
PALLAS: Semantic-Aware Checking
for Finding Deep Bugs in Fast Path

Jian Huang
Georgia Institute of Technology

Atlanta, GA
jian.huang@gatech.edu

Michael Allen-Bond
Washington State University

Vancouver, WA
michael.allen-bond@wsu.edu

Xuechen Zhang
Washington State University

Vancouver, WA
xuechen.zhang@wsu.edu

Abstract
Software optimization is constantly a serious concern for de-
veloping high-performance systems. To accelerate the work-
flow execution of a specific functionality, software develop-
ers usually define and implement a fast path to speed up the
critical and commonly executed functions in the workflow.
However, producing a bug-free fast path is nontrivial. Our
study on the Linux kernel discloses that a committed fast
path can have up to 19 follow-up patches for bug fixing, and
most of them are deep semantic bugs, which are difficult to
be pinpointed by existing bug-finding tools.

In this paper, we present such a new category of software
bugs based on our fast-path bug study across various system
software including virtual memory manager, file systems,
network, and device drivers. We investigate their root causes
and identify five error-prone aspects in a fast path: path state,
trigger condition, path output, fault handling, and assistant
data structure. We find that many of the deep bugs can be
prevented by applying static analysis incorporating simple
semantic information. We extract a set of rules based on our
findings and build a toolkit PALLAS to check fast-path bugs.
The evaluation results show that PALLAS can effectively re-
veal fast-path bugs in a variety of systems including Linux
kernel, mobile operating system, software-defined network-
ing system, and web browser.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging; D.4.5 [Operating Sys-
tems]: Reliability

Keywords Software Optimization; Fast Path; Semantic
Bugs; Static Analysis

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS’17, April 8-12, 2017, Xi’an, China.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037743

1. Introduction
Implementing a fast path is a well-known approach to per-
formance optimization, it has been widely adopted in various
software systems [6, 15, 17, 23, 33, 45]. A fast path repre-
sents the optimization of the commonly executed sequence
of instructions in a workflow, with the goal of accelerating
the common cases. The remaining piece of code in the work-
flow is the normal path or slow path, which is responsible for
handling corner cases, errors, and other less common cases.
The adoption of fast paths in core systems such as operating
systems, file systems, and networking software demonstra-
bly yields boosted performance [28, 41].

However, generating a bug-free fast path is a nontrivial
task. A fast path should be triggered in specific conditions,
executed without violating the expected logic, and it should
be able to return to normal path correctly even when an ex-
ception or fault occurs during its execution. To guarantee the
correctness of a fast path or specialized code in system soft-
ware, associated guards and verification have been proposed
to be inserted in the workflow to enforce the essential check-
ing for predefined semantics by developers. However, these
guards are only implemented in specific systems with end-
to-end proof and verification of implementation correctness
such as seL4 [16], Ironclad [11], and Optimistic Incremen-
tal Specialization [41]. In general, systems such as the Linux
kernel, which is widely used on a diversity of hardware plat-
forms, have no such verification framework or mechanism
to guarantee the correct implementation of a fast path.

The bugs in fast paths not only hinder the software de-
velopment process, but also introduce potential new errors,
making the fast path a new source of bugs. According to our
patch study on fast paths in the Linux kernel, including its
virtual memory manager, file systems, network and device
drivers (see Table 2), fast-path bugs are pervasive and exist
in most of the performance-driven software systems. For a
committed fast path that has passed the tests and code re-
views, there are up to 19 follow-up patches for fixing the
bugs introduced by the fast path itself. And these bug fixes

Table 1. Summary of fast-path bugs detected by PALLAS in our study. PALLAS checks five aspects of the correctness of a fast
path: path state, trigger condition, path output, fault handling, and assistant data structures. With simple semantic information
provided by users, PALLAS revealed 155 deep bugs in the Linux memory manager (MM), file systems (FS), network software
(NET), device drivers (DEV), the Chromium web browser (WB), the SDN software Open vSwitch (SDN), and the Android
mobile OS (MOB). The last column shows the number of validated bugs (B) and warnings (W) reported by PALLAS.

Component Bug Finding MM FS NET DEV WB SDN MOB B/W

Path State
immutable states are overwritten 1 1 1 1 3 1 2 10/16
immutable states are not initialized 1 1 2 1 2 1 2 10/16
one state does not refer to its correlated state 1 1 1 1 1 1 3 9/15

Trigger
Condition

the condition checking for path switch is missing 5 1 3 2 3 2 3 19/21
the implementation of trigger condition is incomplete 1 1 1 3 2 1 5 14/18
the order of condition checking is incorrect 1 1 1 1 1 2 1 8/15

Path Output
the return values of slow and fast path should be the same 1 1 2 1 2 1 4 12/19
the returned values should be one of the defined values 1 1 2 1 3 2 2 12/14
the returned value should be checked 1 2 1 1 2 1 3 11/18

Fault Handling the fault handler is missing 2 4 2 4 7 3 5 27/37

Assistant
Data
Structures

not all elements in a data structure are used in fast path 2 2 1 2 4 2 2 15/21
an update on a data structure should be followed by an
update on its cached version

1 1 1 1 1 1 2 8/14

Table 2. Fast path is buggy. The figure shows the total num-
ber of fast paths and patches and the average and maximum
number of bugs per fast path observed in the Linux virtual
memory manager (MM), file systems (FS), network (NET)
and device drivers (DEV).

MM FS NET DEV
Num. of fast paths 16 21 14 14
Num. of bug-fix patches 62 41 41 28
Num. of bugs per path (avg.) 4 2 3 2
Num. of bugs per path (max) 19 17 11 5
Fix time (days on average) 3 8 5 12

are time-consuming, taking about 3-12 days on average.1

Furthermore, our study (Section 3) shows that most of the
fast-path bugs have led to catastrophic failures such as data
loss, system crashes, and incorrect execution of critical func-
tions in software systems (see Table 4).

In practice, a fast path is normally derived from the exist-
ing code of a workflow by using techniques like code reduc-
tion, code shifting, and state caching [13], making the code
base of the workflow complex and error-prone. To make
matters worse, the fast path requires developers and code
specialization tools to understand the semantics of the tar-
get workflow, making bugs difficult to detect. To pinpoint
these deep semantic bugs, model checking has proven to be
an effective approach. However, most accurate model check-
ers require developers and testers to manually create models
for targeted systems [5, 19, 21], which inhibits their wide
adoption. For example, a model checker for detecting bugs

1 The time for a bug fix is calculated based on the time difference between
the bug-report time and the commit time, it provides a rough sense of how
hard to fix the fast-path bugs.

in a virtual memory manager cannot be directly applied to
file systems, though their bugs are of the same type. This sit-
uation inspires us to ask the questions: is there any common
pattern in semantic bugs in fast paths across various soft-
ware systems, and can we address the reliability challenges
presented by fast-path bugs with a general approach?

In this paper we introduce and examine a new categoriza-
tion of software bugs. We decompose the first question men-
tioned above into three basic ones: (1) how is the fast path
generated? (2) how does a fast path introduce new bugs? (3)
are there any patterns in fast-path bugs that are correlated to
software semantics? To help us answer these questions we
abstract the essential elements of a fast path into five aspects:
path state, trigger condition, path output, fault handling, and
assistant data structures. We carefully examined 172 fast-
path relevant patches (65 committed fast paths and 117 com-
mitted patches for bug fixes) across four core subsystems in
the Linux kernel: the virtual memory manager, file systems,
network and device drivers. Interestingly, we find that many
of the serious bugs are caused by missing one or more of the
identified essential elements for a fast path, and a set of find-
ings are identified for each aspect of a fast path as shown in
Table 1. Examples include the fast path implementation ig-
noring the fault handling, absence of a trigger condition for
path switch between fast path and slow path, and absence
of verification of the output of a fast path before continuing
executing the workflow.

Most importantly, we find that most of these bugs can be
checked with a static analysis technique using only simple
semantic information about the fast path. The rules required
for applying this semantic knowledge could be the same
across various software systems. For example, once a flag
for a trigger condition for path switch is specified, the rule

Sin

S0

Alloc pages w/ nodemask

Get pages from freelist

 Order-0 allocation?

S1

S2

Get a lock

S3

S4

 Get pages from
 fallback lists

 Sout

S5

Get a page from
per-cpu lists

Yes No

(a) Page allocation

Sin

S0

S1

S2

S3

UBIFS write

Allocate space

Write dirty page back

S4

 Sout

 Enough space in flash?

S5

Acquire space directly
No Yes

Release unused space

Acquire space

(b) UBIFS write

Sin

S0

Receive TCP messages (ESTABLISHED)

 Prediction bit is set?

 Validation of an
 incoming segment

S2

S3

S4

 Send acks

 Sout

S5

S1

S6

Handle incoming events

Send acks

Yes No

Handle incoming events

Process out-of
order packets

(c) TCP receiving

Figure 1. The examples of fast path. (a) Page allocation in the Linux virtual memory manager; (b) file write in the UBIFS file
system; (c) packet receiving in a TCP/IP stack. S represents the path states at different stages. A path with bolder lines indicates
the fast path.

for detecting the missed condition checking can be applied in
different software systems. Instead of generating models for
each fast path in every target system, the static analysis can
significantly reduce the burden for developers and testers.

Based on these findings, we extract a set of simple rules
for each aspect described above and build a semantics-aware
static checking toolkit PALLAS with the Clang C/C++ com-
piler front-end [4] to examine the correctness of a fast path.
PALLAS is generic and its rules are applicable to fast paths
in many kinds of software systems varying from operating
systems to user-space applications. PALLAS is systematic in
that it implements a set of checks to fast-path bugs in each of
the identified aspects. PALLAS is simple as fast path devel-
opers and testers only need to initiate the rules with simple
protocols that describe the critical data structures and vari-
ables which represent specific semantics (e.g., immutable
variables and the flags for trigger condition).

To evaluate the applicability and efficiency of PALLAS,
we use it to check 90 fast paths in four subsystems of the
Linux kernel and three open-source software: the Chromium
web browser [3], the Android mobile operating system [2],
and an open-source implementation of the software-defined
networking Open vSwitch [40]. PALLAS reported 224 warn-
ings with which we manually reproduced and validated 72
bugs in the fast paths in the Linux kernel, and 83 bugs in
other open-source software (see Table 1), showing that PAL-
LAS demonstrated an accuracy of 69%. These validated bugs
have existed for 3.1 years on average.

The rest of the paper is organized as follows. In Section 2
we present three examples to illustrate the concept of a fast
path and demonstrate how a fast path is generated. Section 3
discusses our findings on fast-path bugs in the Linux kernel
and present the rules distilled from these findings. Section 4
presents the toolkit PALLAS built based on these rules. We
evaluate the applicability of PALLAS in Section 5, and dis-
cuss its limitations and related work in Sections 6 and 7 re-
spectively. We conclude this paper in Section 8.

2. Motivating Examples
As a widely used optimization technique for computer soft-
ware, a fast path is a kind of code specialization that accel-
erates the common cases of a program via a faster execu-
tion workflow. To help us understand what is fast path and
how fast path is generated, we use three interesting cases in
Linux: page allocation in the virtual memory manager, file
write in the UBIFS file system, and packet receiving in the
TCP/IP network stack.

2.1 Page Allocation in Virtual Memory Manager
Page allocation plays an important role in the virtual mem-
ory manager for quickly allocating pages from resource
pool to consumers. To allocate pages, the high-level API

alloc pages calls the function alloc pages nodemask
and get page from freelist to locate free pages. Figure 1(a)
shows that two paths are generated based on the number of
physical pages that will be allocated. For requests that allo-
cate the smallest memory block (i.e., order == 0), the buddy
allocator executes the fast path (the path with bolder lines in
Figure 1(a)) as they can be served from per-cpu lists without
holding a lock. For requests of the high-order allocation, the
slow path is executed to acquire a lock and then serve the
requests with memory blocks being split or merged in its
fallback lists.

Such a simple optimization may introduce serious bugs.
For instance, both the slow path and fast path share a global
variable gfp mask that determines the behavior of the page
allocator (e.g., which pages can be allocated and whether the
allocator can wait). The global variable should not be mod-
ified in page allocation paths. An inadvertent modification
in the paths led to an incorrect input state for the following
page allocations, further resulting in unexpected results for
next page allocations. Without the semantic information pro-
vided for this global variable, it is difficult to detect such a
deep semantic bug.

2.2 File Write in UBIFS
UBIFS [14, 39] is a file system designed to exploit the po-
tential performance benefits of raw flash. Similar to other file
systems, file write is a hot path which is critical for applica-
tion performance. As indicated in Figure 1(b), a slow path
needs to budget pages before writing them to ensure there
is enough space in physical flash. The budgeting procedure
may trigger write-back operations which add overhead to the
normal writes. A fast path is executed for the common case
that there is enough space in flash and the budget procedure
can be opportunistically skipped.

However, such a fast path may incur data loss if exception
handling is not implemented properly. For example, UBIFS
will switch from the fast path to slow path once it discovers
that there is no space in flash. Before switching, a page
state returned by the exception handler should be changed
from up-to-date to dirty, indicating the page has been written
and the write is incomplete. Returning an incorrect page
state in the fast path could have a serious consequence that
future reads return incorrect data, and the data written by the
previous write is lost.

2.3 Packet Receiving in the TCP/IP Stack
Packet processing in the TCP/IP stack is critical to the per-
formance of networked systems. In the Linux kernel, the fast
path for TCP/IP protocol is turned on by default to process
packets following the specifications defined in RFC793 [44].
It is switched to the slow path under certain conditions such
as out-of-order segment arrival, exhaustion of buffer space,
receipt of unexpected TCP flags, etc.

As shown in Figure 1(c), tcp rcv established uses a
header prediction bit as the trigger condition for its fast path.
If the bit matches pred flags, the fast path is selected to han-
dle incoming messages and the validation checking for each
segment will be skipped to reduce the packet processing
overhead. In contrast, all the segments will be checked in
the slow path. For the packet receiving procedure, both the
slow path and fast path should end with the same output state
after finishing packet processing, but this is not always true
in real implementations. For example, an if...else statement
in the path could make the path transition to an unexpected
state [43], which caused a socket object to be doubly freed.

To summarize, a fast path is developed to speed up com-
monly executed and critical functions in programs. Fast and
slow paths share the same start and end entries in a workflow,
but a fast path is derived from a slow path with software op-
timizations. In practice, many bugs are introduced when a
fast path is developed and committed. We refer to the bugs
caused by a fast-path commit as fast-path bugs.

The use of fast paths is pervasive and they are imple-
mented in many software systems that have performance
concerns. However, detecting fast-path bugs is difficult be-
cause it requires semantic knowledge. The existing solutions
such as using guards and model checking for correctness

verification are not widely adopted in practice because of
their complicated and strict requirements on code implemen-
tations, motivating us to exploit alternative approaches to ad-
dress this challenge.

3. Characterization Study on Fast-Path Bugs
Through the examples shown in Figure 1, all the workflows
for these fast paths are similar, although they are generated
with different semantics. However, few studies can be found
on the analysis of fast paths and fast-path bugs are far less
well-understood. In this section, we present our study on
more fast paths across a variety of core software systems. To
the best of our knowledge, this is the first characterization
study on fast-path bugs.

3.1 Methodology
We identified 404 fast-path patches that account 7% of the
total patches committed during the years from 2009 to 2015
and studied 172 bugs that caused serious consequences in
65 fast paths reported in four core subsystems of the Linux
kernel, including virtual memory manager, file systems, net-
work and device drivers. We focused on the Linux kernel
because it is a well developed, open source operating sys-
tem and widely deployed as the core software system on a
diversity of platforms.

Sin
 Sout

Sf

S0

Sfau

Cerr

slow path

fast path fault handling

Serr

Ct

Cfau

Yes

No No

No

Yes

Yes

Figure 2. The key elements of a fast path. They are general-
ized from the committed fast paths in the Linux kernel. Sin,
Sf , and So denote input state, fast path, and slow path state
respectively. Ct, Cfau, and Cerr denote conditions to trigger
fast path, fault handling, and error output respectively. Sout,
Serr, and Sfau denote return values of paths under normal
execution, error execution, and fault.

Based on the intuition that a fast path is typically derived
from a normal path, we built a tool with the Clang C/C++
compiler front-end [4] to compare the code difference be-
tween a fast path and slow path on the same functional-
ity to narrow down our focus on specific data structures,
variables, and functions. Besides the code comparison tool,
we adopted the methods discussed in [12, 13, 48] for the
patch study. Specifically, we manually tag each committed
patch and classify them with appropriate labels (e.g., conse-
quences and causes). Online discussions and relevant source
code for a fast path are also studied to understand how the
fast-path bug was introduced and what its root causes are.

We abstract the fast path and categorize its key elements
into five types as shown in Figure 2: path state (e.g., Sin, Sf ,

Table 4. Fast-path bugs cause serious consequences, including data loss, system crash, system hang, memory leak, incorrect
result (silent errors) and performance degradation. For each category of fast path bugs (e.g., path state), the table shows the
number of bugs among different types of consequence and its ratio (%) to the total number of bugs in the category.

Consequence Path State Trigger Condition Path Output Fault Handling Assistant Data Structures
Incorrect results 15 (44%) 12 (40%) 12 (33%) 14 (45%) 16 (39%)
Data loss 0 (0%) 0 (0%) 8 (22%) 4 (13%) 7 (17%)
System hang 5 (15%) 2 (7%) 3 (8%) 1 (3%) 4 (10%)
System crash 6 (18%) 4 (13%) 8 (22%) 3 (10%) 6 (15%)
Performance degradation 7 (21%) 11 (37%) 2 (6%) 5 (16%) 7 (17%)
Memory leak 1 (3%) 1 (3%) 3 (8%) 4 (13%) 1 (2%)

Table 3. A distribution of the fast-path bugs in the Linux
virtual memory manager (MM), file systems (FS), network
(NET), and device drivers (DEV). The bugs are categorized
into five types including path state, path condition, path
output, fault handling, and assistant data structures. We show
the number of patches in a type and its ratio to the total
number of patches in a subsystem.

MM FS NET DEV
Path state 21 (34%) 4 (10%) 5 (12%) 4 (14%)
Conditions 10 (16%) 3 (7%) 14 (34%) 3 (11%)
Path output 12 (19%) 13 (32%) 6 (15%) 5 (18%)
Fault handling 9 (15%) 7 (17%) 5 (12%) 10 (36%)
Data structures 10 (16%) 14 (34%) 11 (27%) 6 (21%)

Total bugs 62 41 41 28

So), trigger condition (e.g., Ct, Cerr, and Cfau), path output
(e.g., Sout, Serr, and Sfau), fault handling and assistant data
structure. Path states represent the input states, intermediate
states and final states of a path, e.g., the input parameter for
a function and the initial state of a global variable. Trigger
conditions determine whether a workflow will switch from
one path to another. Path output represents the return value of
a path. Fault handling is implemented to process exceptions
that happen along with the execution of a path. In many
cases, a fast path would also use a set of data structures (e.g.,
state cache) to assist it to accomplish the optimization.

When a fast path is implemented, bugs could be intro-
duced from these five aspects discussed above. We catego-
rized the fast-path bugs in Table 3. It is interesting to find
that these fast-path bugs from different software systems
have specific patterns across the five types, although their
implementations fulfilled different semantics. This gives us
the hint that these semantic bugs could be addressed with
general approaches. We will discuss our findings in detail
and demonstrate how these findings could help us pinpoint
fast-path bugs in the following sections.

3.2 Path State
A large portion of fast-path bugs come from path states (see
Table 3). When a fast path is generated, it usually shares the
same variables as defined in the slow path, almost all of its

initial states are the same as that for the slow path. The state
management becomes complicated as the path diverges.

The bugs caused by path states could lead to serious con-
sequences as illustrated in Table 4. For example, an unex-
pected modification on a node mask could result in incorrect
page allocations (e.g., the pages are allocated from a differ-
ent node, violating the memory allocator policies), an incor-
rect setting of a page state could make a memory page be-
come unavailable (i.e., memory leak). Therefore, it is impor-
tant to verify the correct usage of the involved data structures
and variables for path states when a fast path is generated.

Although the path states would be changed along with the
path execution and their values are determined at runtime,
our study on these 34 bugs related to path states in the Linux
kernel reveals that about half of these bugs can be detected
with static analysis by taking simple semantic information
about the involved data structures and variables. We describe
the major subtypes of the bugs relevant to path states and
the proportion of each subtype, and discuss the real-world
examples of these bugs in the following.

Overwriting immutable variables (51%): For immutable
variables, it is assumed that they will not be modified by the
fast path during the path execution. According to our study,
we find that half of the path-state bugs are caused by violat-
ing this semantic rule. For instance, in the fast path of page
allocation, it has a set of immutable variables nodemask,
migratetype, and high zoneidx to represent the mask bits of
candidate nodes for page allocation, the migration type for
memory isolation, and the zone type respectively. As shown
in Figure 3, the fast path links the value of the immutable
variable migratetype to page→private for future reference.
However, the page→private would be overwritten when the
page was freed to the freelist of buddy allocator, causing in-
correct value reference for migratetype and incorrect page
state. With the knowledge of these immutable variables, this
type of bugs can be quickly pinpointed.

Correlated variables (20%): In programs, correlated
variables appear frequently to express the inherent corre-
lations between multiple variables [25]. This is also true in
fast-path implementation. The correlations between multi-
ple path states (i.e., inherent program semantic) are imple-
mented with the correlated variables. Taking the fast path in

 Sout

S0

Mlocked?
Sin

S1
 S2

S3

Free normal pages
Wrong page

state
Issue: overwriting

migratetype in
page->private

No
Yes

Free mlocked pages

Figure 3. A bug caused by overwriting the immutable
variable migratetype in the fast path for memory allocation.

page allocation as an example, the variable preferred zone is
defined to track the memory zone that is the best candidate
for page allocation, but the value of this variable should be
a node specified in the immutable variable nodemask. Such
a constraint defines the correlation between these two vari-
ables. In practice, if this semantic is not implemented, an
incorrect page allocation (e.g., [31]) could happen.

We find that many such fast-path bugs incurred due to the
incomplete implementation of the correlation semantic. In
a complicated program like memory management that has
many states, guaranteeing the correctness of state correla-
tions is a challenging task. But with the specification of the
correlations between variables, many of these bugs can be
detected with static analysis. For example, for the correla-
tion semantic A→B, we can verify it by checking the exis-
tence of the correlations between variables A and B in the
control flow graph (CFG). Both the direct and indirect ac-
cesses on the correlated variables can be counted as a valid
correlation edge which may produce false correlations. We
can leverage the approaches of inferring variable access cor-
relations in [25] to validate the variable correlations in a fast
path to further reduce the false positives.

Uninitialized immutable variables (7%): It is unex-
pected that the conventional programming bugs (e.g., de-
fined variables are not initialized) still happened in the well-
developed systems like the Linux kernel. We find a set of
fast-path bugs belong to this category. For example, an unini-
tialized page flag [32] defined in a fast path for page alloca-
tion in memory cgroup may cause an unexpected failure.

Finding 1 : Most of the path state bugs in fast paths are
caused by three reasons: (1) uninitialized immutable
variables; (2) immutable variables are overwritten; (3)
incomplete implementation of correlated variables.

Rule 1.1 : For any specified immutable variable X ,
X should be initialized; Rule 1.2 : X should never
be overwritten; Rule 1.3 : For any specified corre-
lated variables X and Y , the correlation between them
should be detected in a path.

3.3 Trigger Condition
Trigger condition determines whether a transition from a
slow path to fast path and vice versa will happen. Our study
discloses that a large number of fast-path bugs were located
in this part. As shown in Table 4, these bugs (third column)

could cause the incorrect result, performance degradation,
and even system crashes. We present our study on this type
of bugs as follows.

Sin

S3

S0
 Size is changed?
 S1
 S2
 Sout

Issue: the condition
is missing and slow

path is skipped.

Wrong file size

Yes

No

Write w/o updating inode

Write & update inode

Figure 4. A missing condition bug caused incorrect file size
in inode due to a missing transition from ocfs2 get block
fast path to its slow path in the OCFS2 file system.

Missing trigger condition checking (25%): Bugs can
happen when the trigger condition is not implemented. The
requests which should be served in a slow path, are in fact
served in a fast path due to missing the transition from the
fast path to slow path, resulting in serious problems such
as data inconsistency. Taking a bug [38] reported recently
in the Oracle cluster file system (OCFS2) [37] for example,
OCFS2 implemented a fast path for fetching disk blocks for
the case that the disk file size will not be changed in the near
future when a read happens. Once the file size is changed,
the slow path in ocfs2 dio end io write should be called to
update the metadata for the file size. Figure 4 shows that the
slow path could be skipped, resulting in data loss.

1 map = rcu_dereference(rxqueue->rps_map)
2 if(map){
3 – if(map->len == 1){
4 + if(map->len == 1 &&
5 + !rcu_dereference_raw(rxqueue->rps_flow_table)){
6 + tcpu = map->cpus[0];
7 + if (cpu_online(tcpu))
8 + cpu = tcpu;

1 / 1

Figure 5. An incomplete condition checking bug caused a
performance bug in network devices.

Incomplete implementation of condition checking
(20%): An incomplete implementation of a trigger condi-
tion can prematurely force a switch from a slow path to fast
path and vice versa. As shown in Figure 5, the condition
that whether rps flow table is ready for the network device
to receive packets is not checked [34], resulting in perfor-
mance degradation as the RPS (Receive Packet Steering)
was disabled unexpectedly.

A trigger condition often involves multiple variables
whose values will be checked at runtime. Our study on fast-
path bugs reveals that many of them are caused by missing
the checking for one or two variables. Given that the devel-
oped fast path is a ‘white box’ for developers and testers,
these bugs can be detected by only taking the semantic in-
formation about which variables are used for the trigger
condition checking.

Incorrect order of condition checking (12%): A work-
flow may have multiple path divergences, each of which de-

Sin

 Sout
S0
OOM?

S2

Remote?
S1

Issue: the order of
checking OOM and

remote zone is reversed.

Performance
degradation

No

Yes

Alloc from remote zones

Alloc from local zones

Yes

No

Alloc using OOM

Figure 6. A performance bug caused by the incorrect order
of trigger condition checking.

pends on one or more trigger conditions. The order of the
checks of these trigger conditions determines how the work-
flow will be executed. We use the memory allocator as an ex-
ample. When a node does not have enough memory space,
there are two possible paths that can satisfy the allocation
request: allocating memory from remote memory zone (Re-
mote) or execute out-of-memory (OOM) procedure to re-
claim memory from other processes. Since OOM manager
may need to kill processes to free pages, its path is consid-
ered as a slower path compared to the Remote path. There-
fore, an optimized path should check Remote first, and then
try OOM. If the order of checking is reversed (see Figure 6),
a performance bug [30] was reported. Similar bugs are found
in the TCP/IP stack, which caused network packet loss.

Finding 2 : Most condition checking bugs are caused
by three reasons: (1) trigger condition checking for
path switch is missing; (2) incomplete implementation
of condition checking; (3) incorrect order of condition
checking.

Rule 2.1 : For any specified variable X for trigger
condition checking, X should appear in its flow control
statement; Rule 2.2 : For all specified variables, they
should satisfy Rule 2.1; Rule 2.3 : For any specified
trigger conditions X and Y , and X happens before Y ,
this order should be enforced and detected in the path.

3.4 Path Output
The output of a fast path depends on its functionality. It could
be a page allocated by memory manager, or a socket for TCP
connection, or simply an integer denoting the data size that
has been successfully written in file systems. Although the
output semantic is different, certain generic bug patterns are
identified, and these bugs can be avoided at an early stage.

Unexpected output (24%): In many cases, the output
states of a fast path are well defined when they are generated
by developers. They should belong to a set of expected states
(i.e., predefined states or they are highly predictable). We
find that 24% of the bugs related to path output are caused
by this reason. Upon an unexpected output, serious conse-
quences could happen as shown in Table 4. For example,
when a page is allocated in get freelist in the fast path of
slab allocation, it must be in frozen state [42] to enable per
CPU allocations. If the page is returned with other states, the

Sin
 Sout

S2

S0
 S1
Pred. flag?

 Sout

return 0

return 1

Mismatching output
caused double free

socket object

Yes

No

Handle reqs w/o validation

Handle reqs w/ validation

Figure 7. A bug caused by mismatching output in the fast
path for tcp rcv established.

unexpected states could cause incorrect memory allocations
or allocation failure.

Mismatching output (39%): Theoretically, for some
cases, the output of a fast path should be the same as that
of its slow path, e.g., the network packet processing. This is
validated in our study. We find that 39% of fast-path output
bugs are caused due to the output difference between the fast
path and slow path, resulting in failures in upper-level caller
functions. As shown in Figure 7, it describes a bug [43] hap-
pened in the fast path for receiving network packets in TCP.
The caller function assumed both the slow path and fast path
should return 0 if success. The incorrect return of the fast
path caused double free of the socket object skb. In compli-
cated and large-scale systems, the returns of many functions
are often well defined (e.g., error codes for returns) [9].
In our study, we observed that many committed fast paths
return predefined values such as EIO, or values defined by
developers themselves. By cross-checking the defined re-
turns of a slow path and fast path, many bugs of this type
could be detected.

Missing output checking (8%): Like a slow path, the
output of a fast path should be checked to verify whether
it executes successfully or not. Unfortunately, we find that
this step is usually skipped in real-world implementation,
introducing potential risks to the increasingly complicated
software system. For example, in the BtrFS file system, the
return of btrfs wait ordered range was not verified in the
fast path for IO operations. This caused data loss because its
caller function prepare page assumed the optimized version
of the IO operation would always execute as expected, even
though only a portion of the data is actually written into the
file system.

In essence, for this type of bugs, they happened due to
the missing of the full implementation of their semantic:
whether a fast path’s return value should be checked or not.
Static analysis method can detect these bugs, but it may
suffer from high false positive results as not all the returns
of fast paths require validation. Fortunately, this semantic
information is simple and straightforward. If this simple
knowledge is provided, such type of bugs can be easily
detected with static analysis.

Finding 3 : 71% of the fast-path bugs related to path
output are caused by three reasons: (1) the output is
beyond the predefined states; (2) the output of the fast

path and slow path does not match; (3) the checking of
the fast path’s return is missing.

Rule 3.1 : For any specified return R of a fast path,
R should belong to a set of defined returns or expected
states RS (R∈RS); Rule 3.2 : R should be the same as
the defined return of the slow path for specified cases;
Rule 3.3 : R should be checked for specified cases.

3.5 Fault Handling
Fault handling is critical to maintain the correctness and
reliability of a fast path. A typical fast path should handle
faults timely and correctly.

1 void transport_generic_free_cmd(struct se_cmd *cmd, ...){
2 if (wait_for_tasks)
3 transport_wait_for_tasks(cmd);
4 /*Handle WRITE failure ...*/
5 + if (cmd->state_active){
6 + spin_lock_irqsave();
7 + target_remove_from_state_list(cmd);
8 + spin_unlock_irqrestore();
9 + }

1 / 1

Figure 8. A bug caused by missing the fault handler imple-
mentation in the SCSI driver. It caused a memory leak as the
failed cmd object is not freed.

We study 31 fast-path bugs that are directly related to ex-
ception and fault handling and find that the majority of them
are caused by missing fault handler. No implementation of
fault handlers is observed in many fast paths. Such type of
bugs can cause serious failures such as data loss in file sys-
tems, memory corruption in device drivers as seen in Table 4.

Figure 8 shows an example that a fast path in SCSI driver
did not handle the failed commands, leading to a memory
leak. To fix this bug, developers need to check the com-
mand’s state, remove the failed command from driver’s state
list and free the failed cmd object.

An interesting finding is that these fault handling bugs
happened, even though their fault or error states are well
defined in the program. These error state definitions actually
provide developers and testers the implicit semantics on
what errors would happen and should be handled properly in
their committed fast paths. Unfortunately, this part is often
ignored by developers. Without building a complex model
checker or running large scale tests, these deep semantic
bugs can be detected with static analysis by leveraging the
implicit semantic information.

Finding 4 : Most of the fault handling bugs in fast paths
are caused by missing the fault handling implementa-
tion, even though the fault or error codes are well de-
fined.

Rule 4.1 : For any specified fault state S, S should ap-
pear at least in flow control statement as an indication
that it is handled;

3.6 Assistant Data Structure
Fast path often uses additional data structures to assist it in
accomplishing the optimization goal. These assistant struc-
tures are typically used to store fast-path states and are crit-
ical to the efficiency of the fast path. They can be organized
in any format such as stack, binary tree, hashmap, etc.

We investigated 41 fast path bugs related to assistant data
structures and find that most of them are caused by the sub-
optimal organization of these data structures and the uncoor-
dinated updates on them. These bugs can cause catastrophic
failures and performance degradation (see Table 4).

Suboptimal organization of data structures (31%): In
fast paths, data structures optimization matters as it may sig-
nificantly affect the performance of these paths. One impor-
tant aspect is that they are optimized for not touching ex-
tra cache lines for better performance. If variables in a data
structure are not used in a fast path, they should be sepa-
rated from others to reduce the size of the data structure.
For example, the member variable i cindex was removed
from the inode structure to fix the bug in [8]. Although
storing i cindex only costs 4 bytes on an x86 64 computer,
it may have a large memory footprint when hundreds of
them are cached in a Linux system. Similar examples can
also be found in networking systems. For instance, the vari-
able struct flowi was never used in inet cork in the fast path
for IPv4, introducing additional overhead for accessing the
inet cork data structure. Therefore, with examination of the
assistant data structures to find out whether a variable is used
or not, a set of performance bugs could be identified.

Stale value caused by uncoordinated updates (26%):
An assistant data structure is often used as a cache for path
states. However, if the cached entries are not updated or the
stale entries are not removed timely, bugs could happen. For
example, in the fast path for TCP congestion control, a hash
table is used to index multiple TCP congestion control algo-
rithms, each algorithm is associated with a TCP flow. After
loading and unloading various modules for the congestion
control algorithms, a stale key could be pointed to a wrong
module because of the uncoordinated updates [35]. Such a
bug could cause abnormal networking performance.

Moreover, when cached states were not cleaned correctly
in assistant data structures, file system consistency can be
compromised. Taking a bug in NFS for example [36], a fast
path is developed to look up a valid inode in inode cache
for a file system (see Figure 9). If obsoleted inodes were not
removed from the cache after a file deletion, the bogus file
handle will still be visible to NFS daemons, leading to data
inconsistency.

For these bugs, a common pattern is identified: for any
data structures that function as caches, when a path state
is updated, its corresponding assistant data structure should
also be updated accordingly. Otherwise, there is a high possi-
bility that bugs would be introduced by these data structures.

Sin
 Sout

S0

S1
 S2

Inode in cache?

Issue: obsoleted
inode in cache

Data
inconsistency

Yes

No

Get an inode from icache

Get an inode from disk

Figure 9. A bug in the fast path of searching a valid inode
in inode cache(icache) of file system.

Finding 5 : The assistant data structures in a fast path
could introduce new bugs mainly because of two rea-
sons: (1) less care on the organization of the assis-
tant data structures; (2) uncoordinated updates between
path states and their cached entries in the assistant data
structures.

Rule 5.1 : For any specified assistant data structure
DS, the unused variables in it should be separated from
DS for performance reason; Rule 5.2 : For any DS
which is used for caching path states, an update on one
of the path states should be followed by an update on
the corresponding DS.

4. Implementation
According to our study on fast-path bugs discussed in Sec-
tion 3, certain generic patterns for the root causes of these
bugs have been identified. Based on these findings, we ex-
tracted a set of simple rules that can be applied to check the
correctness of a fast path. Most importantly, these rules can
be executed with static analysis to detect deep fast-path bugs
by only taking simple semantic information, which dramat-
ically reduces the efforts on building bug-finding tools and
running tests. Unlike model checking which requires spe-
cific models for a specific system, our approach is generic,
which can be applied to a variety of software systems.

Based on the extracted rules, we build a semantic-aware
checking toolkit PALLAS which includes five tools: path
state checker, trigger condition checker, path output checker,
fault handler checker and assistant data structure checker.

The only additional requirement for PALLAS is that it re-
quires users (i.e., developers and testers) to specify the sim-
ple semantic information as the input for the static check-
ing rules. We believe such a requirement is less of a concern
for several reasons. First, today’s developers and testers have
much overlap on software development and testing [19, 22].
They know all the semantic knowledge when they develop
fast paths. Second, the toolkit PALLAS only needs simple,
straightforward and high-level semantic information, for ex-
ample, the variables which are immutable or will be used for
condition checking. PALLAS is built based on Clang. It has
several steps to finish the checking for a fast path.

First, it combines the source codes of the target fast path
and the relevant header files into a single large file, as the

Table 5. A simplified example of symbolic extrac-
tion for the major components in the execution path
of alloc pages nodemask. The immutable variable
gfp mask was changed, which violates the rule that im-
mutable variables should not be overwritten. S# means a
symbolic expression, I# means an integer value, V# means a
temporary variable, and E# means a symbol representing the
result of an expression. L# denotes a line number.

Type L# Symbolic expression

Input

@immutable = gfp mask
@cond0 = zone local
@cond1 = GFP KSWAPD RECLAIM
@order0 = @cond0 <@cond1

Signature 50 alloc pages nodemask(gfp mask, ...)

Condition
32 (E#zone local(local zone, zone))
62 (E#get page from freelist(order, &ac, ...))

64
(S#gfp mask) &
(I# GFP KSWAPD RECLAIM)

State

54 migratetype = 0
54 alloc flags = 0
67 (V#1) = memalloc noio flags(gfp mask)
67 gfp mask = (V#1)
69 (V#2) = alloc pages slowpath(gfp mask, ...)
69 page = (V#2)

Output 74 page

Clang static analyzer cannot execute inter-procedural analy-
sis for multiple files [4, 29].

Second, PALLAS uses Clang to generate the control
flow graph which contains all execution paths for the rel-
evant source code within a fast path. A execution path in-
cludes four components, function name and input parame-
ters (Signature), return value (Output), trigger and fault
conditions (Condition), and updated variables and callee
functions (State). PALLAS inlines a limited number of
callee functions to prevent the path explosion problem. The
paths are stored in a database and then symbolically explored
by the checkers for bug detection.

Third, users specify the simple semantic information re-
quired for each rule as defined in Section 3 with provided
protocols. Currently, users need to manually specify the start
entry of the slow and fast path, and annotate the semantic in-
formation for the five checkers in PALLAS toolkit. We wish
to leave the automated approach for extracting semantic in-
formation as the future work. As described in Table 5, a few
input examples demonstrate how PALLAS’ users can spec-
ify the input for different rules, in which @immutable rep-
resents the specified immutable variables, @cond specifies
the variables for trigger condition checking, @order indi-
cates the ordering of condition checking in a fast path.

Fourth, PALLAS filters all the execution paths with the
rules for path state, trigger condition, path output, fault han-
dler and assistant data structure respectively. Any checking
that violates the rules will be reported as warnings.

Table 6. Software systems evaluated in the paper.
Software Version Description
Linux kernel 4.6 General-purpose OS

Chromium 54.0 Web browser

Android kernel 6.0 OS for mobile devices

Open vSwitch 2.5.0 SDN software

Table 5 shows a path extracted from a simplified example,
in which the immutable variable gfp mask was modified
in the execution path of alloc pages nodemask. The path
state checker of PALLAS can detect and report it as a warning
after static analysis.

5. Evaluation
The goal of our evaluation is to demonstrate that: (1) the
efficiency of PALLAS in detecting new semantic bugs in fast
paths across a variety of software systems (Section 5.1); (2)
the completeness of PALLAS in executing the semantics-
aware checking rules (Section 5.2); (3) the plausible reasons
for PALLAS to produce false warning reports (Section 5.3).

Experimental Setup: We applied PALLAS to 90 commit-
ted fast paths (not including the 65 fast paths discussed in
our study) in four subsystems (i.e., virtual memory manager,
file systems, network and device drivers) in the Linux ker-
nel, and three different open-source software as shown in
Table 6. We check the source code of these fast paths to un-
derstand their semantics, and manually specify simple and
high-level semantic information for checkers in PALLAS. All
the experiments are conducted on a Linux 4.2.0 server ma-
chine with Clang 3.6.2 installed.

The execution time for merging source code and build-
ing path database using PALLAS can vary from 50 minutes
for analyzing the Linux memory manager to 6 hours for an-
alyzing file systems. This is a one-time cost. The input to
PALLAS can be written in a few lines of code. In our expe-
rience, it took less than an hour to a few days to understand
a path until we ensure the input is adequate. Quantifying the
effort of using PALLAS is difficult, as it is determined by
many factors (e.g., developers’ skills and experiences). We
expect that much less effort would be required for software
developers and testers.

5.1 New Fast Path Bugs
PALLAS reported 224 warnings. The experimental results
show that PALLAS took 1-2 minutes to check one fast path
on average. We manually examined all of them and identified
155 fast-path bugs (see Table 1). More specifically, cross-
checking with mainline Linux kernels helps us confirm that
27 bugs of them are valid in recent Android OS, as Android
kernel is derived from Linux, and some Android bugs re-
ported by PALLAS have been fixed in the latest Linux ker-
nel but not been fixed in Android OS yet. For the remaining

bugs, we have reported them to the corresponding developer
community for confirmation and fix.

It is noted that a fast path may have multiple bugs. The
average latent period of these bugs is 3.1 years. We list 34
bugs for each software in Table 7 to illustrate the examples
of the fast-path bugs detected by PALLAS.

Specifically, PALLAS finds 12 bugs related to unexpected
output. For example, in Chromium, developers expected a
flag from a handler with the OpenNaClExecutable func-
tion to ensure a file handle is available for downloading in
a fast path. However, the function never returned a value,
causing that the fast path is never executed. 14 bugs are re-
ported and related to the incomplete implementation of trig-
ger conditions. For instance, a fast path was implemented
for fragmenting TCP packages in Open vSwitch, its trig-
ger conditions should include the checking of the CHECK-
SUM PARTIAL flag. However, the buggy code missed that
checking before entering the fast path, causing a perfor-
mance bug. PALLAS detects 10 bugs caused by overwriting
immutable variables. A bug caused by the modification of
the immutable variable gfp mark as described in Section 2.1
is also detected in the Android kernel.

5.2 Completeness
To evaluate the completeness of PALLAS, we collected 62
known fast-path bugs from the bugs covered in our study
and synthesized them into the Linux kernel. PALLAS was
executed to identify them. Table 8 shows that only one bug
(marked *) was missed by PALLAS due to a semantic excep-
tion. Specifically, the buggy code returned a page state set as
clean, which was incorrect and should be set as dirty. PAL-
LAS did not report a warning because no runtime data (e.g.,
the value of the page state) is available for the bug analysis.

5.3 False Positives
As discussed in Section 5.1, we use PALLAS to test 90 new
fast paths committed in various software, PALLAS reported
224 warnings. We carefully study all the warnings, and man-
ually reproduce them to validate that 155 warnings are bugs:
31% of warnings reported by PALLAS are false positives.

We investigate them and present main sources of false
positives for each category of fast-path bugs. (1) Path state:
a false alarm can be caused for changing a local immutable
state after saving its snapshot in a global data structure, with
which developers can restore the state afterward. (2) Trig-
ger condition: some data structures (e.g., dirty bit in page
table) which have implicit semantic on path states could also
be used as trigger conditions, causing false alarms although
specified trigger condition is not detected. (3) Path output:
semantic exceptional cases can cause false positives. For ex-
ample, the output of a fast path can be checked internally
in the fast path and completely skipped in its caller func-
tion. (4) Fault handler: most false positives are caused by
the faults being handled by low-level functions. (5) Assis-
tant data structure: for some data structures which are asyn-

Table 7. List of new bugs discovered by PALLAS. The first three columns show software systems, file names, and fast-path
functions in which the bugs are identified. MM: virtual memory manager; FS: file systems; NET: network; DEV: device drivers;
WB: Chromium web browser; MOB: Android kernel; SDN: Open vSwitch. The fourth column lists error types, including path
state (S), fault handling (F), path conditions (C), path output (O), and assistant data structures (D). The fifth column describes
the potential consequences of the bugs. And the last column shows the latent period2 of the bugs.

Software File Fast path operation Error Consequence Years
MM slab.c Allocate w/ local pages [F] missing handler System crash 6.5

FS
uptodate.c Insert metadata buffer to cache w/o resizing [O] missing log output Inconsistency 2.2
uptodate.c Insert new buffer to cache w/o resizing [F] missing handler System crash 6.1
xfs ialloc.c Allocate an inode using the free inode btree [O] wrong output Inconsistency 2.2

NET
af unix.c Send page data w/ socket [C] incorrect order Regression 1.1
tcp ipv4.c Get first established socket w/o a lock [O] wrong lock state Deadlock 8.4
udp.c Send msgs w/o a lock for non-corking case [O] wrong output Wrong result 5.4

DEV

cl page.c Find Luster page in cache [O] unexpected output System crash 3.2
hvc console.c Open w/ an existing port [F] skipping handler System crash 5.5
lov io.c I/O initialization when file is striped [C] missing condition Regression 3.2
mpt3sas base.c Send fast-path requests to firmware [D] suboptimal layout Regression 3.7
mpt3sas scsih.c Turn on fast path for IR physdisk [F] skipping handler System crash 2.9

WB

ppb nacl private impl.cc Download a file w/ PNaCl support [F] missing handler System crash N/A
ppb nacl private impl.cc Download a Nexe file w/ PNaCl support [F] unexpected output System crash N/A
task queue impl.cc Post delayed tasks w/o a lock [O] wrong return Wrong result N/A
task queue impl.cc Post delayed tasks w/o a lock [S] suboptimal layout Regression N/A
web url loader impl.cc Load URL w/ local data [F] missing handler System crash N/A
wts terminal monitor.cc Get session id w/ physical console [O] wrong return Wrong result N/A
ScriptValueSerializer.cpp Write ASCII strings [F] missing handler Inconsistency N/A
GraphicsContext.cpp Draw w/ Shader [F] missing handler System crash N/A
PartitionAlloc.cpp Allocate pages in the active-page list [F] wrong handler Wrong result N/A

MOB

cpufreq-set.c Modify only one value of a policy [O] wrong output Wrong result 4.6
macvtap.c Pin user pages in memory [F] missing handler System crash 4.7
mempolicy.c Allocate a page w/ a default policy [S] wrong state Memory leak 2.1
mempolicy.c Allocate a page w/ a default policy [C] incorrect order Regression 2.1
namei.c Lookup inode w/o a lock [O] unexpected state Inconsistency 0.8
namespace.c Unmount file systems w/o a lock [C] skipping slow path System crash 2.7
page alloc.c Get a page from freelist [S] immutable state Wrong result 0.8
skbuff.c Reallocate when a skb has a single reference [C] wrong condition Memory leak 1.9
xfs mount.c Modify a counter if it is in use [F] missing handler Inconsistency 2.3

SDN

dpif-netdev.c Process in defined fast path [C] incorrect order Regression 2.8
ip6 output.c Create fragments for not cloned skb [C] incomplete Regression 0.5
netdevice.c Calculate header offset in fast path [F] missing handler System crash 0.5
vxlan.c Calculate header offset in fast path [F] missing handler System crash 0.5

chronously or lazily updated for better performance, the un-
coordinated updates are allowed. To further reduce the false
positive number, users can specify more semantic informa-
tion as they check their developed fast paths.

6. Discussion and Limitations
Although PALLAS can detect many fast-path bugs across
various software systems with simple and generic approaches,
the toolkit still has limitations that require care .

2 The latent period for bugs in Chromium is not available in its patch
tracking system.

Fast path bug study: In this paper, we studied 172 fast-
path bugs from four subsystems in the Linux kernel. As
discussed in [48], the size of our study set would be large
enough to represent the entire population, according to Cen-
tral Limit Theorem. The distribution of fast-path bugs in the
Linux kernel may not represent the distribution patterns in
other software systems, however investigating the bug dis-
tribution is not our main focus. The goal of our study is to
identify the plausible root causes of fast-path bugs. We built
the toolkit PALLAS based on these identified causes, and ap-
plied it to detect fast-path bugs in other software systems
such as web browsers and mobile operating systems. The re-

Table 8. Completeness of PALLAS’ results. The first two
columns show bug source and causes, respectively. The third
column shows the ratio of detected bugs (D) and the total
number of bugs for verification (T).

Bug Source Bug Causes D/T

Path State
Overwriting immutable variables 4/4
Correlated variables 6/6
Uninitialized immutable variables 2/2

Trigger
Condition

Missing condition checking 8/8
Incomplete implementation 8/8
Incorrect order of checking 2/2

Path Output
Unexpected output *5/6
Mismatching output 8/8
Missing output checking 2/2

Fault Handling Missing fault handler 8/8

Assistant Data
Structure

Suboptimal organization 6/6
Stale value 2/2

sults testify that our findings on fast-path bugs are generic.
As more causes are identified, more bugs would be found
with our approach.

Static analysis rules: The rules used in PALLAS are
extracted from our fast-path bug study. We only extracted
the rules that can be executed with static analysis, as we
believe fast-path bugs exist in a variety of software systems,
and a generic approach for discovering bugs is desirable. Our
study is also useful for building other bug-finding tools such
as model checkers, though how to apply these findings in
building model checkers is outside of the scope of this paper.

Simplicity and generality: We would like to emphasize
that the main goal of building PALLAS in this paper is to
demonstrate the power of detecting fast-path bugs with sim-
ple and generic approaches. When a fast path is developed,
developers and testers only need to write a few lines of code
to specify the simple semantic knowledge (e.g., the variables
that should be immutable) through the protocols in PALLAS.
During our evaluation, the time we spent on fulfilling the
protocols is little (although it is hard to quantify) after un-
derstanding each fast path. We believe the actual developers
will take less effort because they have a deeper understand-
ing of the code as they implement the fast path.

7. Related Work
Fast path and code specialization: Code specialization [28,
41] which was proposed decades ago, is sharing the same
spirit of fast path: optimizing parts of a program for common
cases with specialized code. It required associated guards
(e.g., type guard and memory guard) to check and verify
whether the specialized code is executed following the pre-
defined logics. These guards still suffer from bugs as the tar-
get system becomes complicated (e.g., memory manager).
In practice, these guards are only implemented in special
systems such as seL4 [16], Ironclad [11], Recon [7], CO-

GENT [1] which have end-to-end proof and verification of
implementation correctness. In general, for systems such as
the Linux kernel, web browser and mobile OS which care
about performance and ease of development, there is no ver-
ification framework to validate the implementation correct-
ness of their fast paths and specialized code.

Bug and patch characterization study: Bug and patch
characterization studies provide patterns and insights for de-
veloping effective bug-finding tools. The general approaches
used in our study follow the methods discussed in prior
bug and patch studies on the Linux memory manager [13],
file systems [24], distributed systems [10], concurrency
bugs [20, 26], etc. Our study focuses on fast-path bugs in
a variety of software systems, including memory manager,
file systems, network and device drivers. Moreover, a code
comparison tool is built in our study to help us quickly nar-
row down the search scope for bugs’ root causes, based on
the observation that a fast path is usually derived from a
slow path. Our findings inspire us to build a semantics-aware
static analysis tool, and we believe our study is also useful
for building other relevant tools.

Model Checking To detect semantic bugs, model check-
ing has been proven to be an effective approach in prior
work [19, 46, 47]. Markey et al. [27] specifically discussed
the model checking techniques for a program path, however,
a naive model checking could traverse a great number of
possible paths [18], and a model checker requires specific
models for specific systems [5], making the model check-
ing approach less attractive for detecting fast-path bugs. In
our paper, we extract basic and simple rules from our find-
ings and apply them into static analysis to build a simple,
generic and systematic toolkit to detect fast-path bugs for
many kinds of software systems.

8. Conclusions
In this paper, we present the fast-path bugs and conduct a
thorough study on them across a variety of representative
subsystems in the Linux kernel. We find that many of these
deep semantic bugs can be pinpointed with static analysis.
We extract a set of rules based on our findings, and build
a semantic-aware checking tool PALLAS. PALLAS is sim-
ple and powerful and can be applied to different kinds of
software systems beyond the Linux kernel. After applying
PALLAS to popular software like web browser, mobile OS
and software-defined networking system, we detect 155 new
fast-path bugs.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful comments and feedback. We also thank Moinuddin
K. Qureshi for the discussions on this work. This research
was supported in part by NSF ACI-1565338 and WSUV
Research Grant.

References
[1] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,

L. O’Connor, J. Beeren, Y. Nagashima, J. Lim, T. Sewell,
J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser. CO-
GENT: Verifying High-Assurance File System Implementa-
tions. In ASPLOS’16, Atlanta, GA, Apr. 2016.

[2] Android Open Source Project.
https://source.android.com/index.html.

[3] Chromium: An Open-Source Browser Project.
https://www.chromium.org/Home.

[4] clang: a C language family frontend for LLVM.
http://clang.llvm.org/.

[5] D. Engler and M. Musuvathi. Static Analysis Versus Software
Model Checking for Bug Finding. In VMCAI’04, 2004.

[6] Fast Path.
https://en.wikipedia.org/wiki/Fast_path.

[7] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin,
A. Goel, and A. D. Brown. Recon: Verifying file system con-
sistency at runtime. Trans. Storage, 8(4), Dec. 2012.

[8] fs: Remove i cindex from struct inode.
https://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/drivers?id=

9fd5746fd3d7838bf6ff991d50f1257057d1156f.

[9] H. S. Gunawi, C. Rubio-Gonzalez, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and B. Liblit. EIO: Error Handling
is Occasionally Correct. In FAST’08, 2008.

[10] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-
anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F.
Lukman, V. Martin, and A. D. Satria. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In
SOCC’14, Seattle, WA, Nov. 2014.

[11] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-End Security
via Automated Full-System Verification. In OSDI’14, Broom-
field, CO, Oct. 2014.

[12] J. Huang, X. Zhang, and K. Schwan. Understanding Is-
sue Correlations: A Case Study of the Hadoop System. In
SOCC’15, Kohala Coast, HI, Aug. 2015.

[13] J. Huang, M. K. Qureshi, and K. Schwan. An Evolutionary
Study of Linux Memory Management for Fun and Profit. In
USENIX ATC’16, Denver, CO, June 2016.

[14] A. Hunter. A Brief Introduction to the Design of UBIFS.
Technical Report.

[15] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast Track: A
Software System for Speculative Program Optimization. In
CGO’09, Seattle, WA, Mar. 2009.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolan-
ski, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal Veri-
fication of an OS Kernel. In SOSP’09, Big Sky, Montana, Oct.
2009.

[17] A. Kogan and E. Petrank. A Methodology for Creating
Fast Wait-Free Data Structures. In PPoPP’12, New Orleans,
Louisiana, USA, Feb. 2012.

[18] L. Kuhtz. Model Checking Finite Paths and Trees. PhD thesis,
Saarland University, 2010.

[19] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and
H. S. Gunawi. SAMC: Semantic-Aware Model Checking for
Fast Discovery of Deep Bugs in Cloud Systems. In OSDI’14,
Broomfield, CO, Oct. 2014.

[20] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gu-
nawi. TaxDC: A Taxonomy of Non-Deterministic Concur-
rency Bugs in Datacenter Distributed Systems. In ASP-
LOS’16, Atlanta, GA, Apr. 2016.

[21] D. Lie, A. Chou, D. Engler, and D. L. Dill. A Simple Method
for Extracting Models from Protocol Code. In ISCA’01, 2001.

[22] T. A. Limoncelli and D. Hughe. LISA’11 Theme – DevOps:
New Challenges, Proven Values. USENIX; login:, 36(4), Aug.
2011.

[23] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden,
K. Birman, and R. Constable. Building Reliable, High-
Performance Communication Systems from Components. In
SOSP’99, Kiawah Island, SC, Dec. 1999.

[24] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Lu. A Study of Linux File System Evolution. In FAST’13,
Feb. 2013.

[25] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. MUVI: Automatically Inferring Multi-Variable Ac-
cess Correlations and Detecting Related Semantic and Con-
currency Bugs. In SOSP’07, stevenson, Washington, Oct.
2007.

[26] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes
- A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS’08, Seattle, WA, Mar. 2008.

[27] N. Markey and P. Schnoebelen. Model Checking a Path.
Technical Report, 2003.

[28] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic,
A. Goel, and P. Wagle. Specialization Tools and Techniques
for Systematic Optimization of System Software. ACM Trans-
actions on Computer Systems, 19(2).

[29] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-
checking Semantic Correctness: The Case of Finding File
System Bugs. In SOSP’15, Monterey, CA, Oct. 2015.

[30] mm: page alloc: spill to remote nodes before waking kswapd.
https://git.kernel.org/cgit/linux/kernel/git/

torvalds/linux.git/commit/mm/page_alloc.c?id=

3a025760fc158b3726eac89ee95d7f29599e9dfa.

[31] mm:fix deferred congestion timeout if preferred zone is not
allowed.
https://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/?id=

f33261d75b88f55a08e6a9648cef73509979bfba.

[32] mm/memcontrol.c: fix uninitialized variable use in
mem cgroup move parent().
https://git.kernel.org/cgit/linux/kernel/git/

torvalds/linux.git/commit/mm/memcontrol.c?id=

8dba474f034c322d96ada39cb20cac711d80dcb2.

[33] D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In OSDI’96, Oct. 1996.

https://source.android.com/index.html
https://www.chromium.org/Home
http://clang.llvm.org/
https://en.wikipedia.org/wiki/Fast_path
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers?id=9fd5746fd3d7838bf6ff991d50f1257057d1156f
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers?id=9fd5746fd3d7838bf6ff991d50f1257057d1156f
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers?id=9fd5746fd3d7838bf6ff991d50f1257057d1156f
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/page_alloc.c?id=3a025760fc158b3726eac89ee95d7f29599e9dfa
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/page_alloc.c?id=3a025760fc158b3726eac89ee95d7f29599e9dfa
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/page_alloc.c?id=3a025760fc158b3726eac89ee95d7f29599e9dfa
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f33261d75b88f55a08e6a9648cef73509979bfba
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f33261d75b88f55a08e6a9648cef73509979bfba
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f33261d75b88f55a08e6a9648cef73509979bfba
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/memcontrol.c?id=8dba474f034c322d96ada39cb20cac711d80dcb2
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/memcontrol.c?id=8dba474f034c322d96ada39cb20cac711d80dcb2
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/memcontrol.c?id=8dba474f034c322d96ada39cb20cac711d80dcb2

[34] net: Check rps flow table when RPS map length is 1.
https://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/net?id=

8587523640441a9ff2564ebc6efeb39497ad6709.

[35] net: tcp: add key management to congestion control.
https://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/net?id=

c5c6a8ab45ec0f18733afb4aaade0d4a139d80b3.

[36] nfsd/create race fixes, infrastructure.
http://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/fs/inode.c?id=

261bca86ed4f7f391d1938167624e78da61dcc6b.

[37] OCFS2 - Oracle Cluster File System for Linux.
http://www.oracle.com/us/technologies/linux/

025995.htm.

[38] ocfs2: fix disk file size and memory file size mismatch.
https://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/fs?id=

ce170828e24959c69e7a40364731edc0535c550f.

[39] P. Olivier, J. Boukhobza, and E. Senn. On Benchmarking
Embedded Linux Flash File Systems. Technical Report.

[40] Production Quality, Multilayer Open Virtual Switch.
http://openvswitch.org/.

[41] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang. Optimistic Incremen-

tal Specialization: Streamlining a Commercial Operating Sys-
tem. In SOSP’95, CO, USA, Dec. 1995.

[42] slub: Add frozen check in slab alloc.
http://git.kernel.org/cgit/linux/kernel/

git/torvalds/linux.git/commit/mm/slub.c?id=

507effeaba29bf724dfe38317fbd11d0fe25fa40.

[43] tcp: Fix slab corruption with ipv6 and tcp6fuzz.
http://git.kernel.org/cgit/linux/kernel/git/

torvalds/linux.git/commit/net/ipv4/tcp_input.

c?id=9ae27e0adbf471c7a6b80102e38e1d5a346b3b38.

[44] Transmission Control Protocol.
https://tools.ietf.org/html/rfc793.

[45] W. Xu, S. Kumar, and K. Li. Fast Paths in Concurrent Pro-
grams. In PACT’04, 2004.

[46] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
Model Checking to Find Serious File System Errors. In
OSDI’04, San Francisco, CA, Dec. 2004.

[47] J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errors.
In OSDI’06, Seattle, WA, Nov. 2006.

[48] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,
Y. Zhang, P. U. Jain, and M. Stumm. Simple Testing Can
Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-Intensive Systems. In OSDI’14,
Broomfield, CO, Oct. 2014.

 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=8587523640441a9ff2564ebc6efeb39497ad6709
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=8587523640441a9ff2564ebc6efeb39497ad6709
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=8587523640441a9ff2564ebc6efeb39497ad6709
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=c5c6a8ab45ec0f18733afb4aaade0d4a139d80b3
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=c5c6a8ab45ec0f18733afb4aaade0d4a139d80b3
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net?id=c5c6a8ab45ec0f18733afb4aaade0d4a139d80b3
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs/inode.c?id=261bca86ed4f7f391d1938167624e78da61dcc6b
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs/inode.c?id=261bca86ed4f7f391d1938167624e78da61dcc6b
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs/inode.c?id=261bca86ed4f7f391d1938167624e78da61dcc6b
 http://www.oracle.com/us/technologies/linux/025995.htm
 http://www.oracle.com/us/technologies/linux/025995.htm
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs?id=ce170828e24959c69e7a40364731edc0535c550f
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs?id=ce170828e24959c69e7a40364731edc0535c550f
 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/fs?id=ce170828e24959c69e7a40364731edc0535c550f
 http://openvswitch.org/
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/slub.c?id=507effeaba29bf724dfe38317fbd11d0fe25fa40
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/slub.c?id=507effeaba29bf724dfe38317fbd11d0fe25fa40
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/mm/slub.c?id=507effeaba29bf724dfe38317fbd11d0fe25fa40
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net/ipv4/tcp_input.c?id=9ae27e0adbf471c7a6b80102e38e1d5a346b3b38
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net/ipv4/tcp_input.c?id=9ae27e0adbf471c7a6b80102e38e1d5a346b3b38
 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/net/ipv4/tcp_input.c?id=9ae27e0adbf471c7a6b80102e38e1d5a346b3b38
https://tools.ietf.org/html/rfc793

	Introduction
	Motivating Examples
	Page Allocation in Virtual Memory Manager
	File Write in UBIFS
	Packet Receiving in the TCP/IP Stack

	Characterization Study on Fast-Path Bugs
	Methodology
	Path State
	Trigger Condition
	Path Output
	Fault Handling
	Assistant Data Structure

	Implementation
	Evaluation
	New Fast Path Bugs
	Completeness
	False Positives

	Discussion and Limitations
	Related Work
	Conclusions

