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Abstract
To facilitate programming with non-volatile memory (NVM),
a set of memory persistency models, such as strict and epoch
persistency, have been proposed. Although these models pro-
vide high-level guidance for reasoning about the data persis-
tence, implementing them correctly is nontrivial. Our study
of the well-developed NVM frameworks and libraries reveals
that many of them have deep semantic bugs that are strongly
relevant to themodel specifications. Furthermore, it is difficult
to detect themwith existing testing and bug-finding tools.

To further understand these persistency bugs, we conduct
a characterization study, and present a taxonomy of these
persistency bugs. We find that many persistency bugs are
caused by the semantic mismatches between the model speci-
fications and their real implementation in NVMprograms. To
identify these deep persistency bugs,we build a toolkit named
DeepMCwith both static and dynamic analysis. DeepMC is
driven by a set of rules based on our characterization study
and persistency model specifications. Our results show that
DeepMCcanefficiently pinpoint various persistencybugs in a
variety ofNVMprogramming frameworks/libraries, and their
example programs, including PMDK and persistent memory
file system (PMFS) from Intel, the NVM-Direct library from
Oracle, and Mnemosyne framework from academia.

CCS Concepts: •Hardware→Memory and dense stor-
age; • Software and its engineering→ Software mainte-
nance tools.

Keywords: Memory Persistency, Non-Volatile Memory, Per-
sistency Bugs, Performance Bugs

1 Introduction
New and emerging non-volatile memory (NVM) technolo-
gies, such asNVDIMM[45], PCM[30, 51], STT-RAM[23], and
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3D XPoint [19], offer promising performance and capacity
properties. Unlike DRAM-based systems, applications run-
ning on NVM require memory persistency to ensure crash
safety [3, 15, 24, 47, 60]. This means that a set of data updates
must behave in an atomic, consistent, and durable manner
with respect to system failures and crashes. Ensuring mem-
ory persistency with commodity out-of-order processors and
memory hierarchy, however, is challenging due to unpre-
dictable cache evictions. Programmers have to explicitly call
dedicated instructions suchasclflushandmfence to enforce
the ordering and durability of persistent operations. This in-
evitably complicates the NVM programming and introduces
both correctness and performance bugs [9, 13, 35–37, 43, 53].
To guide NVM programming, prior work proposed mem-

ory persistency models to specify the ordering and durabil-
ity guarantees of persist operations for ensuring crash con-
sistency [5, 26, 37]. These models include strict persistency,
epoch persistency, and strand persistency (see detailed dis-
cussion in § 2.2). Persistency models provide programmers a
means to reason about the trade-off between the performance
and crash-safety of NVM programs. For instance, as specified
in the strict persistency model, all persistent stores have to
be executed in program order. The strict model enables easy
implementation, but it causes low application performance.
The epoch model relaxes the persistence order with an epoch
granularity for improved performance. However, it increases
the complexity of NVM programming, since it requires the
developer to specify the epoch boundaries and enforce the
persistent ordering between the epochs.
Implementing these persistency models correctly is non-

trivial as it requires developers to have a thorough under-
standing of subtle specifications of each model. Specifically,
developers maywish to follow a specific memory persistency
model to ease the reasoning for theirNVMprogram.However,
there is a semantic gap between the demand from developers
(i.e., the memory persistency model used in the NVM program)
and the real implementation (i.e., whether the memory per-
sistency model is implemented properly following the model
specifications). We define these bugs caused by the semantic
gap between the model specifications and the model imple-
mentations as the deep persistency bugs. Our study discloses
that, even though these popular NVM programming frame-
works have been developed for more than five years, they are
still suffering frommany deep persistency bugs (see our study
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Table 1. Summary of detected persistency bugs in popular NVM frameworks. PMDK and NVM-Direct use strict persistency
model, PMFS andMnemosyne use epoch persistency model. DeepMC reports 50 warnings in total, among which we validate
43 persistency bugs. We show the number of validated-bugs/warnings reported by DeepMC.

Bug Description PMDK NVM-Direct PMFS Mnemosyne

M
od

el
Vi
ol
. Multiple writes made durable at once - - 1/2 -

Unflushed write 1/2 1/1 - 1/1
Missing persist barriers 2/2 2/2 - -
Missing persist barriers in nested transactions - - 1/1 -
Mismatch between program semantics and model 6/7 - - -

Pe
rf
.

Multiple flushes to a persistent object 3/4 1/1 3/3 1/1
Flush an unmodified object 3/3 2/3 4/5 -
Persist the same object multiple times in a transaction 3/3 - - 2/2
Durable transaction without persistent writes 5/5 1/2 - -
Total 23/26 7/9 9/11 4/4

in § 3). As we develop more complicated NVM programs, en-
suring their correctness will only become harder, which will
inevitably hurt the productivity of NVM programming.

TosimplifyNVMprogramming,manyframeworks/libraries,
such as PMDK [49], are extensively developed. However, they
provide only high-level interfaces for developers to specify
the order and atomicity of persist operations. They still re-
quire the developers themselves to ensure the correctness of
their persistency implementations. To make matters worse,
the implementations of these frameworks/libraries are also
buggy [9, 37]. Therefore, it is desirable to have NVMprogram
analysis tools that can automatically verify whether a desired
persistency model is implemented properly.

To facilitate the debugging of NVMprograms, a few testing
tools have been developed. However, these tools, such as In-
tel’s pmemcheck [18], Persistency Inspector [16], andYat [28],
lack generality, since theymainly implement program checks
for Intel’s Persistent Memory Development Kit [49] and Per-
sistent Memory File System (PMFS) [11]. They cannot be eas-
ily extended to otherNVM frameworks. A few tools [9, 13, 35–
37, 43] were developed recently to detect crash-consistency
bugs and performance bugs in NVM programs. They utilized
a variety of bug-detection techniques such as model check-
ing [13], symbolic execution [43], and fuzzing [35] to develop
their tools. However, most of them focused on basic program-
mingbugsand fall shortofdetecting theviolationsof a specific
memory persistency model specified by developers. In other
words, none of them can explicitly indicate whether a specific
memory persistency model (e.g., strict and epoch persistency
model) is implemented properly.
In this paper, we aim not only to check whether the speci-

fiedmemory persistencymodel is implemented correctly (i.e.,
correctness bugs), but also to verify whether the persistency
model is developed efficiently (i.e., performance bugs). As
these bugs are strongly related to each specific persistency
model, we define them as deep persistency bugs.
To achieve our goals, we first conduct a characterization

study of persistency bugs to understand their causes and
consequences. We carefully examined the persistency bugs

collected from popular NVM programming frameworks and
libraries from both industry and academia. They include
PMDK[49],PMFS[11],NVM-Direct [46], andMnemosyne[58].
These persistency bugs can be categorized into two types: per-
sistency model violation bugs that affect crash consistency of
NVMprograms, and performance bugs that do not necessarily
impact crash consistency but hurt program performance. We
briefly summarize our findings in Table 1.

Accordingtoourstudy,mostof thesepersistencybugs, such
as those found in NVM programs implemented with strict
and epoch persistencymodels, can be detected by performing
static program analysis. They require only simple specifica-
tions about the intended memory persistency model. Unlike
existing bug-finding tools that require code instrumentation
to track persistent operations in NVM programs [28, 37], we
can apply the well-defined memory persistency models to
static analysis tools, and check whether the instruction order
violates the specified memory persistency model.

For NVM programs that would use more complicated per-
sistency models, such as strand persistency [12], their per-
sistency bugs could be caused by the violations of memory
dependence between strands. To detect such bugs, we uti-
lize dynamic analysis to track the dependency of persistent
operations, and check themwith specifications of strand per-
sistencymodel. Since NVMprograms use special annotations
to implement the strand persistency model, we only need
to track the persistent operations inside the annotated code
regions, which significantly reduces the cost of code instru-
mentation and checking.

With the insights discussed above, we extract a set of rules
for detecting persistency bugs in NVM programs using differ-
ent persistency models. We build a persistency-model aware
checking toolkit with LLVM [57], named DeepMC. As our ex-
tracted rules are generic, DeepMC can leverage these rules to
identify persistency bugs in variousNVMprograms.DeepMC
is systematic, because it implements a set of checking rules for
all the available persistencymodels. DeepMC is simple, as pro-
grammers only need to set a flag in the compiler configuration
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to indicate the persistency model they intend to implement.
Overall, we make the following contributions in this paper.

• We conduct a thorough study on persistency bugs that vio-
late the defined persistency model and present a taxonomy
of these deep memory persistency bugs.

• We develop a checking toolkit, named DeepMC, with cus-
tomized static analysis and dynamic analysis to detect per-
sistencybugsbyapplying the rules extracted fromour study
and defined model specifications.

• We evaluate the efficiency of DeepMC with a variety of
NVM programs. Experimental results demonstrate that
DeepMC can detect new persistency bugs without intro-
ducing much performance overhead to NVM programs,
and without requiring much effort from developers.

To evaluate the efficiency of DeepMC, we use it to detect
persistency bugs in PMDK [49], PMFS [11], NVM-Direct [46],
and Mnemosyne [58]. As discussed, these frameworks and
libraries use different persistency models. DeepMC reported
50 warnings, among which we validate 43 persistency bugs
(Table 1). Particularly, DeepMC identified all the 19 bugs cov-
ered in our study (§3) to show its completeness. Additionally,
DeepMC reported 24 new bugs which are not covered in our
study. Specifically, DeepMC pinpointed 8 new persistency
model violation bugs and 16 new performance bugs (Table 8).
We manually reproduced and validated all these 24 new bugs
which have existed for 5.4 years on average.

2 Background andMotivation
In this section, we briefly present the challenges with NVM
programming and the defined memory persistency models.

2.1 NVM and Its Programming Challenges
NVM is emerging as a revolutionary technology for comput-
ing systems. Intel recently released its first Optane DC persis-
tent memory [17], showing that NVM has become realizable.
A key property of NVM is its non-volatility, which enables it
to beused aspersistent storage.However,NVMrequiresmem-
ory persistency operations to ensure crash consistency, in
case the system crashes and the program fails [25, 42, 48, 59].
Ensuring memory persistency with modern memory hi-

erarchies is challenging, since there are multiple levels of
volatile caches between the processor and NVM.With com-
modityout-of-orderprocessors andcachehierarchy, theorder
in which stored values are made persistent depends on the
order in which they are evicted from the cache hierarchy. To
facilitatememory persistency, explicit instructions have been
developed. For instance, x86-64 processors have the clwb in-
struction [20] towrite back a cache line toNVM, and the store
fence instruction, sfence, to guarantee that a clwb completes.

However, requiring users to deal with memory persistency
complicates software development. Programmers need to
specify persist ordering and persist atomicity [31, 40, 61, 65].

Using such low-level, architecture-specific primitives to de-
velop software is challenging and error-prone, even with the
help of libraries [6, 8, 49, 58]. For instance, PMDK, which was
built upon these low-level primitives, still requires program-
mers to understand their durability and ordering guarantees.
As we develop programs with NVM programming frame-
works/libraries, persistency bugs can occur in both the imple-
mentations of the frameworks/libraries, and the user-space
NVMprograms that use these frameworks/libraries. Since the
bug location (i.e., NVM frameworks/libraries or user-space
programs) will not affect our bug-finding approaches, we use
NVM programs to represent any program developed with a
memory persistency model in this paper.

2.2 Memory PersistencyModels
Inspired by memory consistency [41], a recent study [48] de-
fined three memory persistency models: strict, epoch, and
strand persistency.With these models, developers can reason
about the trade-offbetweenperformance anddatapersistence
on a multi-core machine. Since most of NVM programs today
use one of these memory persistency models, we focus on
ensuring their implementation correctness in this paper.
In strict persistency, all persistent stores have to be exe-

cuted in the program order. It suffers from low performance,
due to the imposed strict order and frequent cacheline flushes.
The strict persistency model is easy for developers to imple-
ment, which has been adopted in many NVM framework and
systems, such as PMDK [50] and NVM-Direct [46].

To improve persistence performance, relaxed memory per-
sistency models can be used. Epoch persistency introduces
the concept of an epoch. All persistent stores before an epoch
boundaryhave tobepersistedbeforeanystoreafter thebound-
ary. It relaxes the order of persistence within an epoch to
improve persist concurrency. Because of its improved per-
formance, epoch persistency has also been adopted in NVM-
based software, such as PMFS [11] andMnemosyne [59].

Table 2.Number of persistency bugs studied in this paper.

Framework/
Library

Model Vi-
olation Bugs

Performance
Bugs

Total
Bugs

PMDK [49] 5 6 11
PMFS [11] 2 3 5

NVM-Direct [46] 2 1 3
Total 9 10 19

Although epoch persistency enables the concurrent per-
sists within each epoch, it may miss the opportunity of ex-
ploring the concurrency for persists between epochs. There-
fore, strand persistency was proposed. The definition of a
strand is similar to that of an epoch. However, it aims to elim-
inate the false dependencies in epoch persistency. Therefore,
when there is no dependence between strands, it can improve
the parallelism of persist operations. However, strand per-
sistency increases the difficulty of NVM programming, as it
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Table 3. List of persistency bugs studied in this paper. [V]: persistency model violation bugs; [P]: performance bugs. We indicate
whether a bug is in the NVM framework/libraries (LIB) or their example programs (EP) in the 4th column.

NVMLibrary File Location (#Line) File Location Bug Description

PMDK

btree_map.c 201 EP [V] Modify tree node without making it durable
rbtree_map.c 197, 231 EP [P] Log unmodified fields of a tree node
rbtree_map.c 379 EP [V] Modified object not made durable
pminvaders.c 256, 301 EP [P] Durable transaction without persistent writes
pminvaders.c 246, 143 EP [P] Flush unmodified fields of an object
obj_pmemlog.c 91 LIB [V] Multiple epochs writing to different fields of an object
hash_map.c 120, 264 EP [V] Multiple epochs writing to different fields of an object

PMFS

journal.c 632 LIB [P] Flush redundant data when committing
symlink.c 38 LIB [V] Missing persistent barrier
xips.c 207, 262 LIB [P] Flush the same buffer multiple times
files.c 232 LIB [P] Flush unmodified object

NVM-Direct nvm_region.c 614, 933 LIB [V] Missing persist barrier between epoch transactions
nvm_heap.c 1965 LIB [P] Redundant flushes of persistent object

usually needs developers to define the scope of strands with
the knowledge of program semantics. Although strand per-
sistency has not yet been widely used in open-sourced NVM-
based systems, we believe such amodel or similar ones would
be promising for improved performance for NVM programs.

Although these memory persistency models provide high-
level guidance for NVM programming, it is still challenging
for programmers to develop bug-free NVM programs, due
to their intrinsic complexities. For example, many develop-
ers understand the high-level principles of each persistency
model [53], but their implementation of NVM programs may
not exactly follow the specifications, resulting in incorrect
program execution or suboptimal performance.

3 A Study of Persistency Bugs
3.1 StudyMethodology
We manually investigated 19 persistency bugs in popular
NVM frameworks/libraries, including PMDK [49], PMFS [11],
and NVM-Direct [46], as shown in Table 2. We focus on them
because of their extensive use in academia and industry. Sim-
ilar to prior studies that may suffer from limitations of sam-
pling [32, 34, 64], we make our best effort to collect open-
sourced NVM programs. Since the development of NVM pro-
gramming is still at an early stage, the number of persistency
bugswe collected is limited. However, we believe they are rep-
resentative and this limitation does not invalidate our study
results. We encourage readers to focus on the root causes
behind each individual case rather than the numbers.
We list each of the studied bugs in Table 3. We catego-

rize these persistency bugs into two major types: persistency
model violation and performance bugs. Persistency model vi-
olation bugs are specific to the individual persistency model
that should be followed for ensuring crash consistency in an
NVM program. These bugs are caused by violations of the
rules for ensuring durability and ordering of persist opera-
tions in different persistency models (see § 2.2). Performance
bugs could have a negative impact on the performance of

NVMprograms, due to the unnecessary persistent operations
or persistence enforcement.

Note that some patterns obtained from our study could ex-
ist in the implementations of two ormore persistencymodels.
Some of our study results, such as unflushed writes and extra
flushes, overlap with existing studies [9, 13, 37, 43]. How-
ever, our study mainly focuses on how a specific memory
persistency model is not implemented properly in practice.

3.2 PersistencyModel Violation Bugs
According to our study, persistency model violation bugs
constitute nearly 47% of the examined persistency bugs. We
describe themajor causes of these bugs in Table 4, and discuss
the real-world examples of these bugs.

Not persisted yet

1    static int create_buckets (PMEMobjpool *pop, void *ptr, void *arg) { 
2        struct buckets *b = (struct buckets *) ptr; 
3        b->nbuckets = * ((size_t *) arg); 
4        pmemobj_memset_persist (pop, &b->bucket, 0, 
5                                          b->nbuckets * sizeof (b->bucket[0])); 
6        pmemobj_persist (pop, &b->nbuckets, sizeof (b->nbuckets)); 
7        return 0; 

       8   }      

Figure 1. Semantic gap between NVM program and its
implementation in a PMDK example program hashmap.

Mismatch between program semantics and real im-
plementation of persistent operations. These bugs are
mainly caused by the gap between program semantics and
real implementation of persistent operations. Take a hashmap
implementation with PMDK as an example (see Figure 1).
The hashmap buckets are created, initialized and persisted
through PMDK’s variant of memcpy named pmemobj_mem-
set_persist in line 4. The number of buckets (nbuckets)
is initialized in Line 3 but is not persisted until Line 6 with
pmemobj_persist, after all the buckets are initialized. In this
case, if a crash happens after Line 5, the write to the variable
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Table 4. Summary of crash-consistency bugs in different memory persistency model.

Model PersistencyModel Violation Checking Rules

Strict Unflushed/unlogged write An operation𝑊 writing to addr𝐴1, should be followed by a flush F at addr𝐴2, where𝐴1=𝐴2.
Multiple writes made durable at once A persist barrier 𝑃 should be preceded by only one write𝑊 .

Epoch

Missing persist barriers between epochs For any consecutive disjoint epochs 𝐸1 and 𝐸2, there should be a persist barrier 𝑃 at the end 𝐸1.
Missing persist barriers in nested transactions For any epoch 𝐸1 inside of epoch 𝐸2, there should be a persist barrier 𝑃 at the end 𝐸1.
Unflushed/unlogged write A𝑊 writing to addr𝐴1, should be followed by a flush 𝐹 at addr𝐴2, where𝐴1∩𝐴2=𝐴1.
Mismatch between program semantics and
real implementation of persistent operations

For any consecutive epochs 𝐸1
and 𝐸2 writing to addresses𝐴1 and𝐴2 respectively, where𝐴1 ∈𝑂1 and𝐴2 ∈𝑂2, then𝑂1≠𝑂2.

Strand Having data dependencies between strands For any concurrent strands 𝑆1 and 𝑆2, operating on addrs𝐴1 and𝐴2 respectively,𝐴1∩𝐴2= ∅.

nbuckets in Line 3 is not persisted. This will cause data in-
consistency. Developers of this NVM program did not exactly
follow the specifications of strict persistency.
Similarly, developers may think that they have developed

an NVM program following strict persistency. However, they
enforce the durability of multiple writes at once. This may
execute without causing any program incorrectness, but it
does not reflect strict persistency, which could generate un-
predictable or misleading performance behaviors.
Similar bugs can happen in NVM programs using epoch

or strand persistency. For example, the strands, which will
execute concurrently according to the definition of strand per-
sistency, may have data dependencies [12]. To identify such
bugs at the software programming level, we need to exploit
dynamic analysis to check the data dependencies at runtime.

1    static struct tree_map_node * 
2    btree_map_create_split_node (struct tree_map_node *node,
3                                              struct tree_map_node _item *m) {

5        //
6        node->items[c - 1] = EMPTY_ITEM;

8        return 0;

4        .........
Modifying item without logging it.

7        .........

9    }  // This function is executed in a transaction.

Figure 2. Unflushed/unlogged write in a transaction of a
PMDK example program btree_map.

Unflushed/unloggedwrites.Writes toNVMareexpected
to be durable through cacheline flush operations. To simplify
the NVM programming, existing NVM frameworks and li-
braries usually provide a high-level transactional interface
to programmers for persisting data structures in NVM. Take
PMDK for example, programmers can use a function called
TX_ADD() to create a copy of persistent objects (i.e., the ele-
ment ormemory region allocated fromNVM)before updating
them. Then, we can roll back to their old versions upon sys-
tem crashes or program failures. This function ensures data
durability of persistent writes by placing cacheline flush op-
erations at the end of the transaction. Failing to flush these
writes can cause data inconsistency or data loss.

We demonstrate an example in Figure 2. The btree_map_-
create_split_node function in btree_map.c from PMDK
is invoked from a transactional interface. It splits a given
B-tree node in NVM and all changes to the tree should be

persisted at the end of the transaction. As shown in Figure 2,
the items field of a given node is modified in Line 6. However,
the node is not logged into the transaction with TX_ADD(),
therefore, the update in Line 6 is not guaranteed to be durable.
Although existing NVM frameworks usually provide APIs for
developers to specify persistent data structures and their op-
erations, they rely on programmers to ensure the correctness
of the implemented persistency model. With the knowledge
of persistent data structures specified by programmers, we
can pinpoint these bugs with program analysis techniques.

1    nvm_desc nvm_create_region (nvm_desc desc, const char* pathname,
2    const char *regionname, void *attach, size_t vspace, size_t pspace, mode_t mode) {

5        //
6        nvm_app_data *ad = nvm_get_app_data ();

10        return desc;

3        .........

Missing persist barrier.

8        .........

11    } 

4        nvm_flush (region, sizeof (*region));

7        nvm_txbegin (desc);

9        nvm_txend ();

Figure 3.Missing persist barrier after the cacheline flush in
the NVM-Direct framework.

Missing persist barrier. Persist barriers provide the or-
dering guarantees for persist operations toNVM.They ensure
that all previous flushes have completed before the next per-
sistent operation is issued. The barrier is necessary, since
all persistent operations in one transaction should precede
the memory operations in the next transaction. Without it,
writes fromone transaction could be interleavedwith another,
which violates the ACID (atomicity, consistency, isolation,
and durability) guarantees of transactions. We show an ex-
ample of a missing persist barrier between transactions in
nvm_region.c from NVM-Direct that uses strict persistency
in Figure 3. After a region in NVM was created, initialized,
and flushed with nvm_flush (Line 4), a persist barrier should
be present before another transaction begins in Line 7. Due
to the missing persist barrier following the cacheline flush in
Line 4, the transactions before and after the flush cannot be
guaranteed to be executed in the program order.
According to our study, the nested transactions are in-

evitably used in systems software. In nested transactions, the
inner transactions are persisted before the outer transactions.
Missing persist barriers at the end of the inner transaction
can lead to crash consistency issues. We show an example
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Table 5. Performance bugs in NVM programs.

Performance Bugs Checking Rules
Writing back unmodified data For operation 𝐹 flushing addr𝐴1, there should be a preceding operation𝑊 writing to addr𝐴2 and𝐴1=𝐴2.

Redundant write-backs of modified data For any two operations 𝐹1 and 𝐹2 in a transaction flushing addresses𝐴1 and𝐴2 respectively,𝐴1∩𝐴2= ∅.
Durable transaction without persistent writes Every durable transaction should contain at least one persistent write to NVM.

1    int pmfs_block_symlink (struct inode *inode, const char *symname, int len) {
2        ......

7    static int pmfs_symlink (struct inode *dir, struct dentry *dentry, 

13        pmfs_block_symlink (pop, iter, sizeof(struct alien));
12       .........

17    } 

5        return 0;

3        pmfs_flush_buffer (blockp, len+1, false);
4        // Missing persist barrier in this inner transaction.

6    }

8                                                                  const char *symname) { 
9        .........

10        trans = pmfs_new_transaction (sb, 
11                 MAX_INODE_LENTRIES*2 + MAX_DIRENTRY_LENTRIES); 

14       .........
15        pmfs_commit_transaction (sb, trans);
16       .........

Figure 4. Missing persist barrier in nested transactions in
the PMFS library.

in Figure 4. Persist operations in pmfs_block_symlink (in
symlink.c) constitute an inner transaction invoked from an
outer transaction in pmfs_symlink (in namei.c). The writes
to NVM in pmfs_block_symlinkmust be persisted before it
returns back to the outer transaction (Line 13).

A missing persist barrier could happen in any persistency
model, however, the location of enforcing persist barriers is
different. For instance, the strict persistency model requires
a persist barrier after each persist, and the epoch persistency
model requires persist barriers at epoch boundaries.

Checking rules for persistencymodel violation bugs.
We analyze the model violation bugs in our study and formal-
ize them into checking rules summarized inTable 4.Our study
assists in generating the types of model violations, while the
model specification dictates the associated checking rules. For
example, strict persistency requires checking for unflushed
writes between consecutive persistent writes, while epoch
persistency relaxes the corresponding checking rules.

3.3 Performance Bugs in NVMPrograms
According to our study, performance bugs occupy 53% of all
the bugs we studied. We present them in Table 5.

Writing back unmodified data. Unnecessary cacheline
flushes do not violate crash consistency, but could negatively
impact theprogramperformanceand increase thewrite traffic
to NVM. As shown in Figure 5, only one field of the object of
type struct pi_task_proto is modified (Line 4), but the en-
tire object is persisted (Line 6) using pmemobj_persist inter-
face of PMDK.We can detect this type of bug by checking that
only the corresponding addresses ofmodified data are flushed.

Persisting entire object *t even though only one field is modified

1   static int pi_task_construct (PMEMobjpool *pop, void *ptr, void *arg) { 
2        struct pi_task *t = (struct pi_task *) ptr; 
3        struct pi_task_proto *p = (struct pi_task_proto *) arg; 
4         t->proto = *p; 
5        // 
6        pmemobj_persist (pop, t, sizeof(*t)); 
7        return 0; 
8    } 

Figure 5. Flushing unmodified data in the PMDK library.

nvb flushed in nvm_free_blk function

1    void nvm_free_callback (nvm_free_ctx *ctx) {
2        .......
3        nvm_free_blk (heap, nvb);
4        nvm_flushl (nvb);
5    }

6    void nvm_free_blk (nvm_heap *heap, nvm_blk *nvb) {
7        .......
8        nvm_flushl (nvb);
9    }

Redundant flush

Figure 6. Redundant cacheline flushes in the NVM-Direct
framework.

1    static int timer_tick (uint32_t *timer) {
2        int ret = *timer == 0 || ((*timer)--) == 0;

6    static void process_aliens (void) {

12    //
11       }

15    } 

3        pmemobj_persist (pop, timer, sizeof (*timer));
4        return ret;

Missing updates to *iter if condition is not satisfied

5    }

7        .........
8        if (timer_tick (&iter->timer)) {

13        pmemobj_persist (pop, iter, sizeof (struct alien));
14       .........

9            iter->timer = MAX_ALIEN_TIMER;
10            iter->y++;

Figure 7. A durable transaction without persistent writes
in the PMDK example program pminvaders.

Redundantwritebacks ofmodifieddata.Once anNVM
object is modified, it needs to be flushed only once for dura-
bility. An example is shown in Figure 6. The function nvm_-
free_callback invokes nvm_free_blkwhich flushes an ob-
ject with nvm_flush1, but the same object will be flushed
again. An additional writeback can introduce extra latency
by 2–4× [11, 21] as well as increase the write traffic to NVM.
To detect this type of bug, we can statically examine the re-
dundant write-back operations against the persistent objects
that have been written back to NVM.
Durable transactionwithout updates.As for transac-

tions used in NVM programs, if they do not have persistent
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Figure 8. System overview of DeepMC.

writes, the persistent operations that provide durability and
ordering guarantees at the end of the transactions become un-
necessary. Figure 7 shows an example of such a performance
bug in pminvaders.c using PMDK. In this example, function
timer_tick persists a timer at line 3, and an object pointed
by iter is persisted at line 13 with pmemobj_persist. If the
condition at line 8 is not true, the object iter will not be
updated, and it is unnecessarily persisted. This transaction
(line 13) is not necessary because no corresponding data is
modified.We can pinpoint this type of performance bug by
statically checking the presence of persistent writes to NVM,
and analyzing their control flow graphs across transactions.
All these types of performance bugs could exist in the im-

plementations of any persistency models. They will make the
performance behavior of NVM programs unpredictable. For
example, aNVMprogramwith redundantwritebacks in its im-
plementation of epoch persistency model can perform worse
than the strict persistency. Fortunately, according to our char-
acterization study of persistency bugs, we find that most of
them can be identified with program analysis techniques by
following the defined persistency model specifications.

Checking rules for performance bugs.Our study helps
DeepMC identify the common types of performance bugs.
We summarize their corresponding checking rules in Table 5.
Since these bugs manifest across persistency models, we do
not use separate performance checking rules for different
memory persistency models. By checking with persistency
model specifications, these performance bugs will not cause
program incorrectness, but they introduce unnecessary per-
sistent operations, which affects program performance.

4 Design and Implementation
Based on our study in § 3, we develop a toolkit, DeepMC,
whichuses both static anddynamic analysis techniques topin-
point deep persistency bugs. DeepMC only requires its users
(i.e., program developers and testers) to specify the memory
persistency model they intend to use in an NVM program, us-
ing a compile-time flag. DeepMC uses the persistency model
specifications as the checking rules (Table 4 and Table 5). We
believe DeepMC is general, its approach would still work by

extending the checking rules based on the model specifica-
tions, even though a new persistencymodel would be created.

4.1 SystemOverview
To accurately detect deep persistency bugs, DeepMC uses
both offline (static) and online (dynamic) analysis. We show
the systemworkflow of DeepMC in Figure 8.

During the offline analysis, we use the LLVM intermediate
representation (IR) of an NVM program to generate the Con-
trol Flow Graphs (CFGs) and Call Graphs (CGs) (step 1 ). We
useCFGs toobtain the traceswithin each functionof theNVM
program and utilize the CG to collect traces across the func-
tions. The collected traces are ingested into a static checker
for further analysis (step 2 , see details in § 4.3). In step 3 , a
data structure graph (DSG) is extracted from LLVM to per-
form the necessary alias analysis. In step 4 , the static checker
applies the static checking rules as described in § 3 to check
the collected traces and identify violations of the memory
persistency models (in particular the strict and epoch persis-
tency models, and performance bugs). The static checker will
report the identified persistency bugs at compilation stage.
In order to perform online analysis, DeepMC uses an in-

strumenter to insert function calls into the IR, such that it can
invoke a runtime library during the execution of the instru-
mented program (step 5 ). Note that NVM programs usually
use pre-defined annotations to specify the epoch or strand
boundaries, therefore, the instrumentation can be easily ful-
filled by tracking the annotated code regions.DeepMCdetects
violations against the specifications of epoch and strand per-
sistency by using the instrumented program to invoke the
runtime library. Itmaintains themetadata for different epochs
or strands that executed concurrently, and performs neces-
sary runtime checks (step 6 ), such as whether there is data
dependence between these epochs or strands. DeepMCwill
report WARNING for both persistency model violations and
performance bugs. DeepMC uses an interface to track every
function that performs persistent operations for both offline
and online analysis. Since the user knows which annotations
they are using, this requires very few lines of code. DeepMC
uses this information to know when persistent objects are
allocated and flushed, and when memory fences occur.
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Note that persistency bugs can occur in both the implemen-
tation of theNVM framework/library itself, and the programs
that use the framework/library. DeepMC’s construction al-
lows it to detect persistency bugs in both situations. Program-
mers can immediately identify the difference fromwhere the
bug is reported. We will discuss each critical component of
DeepMC in the following sections.

4.2 Data Structure Analysis
Distinguishing and tracking persistent operations against
different persistent objects or data structures in the collected
trace is crucial for pinpointing persistency bugs. It requires a
context-sensitive and field-sensitive abstraction of persistent
objects. To achieve this, DeepMC uses Data Structure Analy-
sis (DSA) [29] to track persistent instances of data structures
in an NVMprogram, and generates a DSG (step 3 in Figure 8)
to track the persistent operations against these instances.
DSA and the corresponding DSG were originally proposed
in [29] as an alias analysis, and have been incorporated into
LLVM [38]. The DSA is context-sensitive and field-sensitive,
which meets our requirements. Since the original DSA does
not account for persistent data structures, we extend it to
track objects in persistent memory.
The DSG contains information about each persistent ob-

ject and the objects it points to. Each DSG node represents
a single persistent object. Directed edges are added between
two nodes if one points to another. The DSG is field-sensitive,
because it tracks points-to information for each field of each
object. DSG also has nodes for function calls that contain the
arguments and return value. These nodes are used to merge
callee and caller information into each function’s local graph.
We remove nodes representing objects that are not allocated
from persistent memory during the DSA procedure.
The DSG is generated by DSA in three phases. In the first

phase (Local Analysis), DeepMC inspects the IR of an NVM
program to generate a local DSG for each function which
captures all its memory dependences. When constructing the
local DSG, new nodes are created at the calls to malloc-like
functions. We track malloc-like functions, because they are
where persistent objects are allocated. DeepMC will track
external functions only if they have persistent annotations.
In the second phase (Bottom-Up Analysis), the call graph

of the program is traversed in post-order (i.e., visiting callees
before callers) to build a graph that summarizes the effects
of calling that function. For each function call identified in
the first phase, we update its local DSG nodes for each argu-
ment passed to the function by incorporating the knowledge
of how the function call will modify the corresponding data
structures. For example, when an object is passed to a func-
tion which will modify one of the fields of the object, we will
update the field in the corresponding node of the local DSG of
the function. If a function has a return value, we also update
the corresponding node for the return value of the function.
The graph built with bottom-up analysis includes the alias

and mod/ref information that indicates whether the referred
objects have been updated or read. This information is incor-
porated into the local DSGs of caller functions and used by
the static checker when applying checking rules.

In the third phase (Top-Down Analysis), the arguments for
the callees are incorporated into the graph generated in the
second phase. At the end of this phase, each local DSG can
determine whether each object was allocated from persistent
memory and which other objects it points to. Because DSG
keeps track of all memory operations in an NVM program,
it is also used for memory dependence analysis. This helps
DeepMCanalyze thememory persistency forNVMprograms,
as the persistency is determined by the order of memory up-
dates and whether those updates are persisted at the points
specified by a persistency model.
DSA is not only context-sensitive but also field-sensitive,

which makes it more precise than traditional alias analyses
such as Andersens’s or Steensgaard’s algorithms [1, 29, 56].
This precision enables DeepMC to analyzememory objects at
much finer granularity and further avoid false negatives. The
final product allows the static checker to verify each function,
all persistent memory objects, and their dependencies. Specif-
ically, the static checker can use this information to establish
the history of persistent operations and apply the checking
rules against them to identify potential persistency bugs.

1    int nvm_lock (nvm_mutex *omutex, int excl, int timeout) { 
2         nvm_amutex *mutex = (nvm_amutex*)omutex; 
3         nvm_lkrec *lk = nvm_add_lock_op(tx,td,mutex,st); 

4         lk->state = nvm_lock_acquire_s; 
5         nvm_persist1(&lk->state); 
6         mutex->owners--; 

12   }

7         nvm_persist1(&mutex->owners); 
8         if (mutex->level > lk->new_level)  
9         lk->new_level = mutex->level; 

10        lk->state = nvm_lock_held_s;
11        nvm_persist1(&lk->state); 

...                                           

Figure 9.An example from the NVM-Direct framework.

To illustrate the procedure of using DSG to pinpoint per-
sistency bugs, we use an NVM program as an example (see
Figure 9), and show its DSG in Figure 10. Figure 9 shows the
implementation of the nvm_lock function in the NVM-Direct
framework. It has a persistency bug of missing the persistent
operation for new_level (Line 9).

As shown inFigure10, theDSGconsists of threenodes.Two
nodes are for persistent objects mutex and lk, and one node
for the initial function call nvm_lock. Each object node con-
sists of its fields and the corresponding type information, and
each function call node stores the arguments of the function.

During the first phase, the local DSG of the nvm_lock func-
tion consists of all the functionparameters (omutex,excl, and
timeout), all the newly created variables (mutex and lk), and
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Figure 10. The DSG created for the nvm_lock function in
the NVM-Direct framework.

the unresolved function calls (nvm_add_lock_op and nvm_-
persist1). The first phase also establishes that omutex and
mutex refer to the same object. During the second phase, we
resolve the function nvm_add_lock_op (see Figure 9), and
obtain the knowledge that lk is allocated from persistent
memory. We also resolve the function nvm_persist1, and
update the DSGwith the information that the corresponding
addresses are flushed. But, this does not generate additional
nodes, since the function nvm_persist1 does not have a return
value. In the third phase, the caller information indicates that
mutex is allocated from the persistent memory. At the same
time, we can safely remove excl and timeout from the DSG,
because they are not persistent objects. We track the opera-
tions against persistent objects (see the bottom of Figure 10).
By applying the checking rules as discussed in Table 4, we
can identify the persistency bugs in Figure 9.
Since the if has no function calls or pointer operations,

it does not affect the resulting DSG. The final output shows
the relationship between all objects that are stored in persis-
tent memory (see Figure 10) and can assist in developing our
checking rules.

4.3 Static Checker with Offline Analysis
Todetectpersistencybugs inNVMprograms, thestaticchecker
of DeepMC applies the checking rules (see Table 4 and Ta-
ble 5) to the collected traces with the CFG and CG. Each trace
includes a sequence of instructions that contain persistent
writes and ends with a persistent barrier.

Trace collection.Wedivide the trace collection procedure
into two phases. In the first phase, DeepMC traverses the CFG
generated in step 2 of a function using depth-first search
algorithm. It scans and tracks the instructions, writes toNVM,
and call/return instructions in a set until a persist barrier is
encountered. For a write, DeepMC uses the DSG to deter-
mine whether the modified object is in NVM. If it is, it will be
inserted into the set. To avoid path explosion, DeepMC has
priority to explore the paths involving persistent operations,
and explores only a small number of paths for loop iterations
(10 by default). Similarly, we limit recursion (5 by default).
Note that all the traces are collected in the program order.

 ...
 write a
 call function B()
 ...
 persist barrier

Local Trace
in function A

 write b 
 ...
 persist barrier

Local Trace
in function B

Merge Point

  ... 
  write a
  write b
  ...
  persist barrier
  ...
  persist barrier

Merged Traces
in function A

Merge

Split Point

Split
 ...
 write a
 write b
 ...
 persist barrier
 ...
 persist barrier

Traces in function A

Figure 11. Interprocedural operations on traces.

In the second phase, DeepMC traverses the CG of the NVM
program (generated in step 1 in post-order). It will merge the
traces in callee functions into the traces of the call sites, as
shown in Figure 11, such that we will have entire traces of
the NVM program and enable the inter-procedure analysis.
DeepMCmaintainsmetadata associatedwith each trace entry.
It includes the line numbers of the operations in a trace.

Unlike symbolic execution, DeepMC’s trace collection pro-
cedure does not track the entire state of persistent memory
regions. Instead, DeepMC only tracks the persistent opera-
tions based on theDSG. TheDSGprovides twomajor benefits.
First, by tracking the persistent objects and their memory
dependencies, the DSG limits traces to only operations in-
volving persistent memory. Second, the tracking of mod/ref
information for persistent objects in the DSG allows DeepMC
to prioritize paths with persistent operations.
DeepMC passes the traces to the static checker (step 2

in Figure 8). After the static analysis, DeepMCwill create a
detailed report of warnings, which shows the line numbers
of the bugs. The developers can use this detailed information
to fix them. Automated bug fixing is out of the scope of this
work, but wewish to explore it as future work.Wewill discuss
the detailed procedure of using static analysis techniques to
identify persistency bugs as follows.

Static checking.After trace collection, the static checker
of DeepMC scans through all the collected traces from an
NVM program, and applies static checking rules to each trace
to detect the potential persistency bugs. We describe how the
static checking rules are applied to any given trace as follows.
• Checking whether a write should be written back or
not. In order to ensure that a given write𝑊 in a trace writ-
ing to address𝐴1, our static checker sequentially iterates
over the trace in program order to check a cacheline flush
𝐹 to 𝐴1 by querying the DSG. It also checks whether𝑊
occurs before 𝐹 in the trace.

• Checking for missing persist barrier. For NVM pro-
grams using the strict persistencymodel, our static checker
will check whether there is a persist barrier after each per-
sistent write. As for NVM programs using epoch or strand
persistency models, the static checker will check whether
there is a persist barrier between epochs or strands.

• Checking for unnecessary write-back. For every oper-
ation 𝐹 flushing address𝐴1, our static checker will check
whether there is a preceding operation𝑊 writing to the
same address. To achieve this, for any given write-back
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operation 𝐹 , the static checker scans the trace in program
order, and uses the DSG to check the address and whether
𝑊 occurs before 𝐹 in the trace.

• Checking for consecutive epochs or strands. In order
to ensure that two consecutive epochs or strands 𝐸1 and 𝐸2
writing to addresses𝐴1 and𝐴2, where𝐴1 ∈𝑂1 and𝐴2 ∈𝑂2
(𝑂1 and𝑂2 arepersistent objects), our static checkerwill use
theDSG to performfield-sensitivememory disambiguation
to checkwhether𝑂1≠𝑂2 (i.e., the epochs or strands should
write to different persistent objects).

• Checking for redundant persistent operations. To
check redundancies for an operation𝑂𝑃1 of a type𝑇 (write
or write-back), the static checker traverses a given trace to
look for an operation𝑂𝑃2 of type𝑇 and checkswhether the
two operations operate on overlapped memory addresses.
If yes, it means redundant persistent operations happen,
which could hurt the performance of NVM programs.

• Checking for durable transactions. If no persistent
writes are identified in a transaction, it indicates that the
transaction is not implemented correctly, or the transac-
tion is unnecessary, which would affect the program per-
formance. DeepMCwill report a warning for the potential
bugs.

To facilitate our discussion, we use the example given in
Figure 9 and 10 to show howwe apply the checking rules to
pinpoint its persistency bug. As NVM-Direct follows strict
persistencymodel in its implementation, DeepMCapplies the
corresponding checking rules in the bug-finding procedure.
Its static checker uses the DSG to track all persistent opera-
tions in a function (as shown in Figure 10). DeepMC stores all
persistent writes, flushes, and fences. In this example, fences
occur at the Line 5, 7, and 11 (i.e., nvm_persist1() flushes
the data and issues a fence). When DeepMC encounters a
fence, it checks the corresponding flushes and writes. For the
first fence (Line 5), we have one logged write and a flush to
the same location, which adheres to the checking rules for
strict persistency. However, when encountering the fence at
Line 11, DeepMC observes writes to lk->new_level and lk-
>statewith only a single flush of lk->state. This indicates
an unflushed write. DeepMCwill report this bug.

4.4 Dynamic Checker with Online Analysis
For NVM programs using more relaxed models like epoch
and strand persistency, data dependencies between epochs or
strands (see Table 4) could also cause bugs. To address this, we
use dynamic analysis to detect model violations at runtime.
As discussed in §2.2, strand persistency allows different

strands (similar to epochs) to execute concurrently, as long as
they do not havewrite after write (WAW) and read after write
(RAW) dependencies. Although strand persistency has not
beenexplicitly implemented inmanyNVMframeworks today,
it offers guidance for facilitating the development of highly

concurrent NVMprograms, such as high-throughput transac-
tional databases and key-value stores [25]. If there isWAWor
RAW dependency between strands, they should be placed in
the samestrandandabarrier isused toenforce theorder.Tode-
tect data races betweenconcurrent strands,wedevelopa light-
weight dynamic analysis approach by only tracking and ana-
lyzing theessentialwrites toNVMthat couldpotentially cause
persistency bugs. The dynamic checker of DeepMC has two
major parts: the program instrumenter and dynamic analysis.
Program instrumenter. To facilitate dynamic analysis,

DeepMC enables automatic code annotation and injects calls
to the IR of NVM programs at the compilation stage (step
5 in Figure 8). Unlike existing dynamic analysis tools [54]
that annotate all memory accesses in a program, DeepMC
annotates only the essential memory accesses for persistency.
First, DeepMC introduces DSA logic to the instrumenter. By
enabling DSA capabilities in the instrumenter, DeepMC can
avoid unnecessary instrumentation of objects that do not re-
side in the NVM. Second, DeepMC only instruments write
operations to theNVM in programmer-specified code regions.
NVM programs usually use pre-defined annotations to

specify the epoch and strand boundaries. DeepMC does not
require its end users to add annotations, instead, it utilizes
the annotations that have been used in the NVM programs
to identify the boundaries between epochs or strands.
Dynamic analysis. For NVM programs using the strand

persistency model or a strand-like persistency model, we
rely on dynamic analysis techniques to identify the data de-
pendency. Specifically, an instrumented NVM programwill
invokeDeepMC’s runtimeanalysis library todetect violations
against the strand or strand-like persistency model (step 6
in Figure 8). Unlike existing analysis tools used for detecting
data races in multithreaded programs, DeepMC reduces the
performanceandstorageoverheadbyonly tracking thewrites
modifying the sameor overlappedpersistentmemory regions.
Within these regions, it uses happens-before race detection to
identifyWAW and RAW data races. DeepMCmaps the NVM
program’s persistent address space to a shadow segment. The
shadow segment is responsible for tracking the history of
reads and writes issued by a set of strands (or threads) to each
persistent memory address. In order to check races between
threads for a given segment, the runtime iterates the shadow
segment to check whether different threads access the same
address. If DeepMC finds such threads, it will generate an
error report. Otherwise, the NVM programwill continue the
execution normally. This allows DeepMC to generate elabo-
rate error reports regardingWAW and RAW races between
strands, without introducing much performance overhead to
NVM programs.

4.5 DeepMC Implementation
DeepMC has both static analysis and dynamic analysis to pin-
point the persistency bugs inNVMprograms. As for the static
analysis, we implement it based on LLVM/Clang. DeepMC
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Table 6. Benchmarks used in our paper.

Application Library Benchmark
Memcached Mnemosyne memslap (1M transactions, 4 clients)
Redis PMDK redis-benchmarks (1M transactions, 50 clients)
NStore Low-level implts YCSB (1M transactions, 4 clients)

uses LLVM/Clang to generate control flowgraphs, call graphs,
and data structure graphs. These graphs are explored by the
static checker for bug detection. DeepMC applies the rules
defined in §4.3 and specifications of persistency models [47]
to check NVM programs. For the dynamic analysis, we use
the data race detection of Google’s ThreadSanitizer to detect
data races in NVM programs, but customize the tracking of
memory accesses in ThreadSanitizer with shadow segments
(implemented with 458 lines of code). We also enable Thread-
Sanitizer to access the DSA/DSG that used for tracking opera-
tions against persistent objects within annotated regions. As
we run DeepMC, any checking that violates the rules will be
reported as warnings.
Note that DeepMC only requires users to specify the im-

plemented model with -strict, -epoch or -strand flag at
compilation. which makes it easy to use. DeepMC currently
does not support the scenario that part of a program uses one
model and other parts of the program use another model.

5 Evaluation
Our evaluation shows: (1) the efficiency of DeepMC in detect-
ing new persistency bugs in different NVM programs using
various NVM frameworks and libraries (§ 5.1); (2) its perfor-
manceoverhead introducedby theprogramanalysis (§5.2); (3)
its completeness in executing the static checking rules (§ 5.3);
(4) the reasons for DeepMC to produce false warnings (§ 5.4).

Experimental setup.We apply DeepMC to 16 NVM pro-
grams built upon PMDK (102K LoCs), PMFS (8.3K LoCs),
NVM-Direct (37K LoCs), andMnemosyne (11K LoCs).We use
the studied NVM programs to evaluate the completeness of
DeepMC. We also use real applications to evaluate the per-
formance overhead of DeepMC. These applications include
popular key-value storesMemcached [39] and Redis [52], and
transactional database NStore [44]. We list their benchmarks
in Table 6. We check the source code of these NVM programs
to understand their semantics and specify the intended per-
sistencymodel with a simple flag at their compilation. The ex-
periments are conducted on a real system as shown in Table 7.

5.1 New Persistency Bugs
We use DeepMC to check persistency bugs in 8 NVM pro-
grams. It reports 50 warnings. We manually examine all of
them and confirm 43 persistency bugs (see Table 1). Among
these bugs, we identify 24 new bugs, 18 of themwere discov-
ered by the static checker and 6 were discovered dynamically.
To further confirm these bugs, we use two approaches: (1)
check whether the bug has been fixed in a newer version of
the NVM framework/libraries or programs; and (2) report

Table 7. System configuration.

Processor Intel Xeon(R), 3,3 GHz, 8 cores, 16 threads, 8MB L3
Memory 16GBmain memory

OS Ubuntu 18.04, Linux kernel 5.0.0-36-generic
Compiler Clang/Clang++ 7.0.0, O3 optimization

them to the open-source community. For the 24 new bugs we
pinpointed, 18 of them are confirmed with these approaches.
We summarize all the new persistency bugs in Table 8. These
bugs have existed for 5.4 years on average. DeepMC identifies
persistency bugs in bothNVM frameworks/libraries and their
example programs. DeepMC also pinpointed all the 19 bugs
covered in our study, which shows its completeness (see §5.3).
The persistency bugs identified by DeepMC can cause se-

vere consequences. For example, themodel-violationbugs can
cause program incorrectness, and the performance bugs can
slowdowntheapplicationperformance.Specifically,DeepMC
finds 8 persistency model violation bugs. For example, in the
hashmap program using PMDK, programmers expect that
the bucket initialization (i.e., initializing the number of buck-
ets and each bucket item) should be fulfilled and persisted
atomically. However, they are implemented in separate trans-
actions. DeepMC also identifies 16 performance bugs, many
of them are caused by writing back unmodified objects dur-
ing transactions. For instance, when PMFS fails to recover a
superblock, it repairs this issue with a redundant copy, and
flushes it for durability. However, PMFS writes back the su-
perblock even though the recovery is successful, resulting in
unnecessary write-backs. For these identified performance
bugs, we manually fix them and see application performance
improvement by up to 43%.
Note that 31% of performance bugs are related to the case

of flushing an entire object when only a single field is mod-
ified. With the field-sensitive analysis in DSA, we can avoid
the false negatives in identifying performance bugs, which
demonstrates the necessity of the field-sensitive analysis.

As discussed in §2.2, the strand persistency is similar to the
epoch persistency, it is further relaxed by allowing multiple
strands to execute concurrently as long as these strands donot
have data dependencies. As the strand persistency requires
that programmers have the knowledge of the data depen-
dencies of their programs, we realize that strand persistency
model is not used in any open-sourcedNVMprograms. There-
fore, we do not report any bugs related to strand persistency
in our evaluation.

5.2 Performance Overhead
We evaluate the performance overhead of DeepMCwith real-
world applications, as described in Table 6.

Offline analysis. For the performance overhead intro-
duced by the offline analysis, we compare DeepMCwith the
baseline that does not apply any static analysis.We collect the
performance numberswhen compiling the benchmarks listed
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Table 8. New persistency bugs detected by DeepMC in NVM programs using PMDK (Strict), PMFS (Epoch), NVM-Direct
(Strict), and Mnemosyne (Epoch). DeepMC identified 8 new persistency model violation bugs, and 16 new performance bugs.
We indicate whether a bug is in the NVM frameworks/libraries (LIB) or their example programs (EP) in the 5th column.

Library File Line Bug Description Location Consequences Years

PMDK v1.2

btree_map.c 365, 465 Flushing unmodified fields of tree node EP Perf. Overhead 4.4
rbtree_map.c 259 Flushing unmodified fields of tree node EP Perf. Overhead 4.4
pminvaders.c 249, 266, 351 Durable transaction without persistent writes EP Perf. Overhead 4.4
hashmap_atomic.c 120, 264, 285, 496 Multiple epochswrite to different fields of an object EP Model Violation 4.4
obj_pmemlog_simple.c 207, 252 Multiple epochswrite to different fields of an object LIB Model Violation 4.4

PMFS super.c 542, 543, 579, 584 Flushing unmodified fields of an object LIB Perf. Overhead 3.2
nvm_locks.c 905 Durable transaction without persistent writes LIB Perf. Overhead 5.3

NVM-Direct nvm_locks.c 1411 Flushing unmodified fields of an object LIB Perf. Overhead 5.3
v0.3 nvm_locks.c 932 Missing flush LIB Model Violation 5.3

nvm_heap.c 1675 Flushing unmodified fields of an object LIB Perf. Overhead 5.3

Mnemosyne
phlog_base.c 132 Unflushed write LIB Model Violation 10.0
chhash.c 185, 270 Multiple writes to the same object in a transaction LIB Perf. Overhead 10.0
CHash.c 150 Multiple flushes to a persistent object LIB Perf. Overhead 10.0

Table 9. Execution time of compiling real applications.

Benchmark Baseline (secs) Compilation with DeepMC (secs)
Memcached 8.5 11.9

Redis 54.9 62.4
NStore 31.9 35.6

in Table 6 with and without DeepMC. The reported num-
bers include the entire static checking procedure as shown
in Figure 8. We show the compilation time of the real-world
applications in Table 9. DeepMC takes 3.4–7.5 seconds more
to finish the compilation, compared with the baseline, which
is acceptable in practice.
Online analysis. We apply DeepMC’s dynamic analy-

sis to real-world key-value stores that include Memcached,
Redis, and NStore [39, 52], and present its impact on the run-
time performance (transactions per second) in Figure 12. For
Memcached, we run different benchmarks, including (1) 50%
update, 50% read; (2) 5% update, 95% read; (3) 100% read; (4) 5%
insert, 95% read; and (5) 50% read-modify-write, 50% read. For
Redis, we run its default benchmarks [2]. For NStore, we run
Yahoo Cloud Service Benchmark (YCSB) which includes a va-
riety of Internet benchmarks [7]. Comparedwith the baseline
that does not have dynamic analysis, DeepMC decreases the
throughput by 1.7%-14.2% for Memcached, 2.5%-16.1% for Re-
dis, 3.12%-15.7% for NStore, respectively. For different work-
loads, we observe various performance overheads. This is
because these workloads have different persistent write/read
ratios, and DeepMCwill track the persistent write/read op-
erations for program analysis.

Scalability.AsDeepMC only tracks persistent memory re-
gions, it scales with the amount of persistent memory regions
instead of total memory. By avoiding tracking all memory
regions, we make DeepMC scalable. As we track more persis-
tent memory regions, the checking overhead would increase.
However, the overhead of DeepMC is small in general, as
we apply DeepMC to different NVM frameworks that have
various codebase sizes (see Table 6).
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Figure12.Theperformance impact ofDeepMCon real-world
applications using NVM.

Programmer’s effort for use. DeepMC is easy to use.
The usefulness of a tool highly depends on how programmer-
friendly it is. Take the PMTest [37] for example, it requires
programmers to manually annotate the transactions in NVM
programs. However, inserting these checkers in programs is
error-proneand requires substantial effort fromprogrammers.
DeepMC only requires users to specify the persistencymodel
implemented in programs with a single flag (i.e., -strict,
-epoch, or -strand) at compilation stage.
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5.3 Completeness
To evaluate the completeness of DeepMC, we use the 19 per-
sistency bugs covered in our study. DeepMC can identify all
of them (see Table 3), since it runs the checking in a conser-
vative manner. These bugs occurred due to the violations of
strict or epoch persistency models, and redundant persistent
writeback operations. This demonstrates that DeepMC can
identify the potential persistency bugs in a conservative way.

5.4 False Positives
As discussed in § 5.1, DeepMC reports nearly 50 warnings.
We carefully validate all the reported bugs bymanually exam-
ining the source code. We find that 14% of persistency bugs
reported by DeepMC are false positives. We investigate them
and present the major reasons as follows.

One of the major reasons is the conservative static analysis
in DeepMC. DeepMC uses DSA and symbolic analysis for
memory disambiguation and memory dependency analysis
among instructions in thecollected traces.However,due to the
lack of dynamic contextual information, DSA and symbolic
analysis fail to resolve the memory dependences statically,
DeepMC resorts to reporting such cases as bugs.

Another reason is thatDeepMCperforms theprogramanal-
ysis based on the rules extracted from our characterization
study of persistency bugs, and the defined specifications of
persistency models, it may not account for certain scenarios
where programmers might implement the persistency model
in a way according to their own intentions. This requires
DeepMC to be aware of program semantics.

To further reduce false positives, we could maintain a data-
base of user-specified rules to filter out some warnings. The
database can be updated with the learned experiences of pre-
viously validated false positives. Since the current effort re-
quired for verifying a reported warning is low, we wish to
develop the database idea as future work.

6 RelatedWork
Persistency model implementation. Prior works have
provided various frameworks to allow programmers to man-
age persistent data with a variety of memory persistency
models. User-space libraries, such as NV-heaps [6], NVL-C
[8], Mnemosyne [58], PMDK [49], and REWIND [4], pro-
vide a transactional interface to support persistence for in-
memory data objects. Recent works, such as HOPS [14] and
DSO [26], provide high-level ISA primitives for applications
to express durability and ordering constraints. Systems soft-
ware, such asPMFS [11], Strata [27],NOVA[62],NOVA-Fortis
[63], SplitFS [22], and ZoFS [10], are filesystem implementa-
tions formanagingpersistent data.Moreover, researchers also
extendedmanaged runtime systems to facilitate theNVMpro-
gramming and persistent object management [33, 55]. How-
ever, they do not verify the correctness of their implementa-
tions. Our study on these popular NVM frameworks/libraries

discloses that many of them suffer from persistency bugs,
which can cause data inconsistency and performance issues.
Unlike prior studies [9, 43], our study focuses on how these
persistency bugs violate each individual persistency model.
Specifically, the model-violation bugs identified by DeepMC
cannot be detected by existing tools such asAGAMOTTO[43]
NVM program testing and bug detection. Recent stud-
ies developed tools to test and debug NVM-based programs.
Yat [28] was designed for testing PMFS [11] using an exhaus-
tive testing method, which makes it extremely slow for prac-
tical use. Pmemcheck [18] and Persistence Inspector [16] are
designed by Intel for testing NVM programs developed with
thePMDK library.However,most of themcause huge runtime
slowdowns, and require built-in checkers for PMDK opera-
tions. They cannot be easily extended for NVM programs not
using PMDK. PMTest [37] and XFDetector [36] are efficient
tools that can verify crash consistency in NVM programs.
However, they require significant effort from developers. Un-
like them, DeepMC requires minimal effort from developers
or testers. Most recently, a few tools [9, 13, 35, 43] utilized
different techniques such as model checking [13] and sym-
bolic execution [43], fuzzing [35] to detect persistency bugs.
However, they focused on basic programming bugs, and none
of themcandetect the implementation violations of amemory
persistency model specified by developers. In addition, each
of them has limitations. For instance, model checking cannot
identify the data dependency at runtime, symbolic execution
suffers from state explosion and cannot handle memory alias-
ing in NVM programs, and fuzzing technique is mainly used
to generate test programs for testing NVM programs.

7 Conclusion
We conduct a thorough study onmemory persistency bugs
with a focus on investigating how they violate the specifica-
tions of a specific memory persistency model. Based on this
study, we build a checking toolkit named DeepMC, which
uses both static and dynamic analysis techniques to detect
persistency bugs with minimal cost. Our evaluation shows
that DeepMC can detect new persistency bugs.
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