster2 Config2 Perf2 Not
O Tl | 00
Not Sufficient Update Efficiency
Learned C: A“'TDB : . : Validation
@cxtract Coni i . = = T
OAEE & Jo &
gr“"‘""j:;‘eons <Config, Perf> O config © stochastic @ Gcaussian
9 Pairs for Learned Grading with Gradient [¢— Performance
Workload Penalty Balance Descent (SGD) Regression (GPR)

Figure 6: The automated learning workflow of AutoBlox.

and energy consumption until the model converges (i.e., an opti-
mized SSD configuration is identified). We discuss each step of its
workflow in detail.

Identify the initial configuration set for a new workload. For a new
workload, AutoBlox will use the learning-based workload cluster-
ing as discussed in §3.1 to cluster the workload, and look up the
learned configurations for the corresponding workload cluster in
AutoDB (@). AutoBlox will use these configurations and their deliv-
ered performance to initialize the ML model. However, if there are
insufficient configurations in AutoDB (e.g., the AutoDB is empty),
AutoBlox will use a configuration from existing commodity SSDs
and its measured performance to initialize the model (@®).
Quantify the learned configurations with a unified grade. We will

start the tuning procedure with the initial configurations. In order to
check the effectiveness of these configurations, AutoBlox develops
a grading mechanism () to unify different performance metrics.
To achieve the maximal optimizations for both data access latency
and throughput, AutoBlox uses the Formula 1 as the learning goal.
To ensure the learned configuration for a target workload does not
hurt the performance of other workloads, AutoBlox introduces a
new factor f named penalty balance in its grading. Therefore, we
define the performance grade for a workload as follows: given a
target workload W, a target configuration conf, and non-target
workloads W’,

Gradew (conf) = (1 — f) x Performancey, (conf’)

ZW’enonftarget Performancew’(conf) @

NumClusters — 1

+f %

where Performancey, (conf) follows the Formula 1, # = 0.1
by default based on our study (see Figure 12), and NumClusters
denotes the number of different types of workloads available in the
configuration database AutoDB. The second part in the equation
represents the average performance of all the non-target workload
clusters. We use the geometric mean to calculate the average per-
formance within each cluster, and then average across all clusters.
The denominator covers the number of clusters, which does not
change during optimization for each workload type.

Search optimized configurations with SGD techniques. With the ini-
tial SSD configurations and their grades, AutoBlox will use SGD to
search an optimized configuration (®). AutoBlox first identifies the
top three best configurations (i.e., the configurations whose grades
rank at the top) from the learned configurations and randomly
selects one as the search root. We randomly select the search root
from the top three configurations to prevent SGD from converging
into a suboptimal configuration. This is because checking fewer

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

top configurations can accelerate the converging process and iden-
tify optimized configurations, while checking a larger number of
configurations will significantly increase the convergence time, but
still cannot identify a better configuration. In the gradient descent
process, AutoBlox then expands the search space from the root
by checking all the adjacent configurations under constraints (e.g.,
SSD capacity) in each search iteration. AutoBlox will tune the pa-
rameters following the ranking of their absolute coefficient scores
for improved learning efficiency (see §3.3).

To ensure that we meet the specified constraints (e.g., SSD ca-
pacity and SSD DRAM capacity), AutoBlox will adjust the values of
other parameters with linear regression. These parameters include
seven SSD layout parameters (e.g., number of channels, number of
chips per channel, and number of dies per chip) and two DRAM-
related parameters (cached mapping table size and data cache size).
AutoBlox will use GPR model to identify the configuration with
the best-predicted performance grade (®). If its performance grade
is better than the search root, AutoBlox will set this configuration
as the new root and continue the next search iteration.

The main challenge with the SGD procedure (@) is to balance
the learning accuracy and exploitation overhead. Since there is no
guarantee that the initial configuration set will cover the entire
search space, AutoBlox has to gradually expand its search space to
ensure it can identify the optimized ones. However, this may cause
search space explosion, and the prediction will be less accurate
when the target configuration is far from the exploited search space.
To address this issue, we introduce a heuristic exploration factor —
the minimum Manhattan distance [64] between the configuration
being exploited and the learned configurations. Once the minimum
Manbhattan distance reaches a threshold (5 by default), we will stop
the SGD search and validate the current learned configuration. We
also set a threshold for the number of search iterations (10 by default
in AutoBlox) in the configuration exploration.

Predict the grades of explored configurations. As briefly discussed

above, AutoBlox uses GPR [45] to predict the grades for new device
configurations (@). This is for four major reasons. First, GPR can
provide nearly the same performance as deep neural networks,
especially in the modeling of searching optimized configurations
and making recommendations. Second, it offers excellent trade-offs
between the exploration of new knowledge and learned knowl-
edge [32, 53]. Third, GPR provides confidence intervals with low
computation overhead by default [2], making AutoBlox compu-
tation affordable with multi-core systems. Finally, GPR can help
AutoBlox estimate the efficiency of a configuration in a shorter time;
therefore, we can avoid frequent expensive performance validations
with SSD simulators (see the overheads in Table 6).

We build a new GPR model by specifying its mean function
and covariance function. The mean function is trainable since the
mean of the performance metrics is unknown before the learning
in AutoBlox. We use the covariance functions to represent the
correlation between two adjacent points in the model and adopt
both radial basis function (RBF) kernel [61] and rational quadratic
kernel [62] as the regression covariance. The parameter in the
covariance functions (e.g., length scale) are also trainable, and they
can learn how much performance similarity is there for two adjacent
configurations. To tolerate the noise in simulations, we also add

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

a white kernel [49] for random noise simulation. GPR model is
initialized each iteration with validated configurations in AutoDB.
Then, given the input of a set of device configurations generated
by SGD (®), GPR will help AutoBlox select the best one based on
its estimated grade.

Validate the efficiency of explored configurations. Once we obtain
the selected device configuration from GPR, AutoBlox will conduct
the efficiency validation using a cycle-accurate SSD simulator ().
Before the validation, AutoBlox will warm up the SSD simulator
by running diverse workload traces randomly. After that, Auto-
Blox will run the storage workloads in the AutoDB against the
SSD simulator configured with the selected device configuration.
AutoBlox will obtain the power consumption of the configured
SSD. If it exceeds the specified power budget, it means the selected
device configuration violates the power constraint, AutoBlox will
drop this configuration and start a new learning iteration to learn
another optimized configuration. Otherwise, AutoBlox will use the
Formula 2 to calculate the performance grade. In the validation,
AutoBlox maintains a set of optimized configurations whose grades
rank at the top of all the learned configurations. It is worth noting
that the grade considers the performance of target workloads and
non-target workloads.

After a certain number of search iterations, if the overall grade of
this configuration set is not significantly updated (within the bound
[-1%, 1%]), the learning procedure will converge. Otherwise, Auto-
Blox will update the AutoDB with the newly learned configuration
and start another search iteration until the learning converges.

The learning procedure of one new configuration will terminate
by checking two conditions: (1) no configuration is better than the
current root configurations in the search space; or (2) the search
exceeds the threshold for the number of iterations (5 by default in
AutoBlox). As discussed, AutoBlox will explore the search space
from the root configuration by checking all the adjacent configu-
rations until the learning procedure converges. According to our
experiments (see §4.3), AutoBlox incurs 89 search iterations on
average to identify an optimized configuration.

Optimization for efficiency validation. The efficiency validation could
be expensive because running a workload with the SSD simulator
will take a large amount of time (see Table 6). And we not only
need to run the target workload but also execute the non-target
workloads to ensure the selected configuration can deliver the best
performance tradeoff between target workloads and non-target
workloads. To accelerate the efficiency validation, we develop a
pruning mechanism to avoid the execution of non-target work-
loads, based on the insight that: if the performance grade of the
target workload (first half of Formula 2) running with the selected
configuration is lower than the worst grade of existing learned con-
figurations, we do not need to run non-target workloads, because
the selected configuration usually has a negative impact on the
performance of non-target workloads. In this case, we can quickly
decide whether we need to run another learning iteration or not,
rather than spending much time executing non-target workloads.

3.5 Implementation Details

AutoBlox Implementation. We implement AutoBlox with Python.
AutoBlox supports storage traces collected with blktrace which is
available on most computing systems. It uses PCA and k-means

Daixuan Li, Jinghan Sun, and Jian Huang

algorithms in the learning-based workload clustering. AutoBlox
utilizes the scikit-learn library v0.24.2 [6] to develop the learning
model that supports both SGD and GPR algorithms. AutoBlox uses
the cycle-accurate SSD simulator MQSim to validate the efficiency
of learned configurations. As validated in [55], the reported perfor-
mance of MQSim matches with commodity SSDs.

AutoBlox extends MQSim by adding the power modeling and
profiling for the efficiency validation of the learned configurations.
AutoBlox measures the power consumption of three major com-
ponents of the SSD controller at runtime: flash chips, SSD DRAM,
and storage processor. We track the read/write/erase operations
and the idle cycles for each flash chip. With the power model of
flash chips discussed in [19], we can calculate the total energy con-
sumption of flash chips. For the DRAM power consumption, we
integrate the DRAMPower simulator into MQSim and use DRAM
parameters specified in [18]. For the storage processor, we employ
the ARM power modeling from Gemb5 [17] and measure its power
consumption as we issue storage operations.

We will open source AutoBlox. AutoBlox is also compatible with

other SSD simulators, thus, SSD vendors can replace MQSim with
their own simulators. AutoBlox implements AutoDB with the key-
value store LevelDB, in which the key is the workload cluster ID,
and the value includes the corresponding SSD configurations and
their performance grades. The value is organized in JSON format.
AutoBlox provides a simple interface set_cons (capacity, interface,
flash_type, power_budget) for users to specify the constraints of
SSD capacity, interface (i.e., NVMe or SATA), the flash type (i.e.,
SLC/MLC/TLC), and power budget, respectively.
AutoBlox Deployment. AutoBlox is deployed mainly for storage
vendors and (datacenter) platform operators who want to efficiently
identify optimized device configurations for their target workloads.
AutoBlox Training. For the clustering, we use 70% of storage
workloads as the training set, and the rest of the workload trace
as the testing set to validate the model. For the model of learning
configurations, we divide the traces into 70%, 20% and 10% for
training, testing, and validation, respectively. This is used for tuning
hyperparameters (see « in Formula 1 and f in Formula 2).

3.6 Discussion and Future Work

Monetary cost constraint. AutoBlox does not currently have
monetary cost constraints. This is for three major reasons. First,
we cannot access the detailed manufacturing costs for each SSD
component, as they are confidential. Second, the monetary cost
is partially determined by economic factors that usually fluctuate
according to market dynamics. Third, according to the market re-
ports, the average cost of an SSD is $0.09-$0.2 per GB, which simply
implies that we can estimate the SSD cost based on its capacity.
AutoBlox has already had the SSD capacity constraint, which im-
plicitly enforces the cost constraint. However, given a detailed cost
model of SSD components, AutoBlox can incorporate them into its
framework and guide the search process of optimized configura-
tions. We wish to work on this as future work in collaboration with
industry partners.

Whole-system performance. The goal of AutoBlox is to learn
optimized SSD configurations. Just like SSD vendors nowadays,
AutoBlox focused on device-level performance optimizations. With

Learning to Drive Software-Defined Solid-State Drives

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Table 1: Performance of learned configurations for NVMe-based MLC SSDs (normalized to Intel 750 SSD). We list the target
workloads in the first row. The first column shows the non-target workloads. The numbers show the speedup of the storage
latency/throughput. AutoBlox delivers the best performance for target workloads (bold numbers). We also list the maximum
performance of target workloads without considering the non-target workloads (ignore non-target).

Target workload — Recomm KVStore Database =~ WebSearch ~ BatchAnalytics ~ CloudStorage LiveMaps
Recomm 1.28/1.07 1.18/1.02 1.22/1.01 1.00/1.01 1.19/1.05 1.18/1.03 1.23/1.05
KVStore 1.21/1.19 1.32/1.26 1.21/1.18 0.97/0.98 1.25/1.19 1.23/1.19 1.20/1.16
Database 1.14/1.14 1.15/1.14 1.45/1.43 1.00/1.00 1.15/1.14 1.14/1.13 1.14/1.11
WebSearch 1.03/0.54 0.92/0.89 0.64/0.88 1.25/1.00 0.89/0.55 0.93/0.55 0.90/0.61
BatchAnalytics 1.28/1.00 1.21/1.00 1.15/1.00 1.12/1.01 1.33/1.01 1.24/1.00 1.21/1.00
CloudStorage 1.52/1.01 1.64/1.01 1.38/1.01 1.10/1.00 1.76/1.01 1.93/1.01 1.78/1.01
LiveMaps 1.38/1.24 1.11/1.07 1.26/1.14 0.95/0.98 1.33/1.19 1.40/1.21 1.82/1.35
Geometric mean (speedup of non-target workloads) 1.26/1.00 1.10/1.02 1.11/1.03 1.02/1.03 1.24/1.00 1.19/1.01 1.14/1.00
Maximum speedup of target workloads (ignore non-target) 1.44/1.03 1.46/1.37 1.54/1.51 1.36/1.00 1.35/1.00 1.99/1.01 1.86/1.37
Geometric mean of non-target workloads (ignore non-target) 1.05/1.06 1.22/0.97 1.11/1.01 0.91/0.90 1.22/1.00 1.14/0.99 1.11/0.98
Worst performance of non-target workloads (ignore non-target) | 0.45/0.98 0.90/0.55 0.48/0.96 0.47/0.55 0.85/0.54 0.90/0.54 1.03/0.55

Table 2: Application workloads used in our evaluation.

‘Workload Category

Description

BatchAnalytics

MapReduce workloads running in data centers.

CloudStorage

Cloud storage workloads running in data centers.

KVStore YCSB benchmarks are executed against RocksDB.
LiveMaps LiveMaps workloads running on enterprise servers.
Database TPCC executed against Windows SQL Server.
‘WebSearch WebSearch services trace from UMassTraceRepository.
Recomm Recommendations workloads running on servers.

Table 3: New storage workloads used in our evaluation.

‘Workload Category Description

VDI Storage workloads on virtual desktop infrastructure.
FIU Traces from servers in Florida International University.
RadiusAuth Traces from MicroSoft RADIUS authentication server.
LevelDB A YCSB workload executed against LevelDB.

MySQL TPCH benchmark executed on MySQL database.

HDFS Storage workloads running in a distributed filesystem.

the learned configurations, it helps vendors produce new SSDs with
improved performance for target workloads. To ensure improved
end-to-end storage performance, end users can apply software
optimizations such as multi-threaded I/O scheduling and increased
page cache in OS, however, this is beyond the scope of this paper.
As future work, we wish to explore learning techniques for whole-
system performance optimizations.

4 EVALUATION

We show that: (1) AutoBlox can learn optimized SSD configurations
for a given workload, and the learned configurations can deliver
improved efficiency, compared with commodity SSD configurations
(§4.2); (2) It can instantly learn an optimized configuration with low
performance overheads (§4.3); (3) It works efficiently under different
configuration constraints (§4.4); (4) It can conduct what-if analysis
to identify optimized configurations for a given performance target
(§4.5); and (5) AutoBlox itself is also tunable for satisfying various
performance requirements from end users (§4.6).

4.1 Experimental Setup

In our evaluation, we use 7 different workload types as shown in Ta-
ble 2. We also use 6 different new workloads (see Table 3) that have
not been studied in AutoBlox to examine the generality of AutoBlox.
These workloads cover various workloads that include key-value
stores, databases, map services, advertisement recommendations,
batch data analytics, enterprise file servers, and etc.

We run the AutoBlox on a server configured with 24 Intel Xeon
CPU (E5-2687W v4) processors running at 3.0GHz, 96GB DRAM,
and 4TB SSD. Since AutoBlox uses statistic learning models, it does

not require GPUs. We use the configurations of Intel 750 SSD [8],
Samsung 850 PRO SSD [9], and Z-SSD [10] as the baselines. Auto-
Blox uses these baselines to initialize the model. After that, Auto-
Blox compares the learned configurations with them to evaluate
the learning efficiency. We believe they are reasonable baselines,
since they mostly target data-intensive applications, and have been
widely adopted in various computing platforms.

4.2 Efficiency of Learned Configurations

We first evaluate the efficiency of the learned configurations by
AutoBlox. We use the Intel 750 SSD as the baseline. We set the con-
figuration constraints as [SSD capacity = 512GB, interface = NVMe,
flash type = MLC]. We warm up the SSDs by running random work-
loads, which will occupy at least 50% of the storage capacity. With
its configuration in the SSD simulator, we run all the workloads in
Table 2 to measure their performance. After that, we use the ref-
erence configuration and the measured performances to initialize
AutoDB. Then, we feed the traces from different workload types
into AutoBlox to learn new configurations.

We show the performance of learned configurations in Table 1.
Compared to Intel 750 SSD, the learned SSD configurations reduce
the storage latency by 1.25-1.93% for the target workload, while
decreasing the storage latency by 1.15X on average for non-target
workloads. The learned configurations can also improve the storage
throughput by up to 1.43x for bandwidth-intensive applications
such as the database and cloud storage. AutoBlox ensures that
its learned configuration does not hurt the overall performance
of other workloads. It cannot guarantee not to hurt non-target
workloads. This is reasonable as AutoBlox focuses on the target
workload while using coefficient factors to minimize the negative
impact on non-target workloads.

We also show the best performance of target workload with-
out considering the performance of non-target workloads, where
we further improve the performance of target workloads by up to
16%. With software-defined SSDs, users may prefer maximizing
the performance of their target workloads, without the need for
considering non-target workloads. For example, cloud platforms
that dedicatedly serve Database-as-a-Service would like to achieve
the maximum performance for database workloads, without con-
sidering the performance of other workloads. These configurations
slightly decrease the performance of non-target workloads. Our
sensitivity analysis of § (see the Appendix) revealed that as we opti-
mize performance for target workloads, we may not always hurt the
performance of non-target workloads as some performance-critical

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Daixuan Li, Jinghan Sun, and Jian Huang

Table 4: Performance of learned configurations for NVMe-based MLC SSDs (normalized to Intel 750 SSD) for new (unseen)
storage workloads. The numbers represent the speedup of the storage latency/throughput for different workloads. AutoBlox
always delivers the best performance for the target workload (bold numbers).

Target workload — LevelDB MySQL HDFS VDI FIU RadiusAuth
LevelDB 1.34/1.27 1.05/1.04 1.00/1.00 1.02/1.03 1.24/1.20 1.01/1.00
MySQL 1.15/1.16 1.45/1.43 0.99/0.98 1.34/1.38 1.14/1.14 1.28/1.29
HDFS 1.41/1.00 1.23/1.00 1.53/1.01 1.12/1.00 1.36/1.04 1.10/1.09
VDI 1.27/1.16 1.30/1.17 1.05/1.03 1.38/1.28 1.13/1.08 1.17/1.10
FIU 1.13/1.00 0.99/1.00 1.16/1.00 1.08/1.09 1.39/1.00 1.08/1.06
RadiusAuth 1.03/1.00 1.43/1.00 1.08/1.00 1.32/1.00 1.23/1.00 1.52/1.00
Geometric mean (speedup of non-target workloads) | 1.19/1.06 1.19/1.04 1.05/1.00 1.17/1.09 1.22/1.08 1.12/1.10

1.259 g DRAM EXA Flash
1.00 4

0.754

R
3%
%%
XN
okl

>

QK
X,

o2e2eds

0.50 1

T
%0%%%%% \

0.254

0.00

Normalized Energy
Consumption

2]

Figure 7: Energy consumption of learned SSD configurations,
in comparison with the baseline SSD (Intel 750 SSD). Left:
baseline SSD, Right: learned SSD.

20.0 A
15.0
10.0

DN E

5.0 o

Learning
Time (hrs)

0esS ag® st aps ase
Batc‘t\P‘“a\c‘],\ouds“’t RSO eM P e

e‘gsea““geoo‘“m

Figure 8: Learning time for different target workloads.

parameters are sensitive to both target and non-target workloads.
We still need S, since it may still hurt the performance of some
non-target workloads. For instance, in the worst case, a non-target
workload can drop its performance by 56%. For some target work-
loads, we do not observe much improvement, this is because even
though we enlarge the search space by removing the bound for
non-target workloads, we do not identify a better configuration.

We also show the energy consumption of the learned SSD con-
figurations in Figure 7. Compared to the baseline (Intel 750 SSD),
the learned SSD configurations of AutoBlox can deliver up to 1.16x
energy reduction, and at most 5% percent energy increase among all
the workloads. The improvement of energy consumption is mainly
because the learned configurations update the chip layout (e.g., the
number of flash channels) accordingly and improve the data access
bandwidth, which saves the CPU cycles in the SSD controller.

We list the critical parameters of the learned configurations in
Table 5, in comparison with the reference configuration of Intel
750 SSD. For different target workloads, AutoBlox will learn differ-
ent parameter values. We manually tuned these parameters and
confirmed that AutoBlox selected correctly. Beyond the storage
workloads in Table 2, we further examine the learning efficiency
of AutoBlox with new workloads. As shown in Table 3, some of
these workloads do not belong to any of the workload types (see
Figure 2). The three workloads LevelDB, MySQL, and HDFS can
be clustered into the studied workload types KVStore, Database,
and CloudStorage respectively, but their traces are new. For the
new traces, the average distance between the cluster center and
existing clusters is 2.2x of the diameter of existing clusters. This

Table 5: The list of critical parameters in the learned configu-
rations for different target workloads. RC: Recommendations, KV:
KVStore, DB: Database, WS: WebSearch, BD: BatchAnalytics, CS: CloudStorage,
LM: LiveMaps.

Parameters Intel 750 RC KV DB WS BD CS LM
CMTCapacity 256MB 384MB 384MB 384MB 64MB 640MB 128MB 256MB
DataCacheSize 800MB 672MB 672MB 672MB 996MB 416MB 928MB 800MB
FlashChannelCount 12 32 10 10 32 32 32 16
ChipNoPerChannel 5 2 8 8 2 2 2 5
DieNoPerChip 8 2 1 2 8 1 1 4
PlaneNoPerDie 1 8 8 3 1 16 16 2
BlockNoPerPlane 512 512 512 512 512 512 512 256
PageNoPerBlock 512 256 384 512 512 256 256 768

Table 6: Overhead sources of AutoBlox.

Component Execution Time (secs)
Extract workload features per 100K I/O requests 0.84
Workload Similarity Comparison 4.65
Workload Clustering 0.57
AutoDB Database Lookup 0.02
New configuration learning per iteration 2.75
Efficiency Validation 670.89

confirms that these new workloads are completely different from
previous workloads, which helps us to further examine the model
efficiency. We report the performance improvement of learned
configurations of AutoBlox in Table 4. The learned configurations
achieves 1.34-1.53X performance improvement for target work-
loads, and delivers 1.12X improvement on average for non-target
workloads. This shows the generality of AutoBlox, AutoBlox can
learn optimized configurations for unseen workloads that either
fall into existing category or belong to a new category.

Although SSD vendors can have general optimizations for read
or write-intensive workloads, the coarse-grained optimization ap-
proach cannot capture rich semantics of data access patterns, result-
ing in suboptimal SSD configurations. For example, BatchAnalytics
(97.8% Read) and WebSearch (99.9% Read) are both read intensive
workloads, AutoBlox shows that they can have different optimized
configurations for improved performance (see Table 1 and Table 5).

4.3 Learning Efficiency of AutoBlox

We first examine the learning time of AutoBlox for different target
workloads. As shown in Figure 8, AutoBlox can learn an optimized
configuration in 14.02 - 18.71 hours. It incurs 89 search iterations
on average to pinpoint an optimized configuration. We profile the
execution time of its critical components on the multi-core server
as described in §4.1, and show the results in Table 6. AutoBlox can
finish each search iteration within 2.75 seconds. Its major perfor-
mance overhead comes from the efficiency validation. AutoBlox
only needs to validate the configuration selected by GPR in each
search iteration, for reducing the validation overhead.

Learning to Drive Software-Defined Solid-State Drives

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

—e— With learning order enforced

—&— Without learning order enforced

Recommendations KVStore DataBase

WebSearch

MapReduce CloudStorage LiveMaps

1.6 1.6 1.6
1.4 1.4 1.4

1.2 1.2 1.2

E 1.0 1.0 1.0

Normalized SSD
Performance Speedup

—_ —_ = -
o \S) S (=)}
! 1 ! 1

1.6 1 1.6 1 1.6

1.4 1 1.4 1 1.4+

1.2 _M—l
1.0

1.2 1 1.2 1

1.0 1 1.0 1

0 5 10 O 5 10 O 5 10 O

Learning Time (hrs) Learning Time (hrs) Learning Time (hrs)

Learning Time (hrs)

5 10 O 5 10 O 5 10 O 5 10

Learning Time (hrs) Learning Time (hrs) Learning Time (hrs)

Figure 9: Reduced learning time of AutoBlox as we enforce the learning order of device parameters.

—— Flash_Channel Count
—e— Chip No_Per Channel
—»— Die_No_Per_Chip

—4+— Plane_No_Per Die
—<— Block No_Per Plane
Page_No_Per Block

—— Page_Capacity —a— Data_Cache_Capacity
—e— Queue_Fetch Size =~ —=— Channel Transfer Rate
—+— [0_Queue_Depth —— CMT _Capacity

PCle_Lane_Bandwidth
—e— Data_Cache DRAM Data Rate
—»— Flash_Channel Width

—— Data_Cache_DRAM Data_Busrt Size
—<— Overprovisioning_Ratio

With learning order enforced

o
3

AN
oA

Normalized
Parameter Value

o
o
4
f

Time(hrs)

Normalized
Parameter Value

Without learnig order enforced

0 5 10 15 20 25
Time(hrs)

Figure 10: The learning procedure of AutoBlox for Database workload. Left/Right: with/without the learning order.

Table 7: The optimized configurations using what-if analysis
for target workloads with given performance targets.

-) Latency Reduction by 3x | Throughput Improvement by 3x
Parameters | Baseline Boundaries #Values VDI WebSearch | Database RVStore
DataCacheSize | 800 MB | 0- 2048 MB 32 1056 MB 1248 MB 672 MB 800 MB
CMTSize | 256 MB 0 - 2048 MB 32 512 MB 320 MB 384 MB 512 MB
ChannelWidth 8 bit 8- 32 bit 3 8 bit 8 bit 32 bit 16 bit
ChannelTransRate | 333 MT/s | 67 - 1200 MT/s 13 333 MT/s 333 MT/s 800 MT/s 1200 MT/s
AvgPageReadLat | 83 us 41-83us 43 50 us 4lus 83us 46 us
AvgPageWriteLat | 1166us | 583 - 1166 us 584 700 us 1166 us 583 us 583 us
NumberofChannel 12 1-64 64 16 32 64 32
ChipPerChannel 5 1-64 64 5 2 2 4

Moreover, AutoBlox applied the learning order as studied in §3.3
to improve its learning efficiency. We profile the learning proce-
dures for different target workloads, as shown in Figure 9. AutoBlox
can always learn an optimized configuration that delivers better
performance than the case without applying the learning order. The
enforced learning order enables AutoBlox to focus on the optimiza-
tion space search for the most relevant parameters, thus, its learning
procedure can be converged in a shorter time (see Figure 10).

With this study, we confirm that (1) for each parameter, its cor-
relation with the SSD performance is different, making it hard for
developers to manually tune them; (2) not all parameters are equal,
some parameters are insensitive to SSD performance. AutoBlox
can help developers identify such parameters for different target
workloads, and improve the productivity of SSD development.

4.4 Sensitivity to Configuration Constraints

We now evaluate how AutoBlox performs as we change the config-
uration constraints that include the flash types and device interface.
To evaluate the sensitivity to flash types, we use Samsung Z-SSD,
which is an NVMe SLC SSD, as the reference configuration. To
evaluate the sensitivity to device interface, we use Samsung 850
PRO, which is a SATA MLC SSD, as the reference configuration.

We present the performance of the learned configurations for
different workloads in Table 8 and Table 9, respectively. AutoBlox
can learn optimized configurations for the target workloads, al-
though the constraints have been changed. Table 8 shows that the
configurations learned by AutoBlox can reduce the storage latency
by up to 2.46x%, and improve the storage throughput by up to 1.92X%,
compared to the Samsung Z-SSD. Table 9 demonstrates that our
learned configurations can deliver up to 2.45x latency reduction
and up to 1.58% throughput improvement for SATA SSDs for the
target workload, in comparison with Samsung 850 PRO.

4.5 What-If Analysis with AutoBlox

We also show that AutoBlox can conduct what-if analysis to help
developers to identify the optimized configurations for a given
performance target for a target workload. These reported config-
urations can serve as the reference parameters as SSD vendors
develop the next-generation SSDs. To support what-if analysis, we
set more aggressive bounds for the hardware parameters (e.g., a
higher upper bound for the number of channels) to explore a larger
design space. These values may not be realistic today, but we foresee
they would be possible with advanced manufacturing technologies,
or they would be the target of future memory technologies.

As shown in Table 7, we use the configurations of Intel 750 SSD
as the baseline, and set the boundaries for the tunable parameters
in AutoBlox. We use two latency-sensitive workloads (VDI and
WebSearch) and two throughput-intensive workloads (Database
and KVStore) as the targets respectively. In the what-if analysis,
we use the performance of Intel 750 SSD as the reference, and
set the performance targets of latency-sensitive workloads as 3x
latency reduction on average, and throughput-intensive workloads
as 3X improvement on average, respectively. The configuration
constraints are the same as indicated in §4.2. We list the optimized

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Table 8: Performance of learned configurations for NVMe SLC SSDs (normalized to Samsung Z-SSD).

Daixuan Li, Jinghan Sun, and Jian Huang

Target Workload — Recomm KVStore Database WebSearch BatchAnalytics CloudStorage LiveMaps
Recomm 2.38/1.04 0.98/0.99 1.21/1.01 1.53/1.01 0.94/1.00 1.72/1.04 1.11/0.99
KVStore 1.83/1.38 2.46/1.57 2.08/1.47 1.13/1.12 1.33/1.17 1.23/1.13 1.46/1.24
Database 1.04/1.03 1.18/1.17 1.84/1.71 1.01/1.00 1.58/1.53 1.29/1.26 1.63/1.54
‘WebSearch 1.00/1.00 0.64/1.00 0.74/1.00 1.08/1.92 0.44/1.00 0.46/1.00 0.45/1.00
BatchAnalytics 1.06/1.00 1.15/1.17 0.78/1.07 1.24/1.07 1.32/1.07 0.99/1.07 1.24/1.07
CloudStorage 1.07/1.00 0.93/1.00 0.96/1.00 0.78/1.00 1.16/1.00 1.22/1.00 1.13/1.00
LiveMaps 0.72/0.94 1.01/1.00 1.36/1.04 0.49/0.86 1.53/1.04 1.33/1.03 1.86/1.07
Geometric mean (speedup of non-target workloads) | 1.08/1.05 1.00/1.04 1.11/1.09 1.00/1.01 1.12/1.14 1.09/1.09 1.10/1.12

Table 9: Performance of learned configurations for SATA MLC SSDs (normalized to Samsung 850 PRO).

Target Workload — Recomm KVStore Database WebSearch BatchAnalytics CloudStorage LiveMaps
Recomm 1.23/1.07 1.13/1.03 1.05/1.01 1.06/1.01 1.07/1.01 1.13/1.03 1.09/1.03
KVStore 2.13/1.60 _ 2.45/158 _ 0.76/067 _ 1.15/0.74___ 0.87/051 2.03/1.70 1.65/0.90
Database T01/1.00 092100 _ 10UL18 099114 __ 098/L1Z 0.98/1.00 1.01/1.00
‘WebSearch 0.94/1.00 0.89/1.00 1.13/1.13 1.13/1.14 1.12/1.10 0.98/1.00 0.95/1.00
BatchAnalytics 0.82/1.00 _ 103/1.00 _ 116/100 115100 __ 1.17/1.00 1.03/1.00 0.99/1.00
CloudStorage 110/101 __ 114/101___1.04/1.00 _ 104/1.02___ 1.05/1.00 1.40/1.01 1.06/1.00
LiveMaps 1.42/1.31 1.62/1.43 1.14/1.16 1.03/1.04 1.40/1.32 1.59/1.46 1.83/1.46
Geometric mean (speedup of non-target workloads) | 1.18/1.13 1.10/1.07 1.02/1.00 1.07/1.00 1.00/1.00 1.18/1.15 1.11/1.00
values of the most critical parameters in Table 7. AutoBlox can Database
identify the optimized configurations for different target workloads %g 1= Latency — = Throuput | 37
within 121 iterations on average, out of a large exploration space of 1.5 - o 13
1. - 1 - —— — — 05 ()
4.11 trillion configuration combinations. Given a target workload é 0.5 ITvoMaps 0" E
. . . =}
and a target performance, it will be extremely difficult to manually 2 25 A 25 &
. . o X . . £ 50 J—=Latenc = = Throuput | 2 E‘
identify the optimized configurations, if they wish to understand g1 1 _yﬁﬂc L5 =
: = b 10 5
how the SSD device should be advanced to meet the performance B, é 1 _-" 05 é
. . . a Y.
goals. AutoBlox shows that SSD DRAM capacity, device read/write g . KVStore 0 ?
. . . © 2. -1 .
latency, and chip layout are all important for reducing storage = 29 {— Latency = = Throuput 20 &
latency. It also shows that the data transfer rates in each channel 1“;’] — 10
0.5 0

and chip layout are critical for improving storage throughput.

4.6 Impact of the Balance Coefficient

As discussed in §3.2 and §3.4, AutoBlox uses the coefficient factor
o (Formula 1) to balance the storage latency and throughput in the
learning procedure, and defines the coefficient factor § (Formula 2)
to balance the penalty (weight) between the target workload and
non-target workloads. Both of them are tunable in AutoBlox, which
allows end users to adjust them per their needs. In this part, we
evaluate their impact on storage performance. We vary their values
from 0.01 to 0.99, and measure the performance of the learned
configurations for the three representative workloads Database,
Key-Value store, and LiveMaps. As we examine each value of @ and
B, we reset the ML model and initialize the AutoDB.

With the coefficient factor «, our goal is to achieve the maximum
improvement for both latency and throughput. In Figure 11, as we
increase the value of & from 0.01 to 0.1, the latency of the target
workload is dramatically reduced, however, its throughput is lower
than the reference configuration. As we further increase its value
to 0.5, we can achieve both improved latency and throughput for all
the three target workloads. Thus, AutoBlox sets & = 0.5 by default.

With the coefficient factor f, our goal is to achieve the maximum
performance improvement for both target workload and non-target
workloads. As we vary the value of f, we observe that there is a
sweet spot (f = 0.1) that delivers maximum improvements for both
target workload and non-target workloads (Figure 12). Thus, we
set f = 0.1 by default.

0.1 0.5 0.9

Coefficient factor

Figure 11: Performance impact of the coefficient factor for
balancing the latency and throughput for a target workload.

Database

2 3
_% 15 4— Target == = Non-Target 15 ré
2 1.0 A 1.0 2
2 WebSearch o
o

2 3
€ 15 {— Terget e e Target |y 5
é 1.25 1 -----4 1.25 z
o 1.0 A 10 &
% KVStore o
3 El
2, Target = = Non-Target 2
1.5 1.5 2

n —————————_'——---- 1]
w 1.25 4 1.25 b
£ 1.0 4 1.0 ¢

0.01 0.1 0.5 0.9 0.99

Coefficient Factor

Figure 12: A study of the coeflicient factor for balancing the
performance between the target and non-target workloads.

5 RELATED WORK

SSD Performance Optimizations. SSDs have been widely used
in modern storage systems to meet the performance and capacity
requirements from applications [24, 26, 33, 36, 68]. Although many
applications have unique data access patterns [5, 23, 69], they nor-
mally employ generic SSDs, causing suboptimal performance and
resource inefficiency. Researchers proposed the software-defined
flash to enable applications to develop their own storage stack [25,

Learning to Drive Software-Defined Solid-State Drives

34, 38, 47]. However, there is a longstanding gap between the ap-
plication demands and device specifications. We develop AutoBlox
with the goal of bridging this gap.

Machine Learning for Systems. Most recently, researchers lever-
aged ML techniques to solve system optimization problems, such
as the task scheduling [43, 59, 70], performance optimizations [22,
37, 54, 71], and others. However, few studies conduct a systematic
investigation of applying the learning techniques to develop SSDs.
To the best of our knowledge, AutoBlox is the first work that utilizes
the learning techniques to automate tuning of SSD specifications.

SSD Device Development. The industry has developed mature
manufacturing techniques and fabrication process to produce new
storage devices, such as Z-SSD [50], Optane SSD [27], ZNS SSDs [60].
In the era of Industry 4.0/5.0 powered by Al storage devices should
become highly customizable. In this work, we focus on building a
learning-based framework aiming towards this goal.

6 CONCLUSION

We build a learning-based framework AutoBlox for enabling the
automated tuning of SSD configurations. Given a storage workload,
AutoBlox can efficiently learn an optimized SSD configuration un-
der different configuration constraints, which significantly reduces
manual efforts in SSD device development. Our experiments show
that the learned SSD configurations can maximize the performance
improvement for both target workload and non-target workloads.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments and
feedback. This work was partially supported by the NSF CAREER
Award CNS-2144796 and a gift fund from SK Hynix.

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD Perfor-
mance. In Proceedings of the 2008 USENIX Annual Technical Conference
(ATC’08). Boston, Massachusetts.

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bo-
han Zhang, Christian Billian, and Andrew Pavlo. 2021. An Inquiry into
Machine Learning-based Automatic Configuration Tuning Services on
Real-World Database Management Systems. Proceedings of the VLDB
Endowment 14, 7 (2021), 1241-1253.

Amazon. 2021. AWS Web Services. https://aws.amazon.com/.

Matt Asay. 2022. New Gartner report shows massive
growth in the database market, fueled by cloud. https:
//www.techrepublic.com/article/new-gartner-report-shows-
massive-growth-database-market-fueled-cloud/.

Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda,
Toni Cortes, and Philippe O. A. Navaux. 2019. Detecting I/O Access
Patterns of HPC Workloads at Runtime. In Proceedings of the 31st Inter-
national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’19).

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-
dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, and Gaél Varoquaux. 2013. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning.
108-122.

—_
oo
—

—
w
—_

—
N
flaas?

—
w
=

—_
(=)
=

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[7] Steve Burke. 2012. How SSDs Are Made: Phases of Solid-State Drive
Development. https://www.gamersnexus.net/guides/956-how-ssds-
are-made.

CAMELab. 2018. Intel 750 SSD specifications. https://docs.simplessd.

org/en/v2.0.12/_downloads/c1f977aafe4072ae4a21eae026d502ef/

intel750_400gb.cfg.

CAMELab. 2018. Samsung 850 Pro SSD specifica-

tions. https://docs.simplessd.org/en/v2.0.12/_downloads/

£9180ac639ce600a54f6d2e982207edd/samsung_850pro_256gb.cfg.

[10] CAMELab. 2018. Samsung Z-SSD specifications. https://docs.simplessd.
org/en/v2.0.12/_downloads/044b4elalbble3ba37b3709033f9bf63/
samsung_zssd_800gb.cfg.

[11] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. To-
wards Better Understanding of Black-box Auto-Tuning: A Compara-
tive Analysis for Storage Systems. In 2018 USENIX Annual Technical
Conference (USENLX ATC’18). Boston, MA.

[12] Laura Caulfield. 2018. Project Denali to define flexible SSDs for
cloud-scale applications.
https://azure.microsoft.com/en-us/blog/project-denali- to-define-
flexible-ssds-for-\cloud-scale-applications/.

[13] Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential roles
of exploiting internal parallelism of flash memory based solid state
drives in high-speed data processing. In Proceedings of the IEEE 17th
International Symposium on High Performance Computer Architecture
(HPCA’11). IEEE.

[14] Open Compute. 2021. The Open Compute Project. https://www.
opencompute.org/.

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107-113.

[16] FinancesOnline. 2022. 60 Notable Machine Learning Statistics:
2021/2022 Market Share and Data Analysis. https://financesonline.
com/machine-learning-statistics/.

[17] Gem5. 2022. ARM Power Modelling. https://www.gem5.org/
documentation/learning_gem5/part2/arm_power_modelling/.

[18] Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon Koh, Wonil
Choi, Nam Sung Kim, Mahmut Kandemir, and Myoungsoo Jung. 2018.
Amber*: Enabling precise full-system simulation with detailed model-
ing of all SSD resources. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 469-481.

[19] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Ei-
tan Yaakobi, Paul H Siegel, and Jack K Wolf. 2009. Characterizing flash
memory: Anomalies, observations, and applications. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture. 24-33.

[20] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A
Flash Translation Layer Employing Demand-based Selective Caching
of Page-level Address Mappings. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’09). Washington, DC, USA.

[21] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi.
2017. MittOS: Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP’17). Shanghai, China.

[22] Mingzhe Hao, Levent Toksoz, Nanginqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability
on Unpredictable Flash Storage with a Light Neural Network. In Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20).

[23] Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos
Maltzahn, and Xian-He Sun. 2013. I/O Acceleration with Pattern

8

—

[9

—

https://aws.amazon.com/
https://www.techrepublic.com/article/new-gartner-report-shows-massive-growth-database-market-fueled-cloud/
https://www.techrepublic.com/article/new-gartner-report-shows-massive-growth-database-market-fueled-cloud/
https://www.techrepublic.com/article/new-gartner-report-shows-massive-growth-database-market-fueled-cloud/
https://www.gamersnexus.net/guides/956-how-ssds-are-made
https://www.gamersnexus.net/guides/956-how-ssds-are-made
https://docs.simplessd.org/en/v2.0.12/_downloads/c1f977aafe4072ae4a21eae026d502ef/intel750_400gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/c1f977aafe4072ae4a21eae026d502ef/intel750_400gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/c1f977aafe4072ae4a21eae026d502ef/intel750_400gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/f9180ac639ce600a54f6d2e982207edd/samsung_850pro_256gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/f9180ac639ce600a54f6d2e982207edd/samsung_850pro_256gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/044b4e1a1bb1e3ba37b3709033f9bf63/samsung_zssd_800gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/044b4e1a1bb1e3ba37b3709033f9bf63/samsung_zssd_800gb.cfg
https://docs.simplessd.org/en/v2.0.12/_downloads/044b4e1a1bb1e3ba37b3709033f9bf63/samsung_zssd_800gb.cfg
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible-ssds-for-\cloud-scale-applications/
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible-ssds-for-\cloud-scale-applications/
https://www.opencompute.org/
https://www.opencompute.org/
https://financesonline.com/machine-learning-statistics/
https://financesonline.com/machine-learning-statistics/
https://www.gem5.org/documentation/learning_gem5/part2/arm_power_modelling/
https://www.gem5.org/documentation/learning_gem5/part2/arm_power_modelling/

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[24

[25

[26

[27

[28

[29

(30

[31

(32

(33

[34

(35

(36

(37

(38

[l

[

—

[t —

[’

=

—

—

[t

flan?

=

]

—

—

Detection. In Proceedings of the 22nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC’15). New York,
New York, USA, 25-36.

Yang Hu, Hang Liu, and H. Howie Huang. 2018. TriCore: Parallel Tri-
angle Counting on GPUs. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis
(5C’18) (Dallas, Texas).

Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox:
Achieving Both Performance Isolation and Uniform Lifetime for Virtu-
alized SSDs. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST’17). Santa Clara, CA.

Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten
Schwan. 2015. Unified Address Translation for Memory-mapped SSDs
with FlashMap. In Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (ISCA’15). Portland, OR.

Intel Corporation. 2018. Intel® Optane™ SSD DC P4801X Series.
(2018).

Luyi Kang, Yuqi Xie, Weiwei Jia, Xiaohao Wang, Jongryool Kim,
Changhwan Youn, Myeong Joon Kang, Jin Lim, Bruce Jacob, and Jian
Huang. 2021. IceClave: A Trusted Execution Environment for In-
Storage Computing. In Proceedings of the 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’21). Virtual Event.
Jiho Kim, Seokwon Kang, Yongjun Park, and John Kim. 2022. Net-
worked SSD: Flash Memory Interconnection Network for High-
Bandwidth SSD. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 388—403.

Joonsung Kim, Pyeongsu Park, Jachyung Ahn, Jihun Kim, Jong Kim,
and Jangwoo Kim. 2018. SSDcheck: Timely and accurate prediction of
irregular behaviors in black-box SSDs. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 455-468.
Kingston. 2021. Design-in Solid State Drives for System Designers
and Builders. https://www.kingston.com/unitedstates/us/embedded/
design-in-ssd.

Andreas Krause and Cheng Soon Ong. 2011. Contextual Gaussian Pro-
cess Bandit Optimization. In Proceedings of the 24th International Con-
ference on Neural Information Processing Systems (NIPS’11). Granada,
Spain.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-Scale Graph Computation on Just a PC. In Proc. 10th USENIX
OSDI. Hollywood, CA.

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and
Arvind. 2016. Application-Managed Flash. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST’16). Santa
Clara, CA.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and
JiLiu. 2017. Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel Stochastic Gra-
dient Descent. In Proceedings of the 30th International Conference on
Neural Information Processing Systems (NIPS’17).

Hang Liu and H. Howie Huang. 2019. SIMD-X: Programming and
Processing of Graph Algorithms on GPUs. In Proceedings of the 2019
USENIX Annual Technical Conference (USENIX ATC’19). Renton, WA.
Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2020. Learning-
Based Memory Allocation for C++ Server Workloads. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20). Lausanne,
Switzerland.

Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. 2014. SDF: Software-defined Flash for Web-scale

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Daixuan Li, Jinghan Sun, and Jian Huang

Internet Storage Systems. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’14). Salt Lake City, UT.

Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong
Kim, and Onur Mutlu. 2021. Reducing solid-state drive read latency
by optimizing read-retry. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 702-716.

PCISIG. 2022. PCle Specification: The High-Speed Interconnect of
Choice is Evolving. https://pcisig.com/specifications.

Prashanth Ashok. [n.d.]. What is Ridge Regression? https://www.
mygreatlearning.com/blog/what-is-ridge-regression/.

PyTorch Team. 2021. PyTorch: From Research to Production. https:
//pytorch.org/.

Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained
Resource Management Framework for SLO-Oriented Microservices.
In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20).

Nadig Rakesh, Sadrosadati Mohammad, Mao Haiyu, Mansouri Ghiasi
Nika, Tavakkol Arash, Park Jisung, Sarbazi-Azad Hamid, Gémez Luna
Juan, and Mutlu Onur. 2023. Venice: Improving Solid-State Drive
Parallelism at Low Cost via Conflict-Free Accesses. In Proceedings of
the 50th Annual International Symposium on Computer Architecture.
ACM. https://doi.org/10.1145/3579371.3589071

Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian
Processes for Machine Learning. The MIT Press.

Benjamin Reidys, Peng Liu, and Jian Huang. 2022. RSSD: Defend
Against Ransomware with Hardware-Isolated Network-Storage Code-
sign and Post-attack Analysis. In In Proceedings of the 27th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’22). Lausanne, Switzerland.

Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and
Jian Huang. 2022. BlockFlex: Enabling Storage Harvesting with
Software-Defined Flash in Modern Cloud Platforms. In Proceedings of
the 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). Carlsbad, CA.

Allied Market Research. 2022. Hadoop Market Statistics:2030. https:
//www.alliedmarketresearch.com/world-hadoop-market.
scikit-learn. 2021. White Kernel. https://scikit-learn.org/stable/
modules/generated/sklearn.gaussian_process.kernels. WhiteKernel.
html.

Samsung Semiconductors. 2018. Ultra-Low Latency with Samsung
Z-NAND SSD. Technical Report (2018).

Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. 2014.
Willow: A User-programmable SSD. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14).
Broomfield, CO.

Systems Software and Architecture Lab. 2022.
//openssd-project.org/.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger.
2010. Gaussian Process Optimization in the Bandit Setting: No Re-
gret and Experimental Design. In Proceedings of the 27th International
Conference on International Conference on Machine Learning (ICML’10).
Haifa, Israel.

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian
Huang. 2023. LeaFTL: A Learning-based Flash Translation Layer for
Solid-State Drives. In In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’23). Vancouver, Canada.

OpenSSD. http:

https://www.kingston.com/unitedstates/us/embedded/design-in-ssd
https://www.kingston.com/unitedstates/us/embedded/design-in-ssd
https://pcisig.com/specifications
https://www.mygreatlearning.com/blog/what-is-ridge-regression/
https://www.mygreatlearning.com/blog/what-is-ridge-regression/
https://pytorch.org/
https://pytorch.org/
https://doi.org/10.1145/3579371.3589071
https://www.alliedmarketresearch.com/world-hadoop-market
https://www.alliedmarketresearch.com/world-hadoop-market
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html
http://openssd-project.org/
http://openssd-project.org/

Learning to Drive Software-Defined Solid-State Drives

[55] Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. 2018. MQSim: A Framework for Enabling
Realistic Studies of Modern Multi-Queue SSD Devices. In Proceedings of
the 16th USENLX Conference on File and Storage Technologies (FAST’18).
Qakland, CA.

[56] TrustRadius. 2021. Database-as-a-Service. https://www.trustradius.
com/database-as-a-service-dbaas.

[57] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.

2017. Automatic Database Management System Tuning Through Large-

Scale Machine Learning. In Proceedings of the 2017 ACM International

Conference on Management of Data (SIGMOD’17). Chicago, Illinois,

USA.

Xiaohao Wang, You Zhou, Chance C. Coats, and Jian Huang. 2019.

Project Almanac: A Time-Traveling Solid-State Drive. In Proceedings

of the 14th European Conference on Computer Systems (EuroSys’19).

Dresden, Germany.

[59] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhan-
dari, Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: Harvesting
Idle CPUs Safely and Efficiently in the Cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems (EuroSys’21).

[60] WDC. 2020. ZNS SSDs Just Got Real - Ultrastar DC ZN540 Now
Sampling. https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-
sampling/.

[61] Wikipedia. 2023. Radial basic function kernel. https://en.wikipedia.
org/wiki/Radial_basis_function_kernel.

[62] Wikipedia. 2023. Rational Quadratic Covariance Function. https:
//len.wikipedia.org/wiki/Rational quadratic_covariance_function.

[63] Wikipedia. 2023. Stochastic Gradient Descent. https://en.wikipedia.
org/wiki/Stochastic_gradient_descent.

[64] Wikipedia. 2023. Taxicab Geometry: Manhattan Distance. https:
//en.wikipedia.org/wiki/Taxicab_geometry.

[65] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021.

{D2FQ}:{Device-Direct} Fair Queueing for {NVMe}{SSDs}. In 19th

USENIX Conference on File and Storage Technologies (FAST 21). 403-415.

Zakaria Jaadi. [n.d.]. A Step-by-Step Explanation of Principal Com-

ponent Analysis (PCA). https://builtin.com/data-science/step-step-

explanation-principal-component-analysis.

[67] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li,

Tieying Zhang, and Bin Cui. 2021. Restune: Resource oriented tuning

boosted by meta-learning for cloud databases. In Proceedings of the

2021 international conference on management of data. 2102-2114.

Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E.

Priebe, and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-

Node Graphs on an Array of Commodity SSDs. In Proceedings of 13th

USENIX Conference on File and Storage Technologies (FAST’15). Santa

Clara, CA.

Qing Zheng, Kai Ren, Garth Gibson, Bradley W. Settlemyer, and Gary

Grider. 2015. DeltaFS: Exascale File Systems Scale Better without

Dedicated Servers. In Proceedings of the 10th Parallel Data Storage

Workshop (PDSW’15). Austin, Texas, 1-6.

Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez, Chengzhong

Xu, and Rajkumar Buyya. 2021. Machine Learning-based Orches-

tration of Containers: A Taxonomy and Future Directions. CoRR

abs/2106.12739 (2021).

Giulio Zhou and Martin Maas. 2021. Learning on Distributed Traces for

Data Center Storage Systems. In Proceedings of the Machine Learning

and Systems (MLSys’21). Austin, TX.

[58

—

(66

=

(68

=

(69

—

(70

[t

(71

—

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract

The artifact of AutoBlox is a learning-based framework that opti-
mizes the design of software-defined SSDs. Specifically, this artifact
includes the source code of the SSD simulator, the training model,
and the necessary scripts to reproduce the experiments in our paper.

A.2 Artifact check-list (meta-information)

e Algorithm: AutoBlox proposed and implemented a customized
Bayesian optimization algorithm.

e Data set: AutoBlox uses block-level I/O traces for different work-
loads, such as YCSB, TPCC, AdspayLoad, MapReduce, LiveMaps-
BackEnd, WebSearch, and CloudStorage. We provide the links
for downloading these block I/O traces.

e Hardware: The simulator does not require any special hardware.
But we prefer machines with larger memory capacities (>120GB)
for accelerating the learning process.

o Disk space required: The trace files and simulator outputs need
about 100GB storage space.

o Expected execution time of the experiments: AutoBlox takes
approximately 21 hours to finish both pruning and training for
each workload. The pruning and training of each workload can
be performed in parallel across multiple machines.

o Publicly available: Yes. The DOI of this artifact is 10.5281/zen-
0d0.8332820. You can also access the latest version at https:
//github.com/platformxlab/AutoBlox.

A.3 Description

A.3.1 How to access. The latest version of this artifact can be
accessed via this link: https://github.com/platformxlab/AutoBlox.
The artifact is available at https://zenodo.org/record/8332820.

A.3.2 Hardware dependencies. Our experiments do not require any
special hardware. Since some of our experiments will cause large
memory footprints, it will be helpful if you run the experiments
with machines having larger memory capacities (e.g., 128 GB).

A.3.3 Software dependencies. The artifact uses MQSIM and DRAM-
Power simulator, they require Python3 and relevant packages. We
specify all the software dependencies in the README.

A.3.4 Data sets. Our experiments need several block-level I/O
traces. The links for downloading the traces are available in the
Github README.

A.4 Installation

The setup of the artifact is as follows. First, please clone the reposi-
tory and download the trace files with the following commands:

cd AutoBlox_Artifact/src
python3 download.py

cd ..

unzip autoblox_traces.zip
mv autoblox_traces/x .

rm -r autoblox_traces/
unzip xdb_base.zip

cd src/

bash setup_xdb.sh

cd ..

https://www.trustradius.com/database-as-a-service-dbaas
https://www.trustradius.com/database-as-a-service-dbaas
https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-sampling/
https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-sampling/
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Rational_quadratic_covariance_function
https://en.wikipedia.org/wiki/Rational_quadratic_covariance_function
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://github.com/platformxlab/AutoBlox
https://github.com/platformxlab/AutoBlox
https://github.com/platformxlab/AutoBlox
https://zenodo.org/record/8332820

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Then, install the dependencies with the command:
bash server_setup_instructions.sh

More detailed instructions can be found in the README file.

A.5 Evaluation and expected results

There are three steps towards reproducing the results of AutoBlox.
(1) Workload Clustering. AutoBlox clusters different workloads
with block I/O traces (as shown in Figure 2). To verify the workload
clustering results, please run the following commands:
cd src
python3 clustering_motivation.py
cd ../reproduced_dat
python3 clustering.py
(2) Parameter Pruning. AutoBlox accelerates the tuning proce-
dure by pruning insensitive parameters and by using the pruning
results to enforce the tuning order. To verify the coarse-grained
pruning and fine-grained pruning results, please run the following
commands:
cd ../src
export target="target_workload"
bash run_pruning.sh

In our experiments, the target workloads refer to the workloads
in Table 2. After running the above comments, please run the fol-
lowing commands:
cd ../reproduced_dat

python3 coarsed_grained.py
python3 fine_grained.py

Daixuan Li, Jinghan Sun, and Jian Huang

With the above commands, you should be able to generate the
results as shown in Figure 4 and Figure 5. These experiments demon-
strate that different workloads have different performance sensitiv-
ity to SSD hardware parameters, and it is hard to manually tune
these parameters. More detailed discussions can be found in Sec-
tion 3.

(3) Learning Procedure. To start the learning procedure, please

run the following commands:

cd src

find_best_conf.py target_workload use_tuning_order
xdb_directory

In the above command, target workload refers to the workloads
in Table 2, the use_tuning_order has two options: True and False,
and xdb_directory is the xdb database used in AutoBlox. Since the
learning process will take multiple hours, we suggest the users to
run the experiments using several machines in parallel.

To reproduce Table 1, please run the following command:

python3 get_recommended_configurations.py xdb_directory

We can reproduce Figure 9 and Figure 10 with the commands:

cd ../reproduced_dat
python3 learning_profile.py
python3 tuning_time.py

These figures show that, with enforced tuning order, AutoBlox
can accelerate the learning procedure. Note that the generated
figures could be slightly different from Figure 9 and 10, due to the
randomness in the model update in AutoBlox. However, you will
observe that the learning procedure with enforced tuning order is
more efficient that that without the enforced tuning order.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SSD Architecture
	2.2 SSD Manufacturing Procedure
	2.3 Software-Defined Solid-State Drive

	3 Design and Implementation
	3.1 Learning-Based Workload Clustering
	3.2 Transfer SSD Tuning into ML Models
	3.3 Learning-based Parameter Pruning
	3.4 Automated Tuning of SSD Configurations
	3.5 Implementation Details
	3.6 Discussion and Future Work

	4 Evaluation
	4.1 Experimental Setup
	4.2 Efficiency of Learned Configurations
	4.3 Learning Efficiency of AutoBlox
	4.4 Sensitivity to Configuration Constraints
	4.5 What-If Analysis with AutoBlox
	4.6 Impact of the Balance Coefficient

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

