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Abstract
Cloud platforms remain underutilized despite multiple pro-
posals to improve their utilization (e.g., disaggregation, har-
vesting, and oversubscription). Our characterization of the
resource utilization of virtual machines (VMs) in Azure re-
veals that, while CPU is the main underutilized resource, we
need to provide a solution to manage all resources holisti-
cally.We also observe thatmanyVMs exhibit complementary
temporal patterns, which can be leveraged to improve the
oversubscription of underutilized resources.

Based on these insights, we propose Coach: a system that
exploits temporal patterns for all-resource oversubscription
in cloud platforms. Coach uses long-term predictions and an
efficient VM scheduling policy to exploit temporally com-
plementary patterns. We introduce a new general-purpose
VM type, called CoachVM, where we partition each resource
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allocation into a guaranteed and an oversubscribed portion.
Coach monitors the oversubscribed resources to detect con-
tention and mitigate any potential performance degradation.
We focus on memory management, which is particularly
challenging due to memory’s sensitivity to contention and
the overhead required to reassign it between CoachVMs. Our
experiments show that Coach enables platforms to host up
to ∼26% more VMs with minimal performance degradation.
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1 Introduction

Motivation. Cloud platforms such as Microsoft Azure, Ama-
zon Web Services (AWS), and Google Cloud Platform (GCP)
offer compute resources (e.g., CPU, memory, and network) as
virtual machines (VMs). To meet the ever-increasing perfor-
mance requirements of users, cloud providers are pressured
to offer their services efficiently. However, achieving optimal
efficiency remains challenging, and resource utilization in
cloud platforms is often low [13, 19, 26, 61, 74, 95].
There are three common causes of low resource utiliza-

tion in cloud platforms. First, platforms leave unallocated re-
sources for future VM allocations to ensure an optimal experi-
ence for customer workloads (e.g., rapid scale-out, high avail-
ability, and reliability) and for platform management (e.g.,
datacenter tax [48, 82]). Prior work characterized unallocated
resources and proposed solutions to minimize them, includ-
ing Spot, Burstable, and Harvest VMs [3, 8, 9, 22, 32, 73, 85].
Second, stranded resources are unallocated but cannot

be used to allocate new VMs because another resource on
the server is fully allocated. Prior work focused on memory
stranding [54] and proposed mitigating it using disaggrega-
tion [54, 105].While disaggregation is promising for memory,
it is unavailable for other resources (e.g., CPU and network).

Third, underutilized resources are allocated but not always
used by the workload on the VM. Prior work addressed this
issue by using Harvest VMs, which can borrow underuti-
lized resources from colocated VMs [3, 32, 73]. Unfortunately,
users must modify workloads on Harvest VMs to account for
evictions and dynamic resource allocations. Alternatively,
using oversubscription can reduce underutilization by allo-
cating fewer resources and multiplexing them between VMs
on demand [25, 35, 40, 51, 58, 79, 84, 86, 93, 94, 97, 101, 110].
However, it has not been applied holistically to cloud VMs.

To understand the potential of oversubscription for cloud
VMs, we study the resource utilization of over one mil-
lion opaque VMs in Azure. We observe: (1) large and long-
running VMs consume the most resources; (2) while CPU is
usually the most underutilized resource [25, 46, 99], oversub-
scribing CPU can move the bottleneck for new VM alloca-
tions to other resources (e.g., memory and network), making
holistic management of all resources essential; (3) many VMs
exhibit complementary temporal patterns (e.g., some have
peak utilization at noon while others peak at night); and (4)
these patterns are predictable, Cloud platforms can leverage
these patterns to help colocate oversubscribed VMs [23, 83].

Challenges. Cloud users run highly heterogeneous work-
loads on opaque VMs. Platforms must uphold strict service
level objectives (SLOs) despite limited insights into diverse
workload characteristics (e.g., tail latency sensitivity) and
restricted telemetry visibility (e.g., CPU utilization). The vir-
tualization abstraction introduces further challenges. The
resource management granularity is typically coarser com-
pared to that of processes or containers, which have been the
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Figure 1. Examples of the causes of low resource utilization.

focus of many prior works [29, 53, 100]. Oversubscription
should also be compatible with optimizations and platform
management techniques. Accordingly, we need to provide a
transparent, safe, and resilient solution.
Our work.We propose Coach: a system to oversubscribe all
VM resources. Coach leverages temporal patterns in resource
utilization to predict which VMs will have higher resource
demands at specific times of the day. Our scheduling policy
identifies VMs with complementary resource utilization pat-
terns for colocation. Our policy takes a holistic approach to
considering all resources. Coach uses a new general-purpose
VM type, called CoachVM, where each resource is partitioned
into a guaranteed and an oversubscribed portion. The guar-
anteed portion is always allocated to the VM to maximize
performance. In contrast, the oversubscribed portion is allo-
cated on demand from an oversubscribed pool to maximize
resource savings. Although we oversubscribe all resources,
we focus on memory, one of the most sensitive and chal-
lenging, due to its non-fungibility. Coach manages server
resources and uses reactive and proactive mitigations to
minimize the potential performance degradation caused by
contention. CoachVMs can be opt-in and discounted to com-
pensate for the risk of performance degradation.
Results.We evaluate Coach using real workloads and pro-
duction traces and quantify the trade-off between the re-
sources saved and the risk of performance degradation. We
demonstrate that exploiting temporal patterns enables host-
ing up to ∼26% more VMs with minimal platform overhead
and VM performance degradation.
Summary. We make the following main contributions:
• Characterize the resource utilization of VMs in Azure,
focusing on utilization over time and opportunities for
oversubscription.

• Propose Coach to oversubscribe all resources in cloud
platforms and exploit temporal patterns at scale.

• Introduce a new oversubscribed VM type, called CoachVM,
to ensure VM performance and maximize resource savings
without requiring users to modify their workloads.

• Quantify the trade-off of oversubscription between its
savings and its potential impact on workload performance.
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Figure 2. Percentage of resource hours consumed by VMs
lasting longer than VM duration (left) and the percentage of
VMs lasting more than VM duration (right).

2 Opportunity for oversubscription
Low resource utilization is ubiquitous in cloud platforms [13,
19, 35, 74, 95, 101]. It can be caused by resources that are: (a)
unallocated, if they are unsold or reserved by the platform [3,
25, 32, 110]; (b) stranded, if they are unallocated but cannot be
allocated due to the lack of other resources in the server [54];
and (c) underutilized, if they are allocated to a VM, but not
used [46, 69, 93, 99]. Figure 1 shows an example of each
cause of low resource utilization. We study all three causes,
focusing on their temporal patterns and the opportunities
for oversubscription.

Methodology. We collected traces for two weeks in May
2024 of over one million opaque VMs from a subset of servers
across ten popular clusters in seven Azure regions [25]. The
traces cover thousands of servers from four hardware gener-
ations, including Intel and AMD processors. For each VM,
we record the allocation and deallocation times, resource al-
location, server on which it runs, and maximum resource uti-
lization for CPU, memory, network, and storage, respectively.
These utilization data are captured at 5-minute intervals (the
default setting for long-term storage). Using 5-minute inter-
vals establishes a lower bound for underutilization, as we
use the maximum utilization in each interval.

2.1 Characterizing allocated resources
We study the characteristics of VMs that reserve the most
resource hours (i.e., allocated resources weighted by time),
as oversubscribing these VMs can yield the greatest benefit.

How long are resources allocated? Figure 2 shows that
VMs lasting more than one day consume ∼96% of allocated
cores hours, despite accounting for only 28% of the VMs.
This is also the case for memory (96% of GB hours), as most
VMs have a similar ratio of memory to cores. Network and
storage show the same patterns. These findings are consis-
tent with those reported for CPU in prior work [25].

This observation shows an important distinction between
the number of VMs and the resources they consume over
time. For example, sixty 32GB VMs lasting one minute and
one 32GB VM lasting one hour both consume 32GB hours.
Given this, we focus on VMs that last longer than one day.
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Figure 3. Resource hours and number of VMs consumed
by VMs larger than a size (cores and memory).

What is the size of the VMs? Figure 3 shows that larger
VMs use more resources. The median VM in our study has 4
cores1 and less than 16GB of memory, which is larger than
indicated by prior work [25], where most allocated VMs had
less than 2 cores and 4GB. We observe the same distinc-
tion between the number of VMs and resources consumed
as above. For example, VMs with 32GB or more consume
over 60% of GB hours, despite representing only ∼20% of
VMs. Therefore, a solution targeting low resource utilization
should account for both longer-running and larger VMs.

2.2 Characterizing stranded resources
Cloud platforms can improve their packing of VMs into
servers by aligning the resource ratios (e.g., GB/core) of VMs
with the server hardware. However, with the explosion of VM
configurations [21, 24, 87, 106] (e.g., 5 resource ratios, 9 sizes,
6 generations, and 4 specialized types in Azure [10]), plat-
forms may need to allocate VMs to servers with misaligned
ratios. For example, a server with hardware configured for
general-purpose VMs (e.g., 4GB/core) may receive alloca-
tions for memory-optimized VMs (e.g., 16GB/core). Figure 1b
shows an example in which the cores are fully allocated, leav-
ing memory stranded. Prior work [54] focused on stranded
memory, while we focus on the stranding of all types of
resources and the implications for oversubscription.
How much are resources stranded? To study stranding,
we place hypothetical VMs of the most typical VM configura-
tion (i.e., 4GB/core) [4] on each server in our trace until one
resource is exhausted and no further VMs can be placed. The
remaining unallocated resources are considered stranded.
We repeat this calculation for each timestamp in the trace.

No Oversub in Figure 4 shows that CPU is the least
stranded resource, with only 8% stranding on average. Mem-
ory, network, and SSD have 18%, 29%, and 54% stranding,
respectively. Our analysis indicates that stranding may be
more severe than previously reported [54] and includes all
types of resources.
Is stranding consistent across clusters? Figure 5 shows
the percentage of time each resource is the bottleneck for
new VM allocations on a server (i.e., the cause of stranding)
across all clusters.NoOversub shows that the most common
1We normalize hyperthreaded and non-hyperthreaded vCPUs to “cores”.
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Figure 4. Average stranding for different resource types
with varying levels of hypothetical oversubscription.
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Figure 5. Percentage of time each resource is the bottleneck.

bottleneck is CPU, then memory, and finally, network. This
is inversely proportional to the amount of stranding shown
in Figure 4, as the bottleneck resource is fully allocated (i.e.
not stranded) on the server. We omit SSD since it causes
stranding less than 1% of the time in all configurations.
We observe significant variation between clusters. C1 is

almost exclusively bottlenecked by CPU, C4 by memory, and
C2 is divided between CPU, memory, and network. This is
because different clusters have different hardware configura-
tions. For example, servers in C4 have less memory relative
to cores/network than the other clusters. Therefore, we need
to account for the diverse configurations across servers.

What if we oversubscribe?Oversubscribing the bottleneck
resource could unlock stranded resources for allocation. Fig-
ure 4 shows the hypothetical impact of oversubscribing CPU
(and memory) on stranding. We compute this by placing
hypothetical VMs, as before, except that we also use un-
derutilized CPU (and memory) resources to allocate these
VMs. For CPU Only, stranding increases for CPU to 25% and
decreases for memory, SSD, and network to 8%, 52%, and
22%, respectively. CPU stranding increases because some
previously underutilized cores (i.e., allocated but unused) are
now unallocated but bottlenecked by another resource. We
confirm this in Figure 5, where the bottleneck shifts from
CPU (69% to 33%) to memory (29% to 49%) and network (2%
to 18%). We observe a similar trend for CPU+Mem: strand-
ing for CPU, storage, and network decreases to 15%, 50%,
and 16%, respectively, while it increases to 24% for memory.
Meanwhile, the bottleneck shifts from memory (49% to 23%).
In all cases, the utilization of each resource improves. This
motivates the need to oversubscribe resources holistically.
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Figure 6. Correlation between CPU and memory for average
utilization and utilization range across all VMs.

2.3 Characterizing underutilized resources
Users may buy VMs with more resources than necessary
because of variable load, performance sensitivity [63, 99],
or a mismatch with available options [2, 106]. For example,
Figure 1c shows a VM with an additional buffer to absorb
workload bursts. Alternatively, a user may need 6 cores and
12GB of memory, but the closest VM has 8 cores and 16GB.

Prior work characterized the underutilization of cloud
resources, including CPU [3, 25, 46, 69, 93, 99, 110], mem-
ory [32, 88, 94, 96], SSD [73, 97, 110], and power [51, 92].
We study the underutilization, correlations across different
types of resources, temporal patterns, and implications for
oversubscription. We focus on VMs lasting over one day.
What is the average utilization? Figure 6 shows the cor-
relation between CPU and memory utilization. The left half
indicates that most VMs have an average CPU utilization
below 50%, which is consistent with prior works [25, 35,
58, 69, 84, 99], while there is greater diversity in the average
memory utilization. VMs with high CPU utilization also tend
to have higher memory utilization. The network and storage
behavior resembles that of CPU.
Does utilization vary?We define the utilization range as
the difference between utilizations (e.g., P95-P5) over the
lifetime of a VM. The right half of Figure 6 shows that the
range for CPU often reaches 60%, while the memory is within
30%, indicating that CPU utilization fluctuates more than that
of memory. In addition, 50% of VMs have a memory range
less than 10%, and only 10% of VMs have a range exceeding
50%. While VMs may have unique memory utilization, it
typically fluctuates within narrow bounds. The utilization
patterns of network and storage resemble those of memory.
Is there a relation between average and range? We also
measure the correlation between average utilization and
range. VMs with higher average CPU utilization tend to have
a higher range. Conversely, memory has a shorter range (less
than 30%) across all average utilizations.
Are there busier times in a day? Prior work classified
the utilization patterns of bare-metal servers as periodic,
constant, or unpredictable [110]. Our work identifies peak
times during the day (e.g., higher utilization every day at
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Figure 8. VMs with a peak/valley in each of the six 4-hour
time windows for one cluster.

noon). Figure 7 shows the CPU utilization of a VM with
consistent daily peaks over a week. We divide each day into
three 8-hour windows: 0-8hr, 8-16hr, and 16-24hr. For each
time window, we show its peak utilization (current time
window max) and its peak across the seven days (lifetime
time windowmax), rounded to 5% buckets (e.g., 17.3→20.0%).
In the first window (0-8hr), the utilization is primarily under
10% but has spikes up to 65%. The remainder of the day (8-
24hr) uses ∼40% CPU. The current max is typically similar
across days and close to the lifetime max.

We first characterize the peak times for long-running VMs.
A VM has a peak (and valley) in a given day if the difference
between the maximum utilization in different time windows
that day is at least 5%. Any time window with a maximum
utilization equal to the maximum (or minimum) across all
time windows that day is counted as a peak (or valley). Ac-
cordingly, a VM can have multiple peaks and valleys per day
in different time windows. Figure 8 shows the percentage of
VMs with peaks (and valleys) in each of six 4-hour time win-
dows (i.e., 0-4hr, 4-8hr,. . . ), and those without peaks (None).
For each day, we normalize the total VMs with a peak (or
valley) in each time window against the total VMs with a
peak (or valley) that day. Both CPU peaks and valleys are
evenly distributed across the six time windows. Less than
10% of VMs have no CPU peaks/valleys (i.e., their utilization
is within a 5% bucket). Nearly 70% of VMs have memory
peaks/valleys evenly distributed over time. This indicates
that we could exploit these peaks and valleys by placing VMs
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Figure 9.Difference in peak/valley utilization in consecutive
days for different time window lengths.
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Figure 10. Potential savings for memory and CPU using
time windows of multiple lengths for one cluster.

that peak in specific time windows alongside VMs that have
a valley at the same time.
Is the behavior consistent over time? Figure 9 shows
the variation in peak and valley utilization in consecutive
days. With 4×6-hour windows, 80% of VMs have a utilization
difference of at most 20% for CPU and at most 5% for mem-
ory. Overall, most VMs have consistent peaks and valleys,
indicating that such patterns could be exploited over time.
Are patterns complementary? Figure 10 shows the per-
centage of allocated resources we can save in a representative
cluster by packing VMs using their maximum utilization in
each time window. We compute the resources saved as the
difference between oversubscription using these patterns
(the maximum utilization in each time window) and over-
looking them (the VM’s lifetime max). For example, if a VM
has a max utilization of 75%, but its time windows have 30%,
75%, and 55% utilization, we could save 45%, 0%, and 20%,
respectively. We show the average savings across all VMs.
With a single 24-hour window, we save ∼8% of memory

and ∼8% of CPU. Using 4×6hr windows, we save ∼15% of
memory and ∼20% of CPU. Multiplexing 5-min windows
(ideal) saves ∼18% memory and ∼34% CPU.

Figure 11 summarizes the potential resource savings across
all 10 clusters as a violin plot. We observe that colocating
VMs with complementary patterns can consistently result in
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Figure 12. Per VM correlation between number of previous
VMs of the same group and their utilization range. We use 3
groups: subscription, VM configuration, and a combination.

significant savings across clusters. The savings increase with
the number of windows but start plateauing with 6×4-hour.
We can typically save more CPU than memory.
Are new VMs similar to old VMs? We analyze whether
existing VMs can be grouped to use their aggregated resource
utilization patterns to predict the patterns of future VMs. For
each VM in the second week of our trace, we analyze the
utilization of a group of similar VMs in the first week based
on three groupings of similarity: VMs from the same (1)
customer subscription [25], (2) VM configuration, and (3)
subscription and VM configuration. Other features (e.g., VM
name, guest OS version, or creation time) were less relevant.
For each VM, Figure 12 shows the number of matching VMs
from the same group (e.g., subscription) and the range of
their maximum resource utilization. For example, a VM with
10 prior VMs from the same subscription whose peak CPU
utilizations were within a range of 10% is plotted as (10, 10).
Ideally, we want many matching VMs (e.g., >50) with low
ranges (e.g., <10%).

Grouping by VM configuration, the median VM has many
previous VMs (over 2,000), but their utilization range is high
(nearly 100 for memory). Grouping by subscription, the me-
dian VM has fewer previous VMs (over 120), and their uti-
lization range is smaller (under 70 for memory). Grouping by
both, the median VM has the fewest previous VMs (40) with
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Figure 13. Design overview of Coach.

the smallest range (only 31 for memory). To determine pre-
dictability, we compare the maximum utilization of each VM
with the average peak of its prior VMs. With subscription
and VM configuration, memory shows better predictability
(over 70% of VMs within 10% of the average peak utilization)
compared to CPU (70% of VMs within 20% of the average
peak). Overall, most VMs have sufficient historical patterns
that can aid in predicting future resource utilization.

3 Temporal pattern-based oversubscription
Based on Section 2, there is a significant opportunity to
leverage complementary temporal utilization patterns for
all resources due to their predictability. Traditional resource
oversubscription solutions [14, 46, 93, 96, 97] aimed to re-
duce underutilization in cloud platforms but did not exploit
these patterns. We propose Coach: a system to oversubscribe
virtualized cloud platforms that leverages complementary
temporal utilization patterns for all resources at scale.

3.1 Coach overview
We present the design overview of Coach in Figure 13, in-
cluding the common workflow to create and operate over-
subscribed VMs. It comprises a logically centralized cluster
management layer and a local component for each server.
Cluster management.When creating an oversubscribed
VM [23, 83], the cluster manager converts the request (e.g., 4
cores and 16GB of memory) into resource requirements and
oversubscription rates. It uses a prediction model to decide
the oversubscription rates for each resource in each time
window (e.g., oversubscribe memory by 30% during the day
and by 20% at night). The cluster manager sends these rates
to the cluster scheduler, which uses them to assign the VM to
a server and sends the request to the selected server manager.
Server management. The local oversubscription agent man-
ages the resources on each server and adjusts the guaranteed
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Figure 14. Three CoachVMs in a server showing the guar-
anteed and oversubscribed CPU and memory.

and oversubscribed resources whenever a VM is allocated
or deallocated. The agent consists of three components: (1)
monitoring to collect utilization data; (2) prediction, to predict
future utilization; and (3)mitigation to detect contention and
take local (e.g., reassign resources) and global (e.g., migrate
VMs) remediation actions. The oversubscription agent peri-
odically sends the utilization data to the cluster manager to
improve prediction accuracy.

Customer adoption. Ideally, customers can seamlessly trans-
fer as many workloads as possible to Coach. To achieve this,
we set the following additional design goals:

• G1: Minimize customer burden. Coach should be trans-
parent to the workloads on the VM to allow customers to
deploy unmodified workloads.

• G2: Minimize workload interference. Coach should
minimize any negative impact on VM performance to
maintain existing SLOs as much as possible.

To achieve G1, Coach addresses the virtualization-specific
challenges through CoachVMs (Section 3.2) without requir-
ing workload modifications from users. For G2, Coach over-
subscribes conservatively despite opportunities to save ad-
ditional resources, thereby minimizing the chance of con-
tention (Section 3.3). By default, Coach eschews techniques
that rely on awareness of the workloads running in the VM.
However, such techniques can be integrated if desired.

3.2 CoachVMs: Oversubscription for cloud VMs
Unlike containers, which are typically short-lived and share
the host kernel, VMs face additional challenges for over-
subscription. First, VMs have more limited telemetry vis-
ibility (i.e., they are opaque to the platform) and coarser
resource granularity, complicating resource management.
Second, oversubscribed VMs must remain compatible with
existing optimizations and platform management techniques
(e.g., device assignment, live migration, and host updates).

To support oversubscription, we introduce a new general-
purpose VM type called CoachVM (CVM). It has a guaranteed

Table 1. Common fungible and non-fungible resources and
the mechanism used to share them across VMs.

Resource Fungible Mechanism

CPU ✓ CPU groups
Memory space ✗ PA/VA portions, VA-backing

Memory bandwidth ✓ Shares, reservations, caps
Network bandwidth ✓ Shares, reservations, caps
Accelerated network ✗ SR-IOV
Storage bandwidth ✓ Shares, reservations, caps
Local storage space ✗ Disk partitions, DDA, SR-IOV
Remote storage space ✓ Cache size and network bandwidth

GPU ✗ DDA, SR-IOV
Power ✓ Frequency and power caps

portion of each resource for reliable performance and re-
ceives the remaining allocation on-demand from an oversub-
scribed pool for savings. All resources are managed transpar-
ently to the VM, preserving its general-purpose nature. This
approach enables customers to run any guest OS and unmod-
ified workloads without burdensome application changes,
eliminating barriers to widespread adoption (G1).
Guaranteed and oversubscribed. CoachVM resources are
divided into guaranteed (always allocated to the CVM to en-
sure performance) and oversubscribed (shared across CVMs
to save resources). Figure 14 shows how Coach may allocate
resources to three CVMs: CVM1 with 2 cores and 8GB of
memory, CVM2with 4 and 16GB, and CVM3with 8 and 32GB.
Coach guarantees 8 cores and 26GB of memory (CVM1: 1
and 4GB, CVM2: 4 and 4GB, and CVM3: 3 and 18GB). The
remaining 6 cores and 30GB of memory are oversubscribed
and backed by only 2 cores and 16GB. In this way, Coach
can fit VMs with 14 cores and 56GB of memory into a server
with 10 cores and 36GB (∼30% oversubscription rate).
Fungible and non-fungible. Certain resources are harder
to share across CVMs when oversubscribed. We consider
resources that can be quickly reassigned between VMs as
fungible [75]. For example, we can easily multiplex CPU
and network bandwidth across multiple VMs. In contrast,
virtual memory pages are assigned to specific physical pages
and need to be paged out before the physical page can be
reassigned. We consider these resources as non-fungible.
Table 1 summarizes the fungibility of common resources.

For fungible resources, we assign multiple VMs to the
same resource and let the hypervisor quickly reassign them.
However, wemust assign non-fungible resources carefully. In
all cases, we must monitor and mitigate potential contention.
Table 1 lists the mechanisms we use to manage common

resources. For example, we use CPU groups to assign a subset
of cores statically and oversubscribe the rest. For the rest of
the paper, we focus onmemory space, as it is non-fungible and
one of the most challenging to oversubscribe. The general
techniques discussed can be applied to other resources. We
omit a thorough discussion of CPU as it has been extensively
covered in prior work [25, 99].
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Figure 15. Trade-off for PA/VA-backing with a 32GB
CoachVM that runs a workload with a working set of 18GB.
In (b), we back 70% of VA memory with physical memory.

Memory oversubscription. The memory space of VMs can
be physically addressed (PA) or virtually addressed (VA). The
hypervisor allocates PA memory at VM creation time and
statically maps it to the guest physical addresses (GPA). It
uses huge pages (1GB) to reduce TLB overheads. Accessing
PA pages provides high performance, but their static allo-
cation limits flexibility, as they cannot be easily reassigned.
Therefore, we use PA memory for the guaranteed portion.

The hypervisor manages VA memory using 1GB pages,
which can be allocated/mapped to specific VMs at a smaller
granularity on demand. It can be dynamically backed by a
smaller amount of physical memory, using a backing store
(i.e., disk) if it is insufficient. Unused VApages can be trimmed/
unmapped, and paged in from the backing store when ac-
cessed. Since VA pages may be unmapped, accessing VA
memory may result in page faults, which is slower than ac-
cessing PAmemory. Despite the risk of reduced performance,
we use VA memory for the oversubscribed portion because
it can be (de)allocated on demand. Coach maps the oversub-
scribed (i.e., VA) portion to the VM’s GPA as a NUMA node
with no cores (zNUMA) [54], which funnels accesses to the
guaranteed (i.e., PA) portion without guest changes.

Depending on the working set of the VM (i.e., active pages
in the GPA), we can adjust the PA/VA ratio. For example,
if the working set is typically below 16GB for a 32GB VM,
Coach can allocate 16GB of PA memory and back the 16GB
of VA memory with 8GB (25% oversubscription). This maxi-
mizes performance with the PA portion and resource savings
with the VA portion. However, selecting the optimal PA/VA
ratio is crucial for balancing both goals.

Impact of PA/VA ratio on performance. Figure 15a shows
the performance impact on an unmodified memory-sensitive
application with a working set of 18GB, running on a 32GB
VM while varying the size of the PA and VA portions.

The point with 32GB PA and 0GB VA (bottom right) is
the baseline performance of a fully PA-backed VM (i.e., 0%
performance slowdown). The white area represents invalid
configurations (i.e., with more memory than the 32GB VM

size or with no memory). The red area represents config-
urations where the VM suffers unacceptable performance
degradation due to continuous paging to disk. The bottom
right areas show minimal performance degradation. This is
because we can leverage the NUMA policies of unmodified
guest OSes to transparently deprioritize the use of the VA
portion with zNUMA. When we allocate less than 16GB of
PA, we observe greater slowdowns.

Impact of PA/VA ratio on memory savings. Figure 15b
shows the total amount of allocated memory for the same
32GB VM with various sizes for the PA and VA portions.
We back only 70% of the VA portion (based on the expected
temporal-pattern multiplexing) and the entire PA portion
with physical memory. The fully PA-backed VM saves no
memory, while a VM with 16GB PA and 16GB VA (backed
by 12GB) saves 4GB. By combining the performance impact
in Figure 15a and the savings in Figure 15b, we can quantify
the trade-offs when deciding the PA/VA ratio.

Direct access to oversubscribed memory. To expose re-
sources such as GPUs, NVMe SSDs, and accelerated net-
working to VMs with high performance, cloud platforms
use techniques like direct device assignment (DDA) [64] (or
device pass-through [52]) and single-root input/output vir-
tualization (SR-IOV) [65, 98], which rely on direct memory
access (DMA). In VMs with oversubscribed memory, some
parts of the GPA space may not be mapped to actual physi-
cal memory. When DMA requests attempt to access these
unmapped memory regions, it can lead to I/O failures. We
discuss two solutions to address this issue.

Hardware support. Devices with Address Translation Ser-
vices/Page Request Interface (ATS/PRI) [44] can handle these
intercepts. ATS enables the device to use the second-level
address translation table (SLAT) to translate GPAs and store
translations locally. PRI enables the device to handle SLAT
failures (due to invalid pages) by requesting the host to fault
the address as the CPU would. Therefore, these devices can
access memory that could result in invalid translations.

Guest enlightenments.Most devices do not yet support AT-
S/PRI. In such cases, we need to ensure that any memory
that may be accessed by a device is in the SLAT (i.e., has a
valid mapping). To address this, we introduce guest enlight-
enments (i.e., paravirtualization) that explicitly exchange
memory ranges for I/O with the guest OS at boot time. The
host and guest then prevent moving or invalidating these
ranges to avoid invalid translations. CVMs are also compati-
ble with other existing guest enlightenments [5].

Compatibility with platform management. Large-scale
cloud platforms performmanagement operations to optimize
VM packing and handle software/hardware maintenance. To
seamlessly deploy Coach at scale, CVMs–particularly their
VA memory–must be compatible with these operations.
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Live migration. Cloud platforms use live migration to reduce
fragmentation and perform maintenance [76, 77]. Live mi-
gration already supports migrating PA-backed memory with-
out modification. For the VA-backed portion, we must first
page in any trimmed cold memory. However, since copying
cold memory happens during the pre-copy phase of migra-
tion [76, 77], this does not extend VM downtime.

Host updates. Cloud platforms may need to update the host
OS and reboot servers when there are critical security vul-
nerabilities [1, 77]. To perform these host OS updates, one
could live migrate the VMs out of the server and reboot.
However, the overhead of doing this for every server in a
data center is excessive. To avoid this, platforms use VM pre-
serving host updates, which temporarily pause the VMs and
restore them after the host update [77]. This host update pre-
serves the VM memory through reboots. This is simple for
the PA-backed portion as it is directly mapped to the GPA. In
contrast, the VA portion relies on host OS memory manage-
ment and involves complex data structures that are harder to
persist across upgrades. We incur this necessary complexity
to persist these complex structures with negligible overhead.

3.3 Utilization time windows
When placing a VM, platforms use a single allocation for the
entire VM lifetime [37]. To exploit complementary patterns,
Coach divides the VM utilization into time windows. Figure 7
shows an example using three 8-hour windows per day.

Predicting utilization. To decide the oversubscription rate
for CoachVMs, we use a prediction model that predicts the
percentile (e.g., P95) utilization for each resource in each
time window. The model uses VM- and customer-specific
features. VM-specific features include the VM configuration,
the weekday of allocation, and offering (PaaS vs. IaaS). In-
tuitively, these inputs capture utilization behavior observed
across customers. For example, utilization tends to be higher
in VMs allocated on weekdays and IaaS VMs. Customer-
specific inputs capture different utilization behavior between
customers. We use the subscription type (e.g., internal pro-
duction vs. test) and the history of resource utilization of
previous VMs in that customer subscription. The existing
platform telemetry already collects all these inputs in the
background, requiring no user input.

We use a random forest regressor [81] that predicts utiliza-
tion in 5% buckets (e.g., at most 65%). Random forest is well-
suited for predicting VM utilization due to its effectiveness
with categorical variables, as shown in prior work [3, 54].
Among similar predictors (e.g., XGBoost [104] and Light-
GBM [57]), we choose random forest because it tends to be
less sensitive to overfitting. This can improve robustness
and reduce the likelihood of underpredictions (Section 4.2),
minimizing the risk of worst-case contention (G2).
To collect the training data, we aggregate the utilization

data for each VM. If there is insufficient data to predict a
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Figure 16.Memory allocation and mapping between time
windows and PA/VA-backing. Two 32GB VM with 3 time
windowsmap to 44GB (28GB PA and 16GBVA-backed). Num-
bers in parentheses refer to the formula that computes them.

VM, we conservatively do not oversubscribe it. We generate
these predictions in the background to minimize overheads
on the critical path of VM allocation.

VM scheduling policy. Once Coach decides the oversub-
scription ratio for the CoachVM, it picks which server to host
the VM. Traditional VM schedulers solve this bin-packing
problem using heuristics that account for the availability of
each resource [17, 37, 67, 80]. They use a vector with the
VM requirements (e.g., {8 cores, 32GB memory, 300GB SSD,
10Gbps}) and check if it fits within the available server re-
sources (e.g., {16 cores, 24GB memory, 500GB SSD, 20Gbps}).
For example, they cannot place this VM on this server due
to insufficient memory.

Scheduling time-windows. Instead, Coach considers the pre-
dicted utilization of each resource for each time window. For
fungible resources like CPU, we can simply use a vector of
the predicted utilization for each time window. For an 8 core
CoachVM with three time windows, we may predict 2 cores
for 0-8hr, 6 for 8-16hr, and 4 for 16-24hr and try to place it
in a server with 4 cores available for 0-8hr, 6 for 8-16hr, and
8 for 16-24hr. Represented as vectors, we have {2, 6, 4} ≤ {4,
6, 8}, so the CoachVM fits.

Non-fungible resources. However, this approach does not con-
sider if the resources can be reassigned easily (fungibility).
Specifically, the PA portion of the memory space cannot be
easily adjusted at runtime (i.e., non-fungible). To maximize
performance, we would allocate PA memory for the VM’s
peak utilization across all time windows and not multiplex
VMs with complementary patterns. Conversely, using VA for
the entire allocation to fully exploit temporal patterns may
reduce performance. Our approach is to balance these consid-
erations. Wemaximize performance by allocating enough PA
to satisfy the VM’s working set a majority (e.g., 95%) of the
time. We maximize multiplexing by allocating the remainder
(i.e., up to the peak utilization) with VA.
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Figure 16a shows the VM scheduling for memory for two
32GB CoachVMs with three time windows in a 48GB server.
For each window, we predict the maximum memory utiliza-
tion (the total PA+VA-backed working set) and a percentile
(e.g., P95) of the utilization for the guaranteed (PA-backed)
portion. The difference between themaximum and percentile
represents the potential amount of VA-backed memory.
Initially, the scheduler ensures that the predicted max-

imum for each time window does not exceed the server’s
PA+VA-backed capacity: {28, 8, 22}+{10, 18, 24} ≤ {48, 48, 48}.
Next, since the PA portion is static across windows, the
scheduler verifies the server has sufficient memory for the
PA-backed portions: 16+12<48. Combining these checks into
vectors, we have: {28, 8, 22, 16}+{10, 18, 24, 12} ≤ {48, 48, 48, 48}.
With this approach, the scheduler considers the number of
windows plus one (for the max) for each resource, instead of
just one, which incurs negligible overhead.
Mapping time windows to CVMs. Once Coach assigns
the CoachVM to a server, we need to map the predicted
utilizations to guaranteed and oversubscribed resources. Fig-
ure 16b shows how we map the memory space for the CVMs
in Figure 16a. Coach allocates the maximum percentile pre-
diction across all time windows for the guaranteed (i.e., PA)
portion. For the oversubscribed (i.e., VA) portion, one sim-
ple approach would be to allocate the sum of each VM’s
VA-demand. However, this overlooks the fungibility of VA-
backed memory and allocates excess memory. Instead, we
multiplex the VA-demand of each VM in each time win-
dow to further save memory by allocating the maximum
multiplexed VA-demand. When the prediction component
identifies potential changes in the resource requirements of
a VM (e.g., across time windows), it notifies the mitigation
component to reassign resources between CoachVMs. Note
that when assigning resources, we consider locality and rela-
tions between resources (e.g., NUMA). The server manager
stores the VA-demand in each time window for each VM. It
recomputes the multiplexed demand when it (de)allocates
VMs and adjusts the oversubscribed portion accordingly.
Formulation. 𝑃max𝑡 and 𝑃𝑋𝑡

are the maximum and PX (e.g.,
P95) percentile for time window 𝑡 , respectively:

∀𝑖 ∈ 𝑉𝑀, PA_demand VM𝑖 = max
𝑡 ∈𝑇𝑊

(𝑃𝑋𝑡 ) (1)

∀𝑡 ∈ 𝑇𝑊 , VA_demand VM𝑖,𝑡

= max(0, 𝑃max𝑡 − PA_demand VM𝑖 )
(2)

Guaranteed memory =
∑︁
𝑖∈VM

PA_demand VM𝑖 (3)

Oversubscribed memory = max
𝑡 ∈𝑇𝑊

( ∑︁
𝑖∈VM

VA_demand VM𝑖,𝑡

)
(4)

Choosing a prediction percentile. We can navigate the
trade-off between resource savings and potential perfor-
mance impact by adjusting the prediction percentile. For
example, using P95 might risk 5% of the accesses with lower
performance but save 30% of memory.
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Figure 17. Packing versus performance trade-off between PA
and VA-backed memory for different time window lengths.

To choose the percentile, we estimate this trade-off using
the VM traces from our study. Figure 17 shows the expected
number of VA accesses based on the utilization percentile
and the time window length, assuming each VM uniformly
accesses its utilized memory. Figure 17a shows that the VA
accesses are much fewer than the prediction percentile for
all time window lengths (Worst), due to rounding up the
PA-allocation to 5% buckets. For lower percentiles, the time
window length is more important. Finer-grained windows
exploit more temporal patterns but risk additional accesses
to oversubscribed memory. Figure 17b shows the percentage
of VMs with less than a percentage of VA accesses using a
4-hour window. For example, 99% of VMs have below 5% VA
accesses when predicting the P80 utilization.
Figure 17b helps estimate additional accesses to oversub-

scribed memory that may result from under-allocating the
guaranteed portion. For example, allocating the P75 instead
of P80 risks ∼1% more accesses. Coach’s scheduling policy is
robust against such mispredictions. Under-predictions only
lead to under-allocation if they under-predict the maximum
across all time windows, which may require multiple under-
predictions. Conversely, an over-prediction in a single time
window can result in over-allocation. While this may reduce
savings, it is acceptable, as we prioritize protecting workload
performance (G2).

Coach configuration. We configure Coach based on the
performance vs. packing trade-off described above and time
window length vs. packing trade-off in Figure 11. To mini-
mize the potential impact on VM workloads (G2), we use the
P95 utilization prediction and six 4-hour time windows. This
ensures oversubscribed resources are used at most 5% of the
time, though much less in practice. We conservatively round
allocations up to 5% buckets and the resource management
granularity (e.g., 1GB for memory).

3.4 Monitoring and mitigating contention

Resource contention. Oversubscribing resources intro-
duces the risk of contention as the total utilized VM resources
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may exceed the available capacity. This can degrade the per-
formance of VM workloads. For CPU contention, VMs may
need to wait for a specific core or run on other cores, which
can hurt cache locality. For memory contention, the hypervi-
sor may page memory out, leading to increased disk I/O and
latency. Coach effectively reduces the potential impact of
contention on VMworkloads (G2) bymonitoring and predict-
ing contention and mitigating it when it occurs. Coach uses
generic metrics (e.g., CPU utilization) to monitor for con-
tention without user input, but can be extended to include
user metrics for further optimization (e.g., tail latency) [42].

Monitoring resource utilization. The monitoring compo-
nent periodically (every 20 seconds in our implementation)
tracks resource utilization and contention metrics (e.g., CPU
wait time and page read/write operations). To detect poten-
tial contention, it uses thresholds (e.g., >0.1% CPU wait time
at >20% CPU utilization) computed using historical data at
scale and correlated to performance incidents. It notifies the
mitigation component to trigger reactive mitigations when-
ever it detects contention.We find that 20 seconds works well
for memory, which spikes gradually. For CPU, its fungibility
can help reduce the impact of short spikes, allowing us to re-
duce the monitoring frequency. The monitoring component
sends this data to the prediction and mitigation components.

Predicting contention. The local prediction component
uses real-time and historical data to anticipate potential re-
source contention. It uses a two-level prediction, an expo-
nential weighted moving average (EWMA) [43] that predicts
the utilization for the next 20 seconds, and a long short-term
memory network (LSTM) [70, 107] for the next 5 minutes.
EWMA is effective because resource behavior tends to be
stable for short periods, while the LSTM better captures
workload trends over time. If the prediction exceeds the con-
tention threshold, it notifies the mitigation component to
trigger proactive mitigations. If Coach underpredicts the uti-
lization, it relies on the monitoring component to trigger
reactive mitigations.

Mitigating contention. To prevent performance degrada-
tion, themitigation component triggers reactive and proactive
mitigations when signaled by the monitoring and prediction
components, respectively.

Local mitigations. For CPU, the local mitigation agent first
readjusts the CPU groups to meet actual demand. Given that
CPU is fungible, VMs under contention can borrow guaran-
teed idle cores from other VMs. If necessary, Coach may in-
crease the CPU frequency (if possible). Formemory, the agent
first trims cold pages and, if necessary, requests the server
manager to add unallocated memory to the oversubscribed
portion. It uses similar techniques for other resources.

Global mitigations.When local mitigations are insufficient,
the server manager may ask the cluster manager to evict

lower-priority VMs (e.g., Spot VMs) or trigger live migra-
tion. Coach decides which VM to migrate based on the po-
tential to remedy contention (e.g., busier VMs cause more
contention) and overhead (e.g., larger VMs require longer
migration times). As most resources are consumed by long-
running VMs, Coach may migrate VMs whose resource re-
quirements have changed. However, migration is the last
option as it is the most expensive.

3.5 Production considerations

Managing VMs vs. containers. Unlike containers, VMs
present additional challenges for cloud platforms due to their
coarser resource granularity and opacity. We developed the
CoachVM to address these transparently, requiring no work-
load or OS modifications. Unlike short-lived, auto-scaled
containers, VMs typically have more stable and longer tem-
poral patterns. Coach leverages these patterns for efficient
VM scheduling and uses hypervisor-level metrics to transpar-
ently monitor and mitigate the impact of oversubscription.
Maintainability and simplicity. We consider the com-
plexity of maintaining and operating Coach. While more
sophisticated learning-based approaches could offer mar-
ginal improvements, their decisions are often harder to inter-
pret, making them impractical [28, 59, 60]. Earlier versions
of Coach used more complex algorithms but later shifted to
higher-level concepts (e.g., time windows) that operators can
more easily understand when troubleshooting issues.
Modularity and extensibility. Coach accounts for compo-
nents at multiple levels of the stack (e.g., hardware, hypervi-
sor, OS, and management agents), each with distinct rollout
and development cycles. While agents can be developed it-
eratively, hardware requires multi-year cycles. Therefore,
Coach is extensible and considers backward compatibility
(e.g., hardware without ATS/PRI and legacy VM types).
Staged rollout. We initially oversubscribed fungible re-
sources (e.g., CPU of certain first-party workloads [25] and
power via capping [51]) at lower rates. But, other resources
like memory quickly become the bottleneck (Section 2.2). As
confidence builds (e.g., in mitigation effectiveness), we will
oversubscribe them and increase the oversubscription rate.
Customer awareness. Coach simplifies adoption (G1) and
minimizes the impact on customers’ workloads (G2). How-
ever, users often prefer to know if they are oversubscribed.
Thus, Coach can be exposed to users as an opt-in feature at
a discount and/or restricted to first-party VMs. Our study
of internal workloads showed that over 13% were not user-
facing, and nearly 25% were delay-tolerant, characteristics
that are favorable for oversubscription [68].

3.6 Coach implementation
We build Coach based on the system for static CPU oversub-
scription described in the Resource Central paper [25].
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CoachVM.We extend our existing VM management code
to initialize the guaranteed and oversubscribed portions for
each resource. We use the mechanisms described in Table 1,
which are already available inWindows Server 2025 [12] and
Hyper-V. For memory, we initialize the virtual NUMA topol-
ogy at VM boot time. All these mechanisms are transparent
and do not require any modifications to the guest.

Utilization timewindows.Weextend Resource Central [25]
to predict the utilization for each resource for each time
window (e.g., time bins of 4 hours) using existing 5-minute
resource utilization telemetry. We add this as a new resource
to our rule-based VM allocator [37]. We extend the local VM
manager to store the resource requirements for each CVM in
each time window and perform multiplexing across CVMs.

Monitoring and mitigating contention.We also extend
the monitoring, prediction, and mitigation components in
the local VMmanager (Section 3.4) to support new resources.
The monitoring component runs every 20 seconds and mon-
itors existing OS performance counters [102]. It tracks mem-
ory utilization by monitoring the VM page accesses.
The prediction component produces short-term predic-

tions every 20 seconds and longer-term ones for the next
five minutes using the data from the monitoring component.
The EWMA is updated in each 20-second window with the
preceding resource utilization using 𝛼 = 0.5. The LSTM uses
the maximum and average utilization in the five previous
5-minute windows as input and is also updated online. As
LSTMs require more input data, we train the model for 24
hours before using its predictions.

The mitigation component reuses existing OS capabilities
to trim and flush cold memory and resize the oversubscribed
memory partition [6]. After paging in cold memory, we reuse
the existing Hyper-V live migration [7]. Similarly, we make
no changes to the process of killing low-priority VMs.

4 Evaluation
Our evaluation shows that Coach: (1) introducesminimal per-
formance degradation to workloads running in CoachVMs;
(2) enables platforms to host up to 26% more VMs; (3) alle-
viates worst-case resource contention through mitigations;
and (4) introduces minimal overhead to the platform.

4.1 Experimental setup
We evaluate the impact of Coach on VM performance and
estimate the overhead it introduces by running VMs on a real
production server.We also assess the effectiveness of Coach’s
scheduling policy and examine performance violations at
scale through simulations.

VM workloads. We use unmodified applications represent-
ing common cloud workloads, summarized in Table 2. They
run on VMs with unmodified Windows Server 2019 [11] and

Table 2. Evaluated cloud workloads.

Workload Description Key metric

Cache Memcached read/writes [62]. Tail Latency
Database Queries on a SQL database [54]. Tail Latency
Big Data Sorting with TeraSort [38]. Run Time
Web 3-tier web application [91]. Throughput
KV-Store Querying a KV-store [54]. Tail Latency
Graph Computing pagerank [39]. Run Time
Microservices Social network [33]. Tail Latency
LLM-FT BERT LLM fine-tuning [30]. Run Time
Video Conf Video conference application [54]. Throughput

Linux Ubuntu 22.04 [18]. Each workload measures perfor-
mance with a different key metric. Cache, Database, KV-
Store, and Microservices are workloads with real-time
requirements and their key metric is the P99 tail latency. The
remaining workloads have no strict real-time requirements
and their key metrics are either run time or throughput.
Server. We use a production server with two NUMA nodes
and 160 hyper-threaded Intel CPU cores running at 2.3GHz
and 512GB of DRAM. The page file is placed on a Dell P5600
NVMe SSD [27]. We reserve 2 cores and 4GB of memory to
run Coach. For each experiment, we ensure isolation by using
CPU groups and placing the PA/VA memory into separate
memory partitions.
Simulator. Before fully deploying Coach, which takes mul-
tiple years, we assess its benefits at scale using simulations.
This enables us to evaluate multiple scheduling policies us-
ing identical VM traces on clusters with diverse hardware
configurations without the need for more complex testing
methods (e.g., A/B testing or input mirroring).
Our simulator assigns VMs to servers by executing the

real production VM scheduler code [37] on the production
VM traces (Section 2). We extended the simulator to support
long-term predictions and time-window-based scheduling,
as described in Section 3.3. It is validated and closely mimics
the constraints and preferences in the real scheduler. Based
on the VM placements of the simulator, we simulate the
resource utilization for each server using the 5-minute data
and estimate the contention.

4.2 CoachVM performance
Coach minimizes the performance degradation from over-
subscription. To demonstrate this, we execute the workloads
in Table 2 with four VM configurations: Gpvm, which is fully
guaranteed with PA;Ovm, which is fully oversubscribed with
VA; Cvm, which uses Coach to generate the PA/VA split; and
Cvm-Floor, which emulates an under-allocation (by 1GB).
We run each experiment five times and create a new VM
for each run. We report the median for the key metric of the
workload (Table 2), with error bars for the max/min.
Workload performance. Figure 18 shows the performance
slowdown for each workload, normalized to the median of



Coach: Exploiting Temporal Patterns for All-Resource Oversubscription ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Cache
Database

Big Data Web
KV-Store Graph

Microservice
LLM-FT

Video Conf
0

1

2

3

N
or

m
al

iz
ed

 S
lo

w
do

w
n GPVM CVM CVM-Floor OVM

Figure 18. Performance of cloud workloads using various
VM configurations.

Gpvm.Microservice, Cache, and KV-Store are the most
sensitive to oversubscription, with their performance degrad-
ing by up to 2.35× in the worst case (0.41 vs. 0.96ms) with
Ovm. These workloads access memory in the critical path
that may need to be allocated on demand, which degrades
their tail latency.
The conservative allocations strategy from Coach and

memory funneling with zNUMA prevent worst-case degra-
dation (at most 10%, from 0.41 to 0.45ms), as shown by Cvm.
The other real-time workloads (Cache, Database, andMi-
croservice) have 7% (6.32 vs. 6.77ms), 2% (40 vs. 41ms),
and 4% (2.71 vs. 2.83ms) tail latency slowdown, respectively.
This demonstrates that Coach can support even sensitive
workloads with real-time requirements.

Among workloads using other key metrics, Llm-ft is the
most sensitive (1.24× worse: 3.7 vs. 4.5 mins) because it has
the largest working set and frequently allocates/deallocates
memory for each training iteration. The limited memory
reuse and frequent turnover stress the lower TLB reach and
on-demand allocation, reducing performance. The remaining
workloads experience at most 6% slowdown with Cvm.

Performance with under-allocations. Under-allocating
the guaranteed portion can result in 1.8× performance degra-
dation (0.41ms vs. 0.74ms), as shown by Cvm-Floor. KV-
Store and Cache are more sensitive to under-allocation
than other workloads. Since their working sets are smaller,
the oversubscribed portion receives a larger fraction of the
total memory accesses. The remaining workloads experi-
ence at most an 8% slowdown with CVM-Floor. However,
Coach’s scheduling policy is robust against under-allocations
(Section 3.3), and rarely under-allocates VMs (Section 4.3).

4.3 Impact of time window scheduling
Coach effectively predicts oversubscription rates to maxi-
mize available capacity and minimize resource contention.

Prediction accuracy.Weevaluate the effectiveness of Coach’s
predictions for the cluster-level, time-window-based VM
scheduling policy in avoiding potential performance degra-
dation from under-allocations while maximizing resource
savings. Figure 19a shows the over-allocation error using
P95, P90, and P85 prediction percentiles. The average error

CPU Memory
0
5

10
15
20
25
30

%
 A

vg
. A

llo
ca

tio
n 

E
rr

.

P95 P90 P85

(a) Over-allocation.
CPU Memory

0

2

4

6

8

10

%
 o

f U
nd

er
-a

llo
ca

tio
ns P95 P90 P85

(b) Under-allocations.

Figure 19. Effectiveness of Coach’s long-term predictions
for different prediction percentiles.
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Figure 20. Impact of various oversubscription policies.

is 23-30% for CPU and 19-24% for memory. The positive er-
ror is the additional resources that could have been saved
compared with the ideal VM allocation. As we decrease the
prediction percentile, the error decreases.
Figure 19b shows the under-allocations when allocating

fewer resources than the ideal allocation. Memory has few
under-allocations (1-2%), while CPU has a slightly higher
percentage (3-8%). Predicting CPU is harder due to its higher
fluctuations, but it is also more fungible, which reduces the
impact of under-allocations. Our scheduling policy helps
mask the impact of individual under-predictions, as only an
under-prediction reducing the maximum across all time win-
dows results in an under-allocation. Multiplexing CoachVMs
reduces this further. This demonstrates that Coach effectively
prioritizes minimized performance degradation (i.e., fewer
under-allocations) for maximized resource savings (i.e., fewer
over-allocations).
Packing.We evaluate the cluster-level savings brought by
Coach’s time-window-based VM scheduling policy. Figure 20a
shows the additional sellable capacity (i.e., additional VMs
that can be hosted) generated by different oversubscription
policies. We simulate four policies. (1) No oversubscription
(None), which allocates all the VM’s requested resources. (2)
Single oversubscription rate per VM (Single), which predicts
a static oversubscription rate for each resource. This repre-
sents a baseline similar to the state-of-the-art [25, 86, 93, 94].
(3) Time-window-based oversubscription per VM (Coach).
(4) An aggressive Coach (Aggr Coach), which uses a P50
prediction percentile. Single increases capacity by 22% com-
pared to None. Coach provides an additional 16% capacity
over Single and, Aggr Coach adds 9% more capacity over
Coach. Coach also reduces the number of required servers
by 44% through improved consolidation of VMs onto servers.
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Performance.We quantify how effectively Coach’s sched-
uling policy minimizes the resource contention from over-
subscription. CPU contention occurs when demand exceeds
50% of the server capacity, while memory contention occurs
when memory accesses result in page faults. Figure 20b sum-
marizes the contention for each policy. Single adds 2% CPU
contention and no memory contention. Coach increases
CPU contention by 1% while resulting in less than 1% mem-
ory violations. Aggr Coach introduces an additional 2%
memory violations. Overall, Coach’s predictions and sched-
uling policy successfully leverage complementary temporal
patterns to improve utilization with minimal impact.

4.4 Mitigating contention
As oversubscription may still introduce some contention, we
evaluate how effectively Coach identifies and mitigates it to
minimize performance degradation. We focus on memory in
this subsection due to its sensitivity to contention.
Predicting contention. The EWMA has low error due to
the overall stability of memory utilization, with an average
error under 4% for over 85% of VMs. The LSTM better cap-
tures historical utilization patterns to predict utilization and
achieves only 2% average error for 95% of VMs. The LSTM
more accurately predicts VMs with dynamic but predictable
patterns where the EWMA can show significant error. The
combination of these two predictors allows Coach to effec-
tively predict contention and trigger proactive mitigations.
Mitigation policies. To demonstrate the effectiveness of
our mitigation policies in minimizing performance degra-
dation, we evaluate six policies against a baseline with no
mitigation (None). Trim only implements trimming. If no
cold memory is available for trimming, Extend may expand
the oversubscribed memory pool with unallocated memory,
and Migrate migrates a VM to free resources. The Reac-
tive variations trigger mitigation only after the monitoring
component (Section 3.4) detects contention, while the Proac-
tive variations use the prediction component to proactively
trigger mitigation.
Effectiveness of mitigation policies on memory. To demon-
strate the effectiveness of Coach’s mitigation policies, we
evaluate their impact on memory contention and workload
performance. We use the two most memory-sensitive work-
loads,Cache andKV-Store, to show the worst-case scenario.
We colocate them with a CVM running Video Conf, which
uses more memory than predicted, causing contention twice.
Each workload runs on an 8GB CVM. The working set for
both Cache and KV-Store is ∼4GB, and they run on CVMs
with 3GB-PA (and 5GB-VA). The working set of Video Conf
is 5GB, but it runs on a CVM with 1GB-PA (and 7GB-VA).
We allocate an initial 6GB to the oversubscribed pool to back
the 17GB of VA in the CVMs.
Figure 21a shows the available memory in the oversub-

scribed portion (i.e., VA-backed). The first contention starts
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Figure 21.Comparison of Coach’s mitigation policies during
two memory contentions.

at 135 seconds, when Video Conf consumes more memory
than initially predicted. For the first contention, VMs have
enough cold memory that can be trimmed. The second con-
tention starts at 255 seconds, when Video Conf increases
its working set, exceeding the amount of cold memory avail-
able for trimming. The first contention demonstrates the
effectiveness of trimming, while the second demonstrates
the effectiveness of the other mitigation measures.

None frequently pages out memory that is paged in later
and fails to recover from contention. Trim identifies large
portions of cold memory in advance to reduce the number
of trimming operations, and resolves the first contention
quickly. As the other policies also trim, they exhibit similar
performance during the first contention but differ during
the second. Trim cannot recover from the second contention
because there is insufficient cold memory. Extend quickly
mitigates the second contention by expanding the oversub-
scribed pool with unallocated memory from the server. Mi-
grate takes longer than Extend to resolve it as the memory
cannot be reclaimed until Video Conf is migrated. Across all
policies, Proactive triggers mitigations earlier and resolves
contention faster than Reactive.

Impact of mitigation policies on performance. Figures 21b
and 21c show the performance of the VMs during contention.
Contention degrades performance by up to 4.3×, while our



Coach: Exploiting Temporal Patterns for All-Resource Oversubscription ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

proactive policies reduce this overhead to only 1.3× by reduc-
ing the duration and intensity of the contention. This demon-
strates that Coach’s mitigation policies effectively minimize
the performance degradation from contention. The other
workloads experience less degradation.

4.5 Coach platform overheads
Coachminimizes overhead by reusing and extending existing
systems in Azure when possible. We demonstrate this by
profiling the overhead Coach introduces to cloud platforms.
Predicting utilization time windows. To train the model
for 6 time windows with about one million VMs, Coach
requires under 100MB of data and 121 seconds for daily
offline training. The model consumes 186MB of memory.
Scheduling overheads. From the simulations, the addi-
tional six dimensions for bin-packing each resource intro-
duce less than 1ms to the scheduling time of a VM.
CoachVMs. In Section 4.2, the worst case page fault count
for Cvm is less than 15% of the ones for the Ovm. In addition,
the oversubscribed portion requires tracking accesses for
trimming. This requires 8MB of memory for a typical 32GB
VM. Tracking every 20 seconds requires 2 additional hyper-
threaded cores (∼1.25% overhead). We offset this overhead by
saving 16% through CPU oversubscription (15% net savings).
Predicting local contention. Each local predictor requires
25KB of memory and 0.86ms for each training/inference
cycle (every 5 minutes). Even at peak load with >100 VMs
on a single server, these overheads are easily absorbed by
the existing cores reserved for server management.
Mitigation measures. Coach supports trimming and ex-
tending the resource pool to help alleviate memory con-
tention. We can achieve a trim bandwidth of 1.1GB/s. Ex-
tending the oversubscribed pool achieves higher bandwidth
at 15.7GB/s as it does not require writing cold memory to
the backing store.

5 Related work
Resource oversubscription. Numerous studies have ex-
plored resource oversubscription [14, 31, 46, 51, 69, 76, 84, 90,
101] and cloud providers already offer static oversubscrip-
tion [25, 45, 58, 78, 83, 86, 93, 94, 96, 110, 110]. Several studies
have focused on optimizing individual resource utilization in
data centers, including CPU [46, 66, 69, 90], memory [58, 86,
93, 94, 101], power [15, 34, 41, 50, 51, 55, 72, 79, 103], and stor-
age [73, 97]. Coach is the first work to target all resources in
a virtualized environment while exploiting complementary
temporal patterns to improve utilization.
Oversubscribed containers. Borg [94, 96] manages cluster
scheduling and allocation, optimizing resource use through
job oversubscription. Google’s Autopilot [78] configures task
concurrency and CPU/memory limits using machine learn-
ing and historical data to reduce slack and task failures.

Twine [36, 93] orchestrates containers across servers using
dynamic machine partitioning, preventing capacity strand-
ing and allowing CPU or memory oversubscription upon
user request. Twine SRM adjusts job tasks based on histor-
ical data. Coach introduces the CoachVM to overcome the
additional challenges for all-resource oversubscription in
virtualized environments (e.g., opaqueness, live migration,
direct device assignment, and host updates).

Oversubscribed VMs. EC2 [86] offers VMs with flexible
resource allocation and oversubscription capabilities, lever-
aging a shared Linux kernel to optimize CPU and memory
utilization. Coach employs the new CoachVM, which has
a guaranteed and oversubscribed portion of each resource.
This enables platforms to ensure performance while exploit-
ing complementary temporal patterns to save additional re-
sources without requiring users to modify their workloads.

Workload-aware scheduling. Researchers leveraged learn-
ing techniques to optimize resource efficiencywhile ensuring
SLOs [16, 20, 42, 51, 71, 88, 89, 108, 109] . Some studies uti-
lized historical information about the services for intelligent
task scheduling and data placement [40, 47, 58, 93, 110], while
others concentrated on optimizing server and VM utiliza-
tion, improving scalability and fault tolerance [25, 49, 56, 92].
Coach uses generic metrics to predict and leverage patterns
in resource utilization. In addition, it uses these metrics to
predict and proactively mitigate contention, ensuring effi-
cient utilization of resources and maximized workload per-
formance without requiring workload awareness.

6 Conclusion
We introduced Coach, a system to improve resource uti-
lization in cloud platforms by leveraging temporal patterns
in VM workloads. Our comprehensive characterization of
resource utilization revealed that VMs often exhibit comple-
mentary patterns, which Coach exploits to increase oversub-
scription without compromising performance.

Coach’s time-window-based predictive scheduling policy
enables cloud platforms to significantly reduce low resource
utilization. We introduce the CoachVM to address the chal-
lenges of oversubscription in virtualized environments. By
considering all resources, Coach provides a holistic solution
that safely increases resource oversubscription, enabling
cloud platforms to host up to 26% more VMs.
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