
This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST ’17).
February 27–March 2, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-36-2

Open access to the Proceedings of
the 15th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

FlashBlox: Achieving Both Performance Isolation
and Uniform Lifetime for Virtualized SSDs

Jian Huang, Georgia Institute of Technology; Anirudh Badam, Laura Caulfield,
Suman Nath, Sudipta Sengupta, and Bikash Sharma, Microsoft; Moinuddin K. Qureshi,

Georgia Institute of Technology

https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang

FlashBlox: Achieving Both Performance Isolation
and Uniform Lifetime for Virtualized SSDs

Jian Huang† Anirudh Badam Laura Caulfield

Suman Nath Sudipta Sengupta Bikash Sharma Moinuddin K.Qureshi†

†Georgia Institute of Technology Microsoft

Abstract
A longstanding goal of SSD virtualization has been to
provide performance isolation between multiple tenants
sharing the device. Virtualizing SSDs, however, has tra-
ditionally been a challenge because of the fundamental
tussle between resource isolation and the lifetime of the
device – existing SSDs aim to uniformly age all the re-
gions of flash and this hurts isolation. We propose uti-
lizing flash parallelism to improve isolation between vir-
tual SSDs by running them on dedicated channels and
dies. Furthermore, we offer a complete solution by also
managing the wear. We propose allowing the wear of dif-
ferent channels and dies to diverge at fine time granular-
ities in favor of isolation and adjusting that imbalance at
a coarse time granularity in a principled manner. Our ex-
periments show that the new SSD wears uniformly while
the 99th percentile latencies of storage operations in a
variety of multi-tenant settings are reduced by up to 3.1x
compared to software isolated virtual SSDs.

1 Introduction
SSDs have become indispensable for large-scale cloud
services as their cost is fast approaching to that of HDDs.
They out-perform HDDs by orders of magnitude, provid-
ing up to 5000x more IOPS, at 1% of the latency [21].
The rapidly shrinking process technology has allowed
SSDs to boost their bandwidth and capacity by increas-
ing the number of chips. However, the limitations of
SSDs’ management algorithms have hindered these par-
allelism trends from efficiently supporting multiple ten-
ants on the same SSD.

Tail latency of SSDs in multi-tenant settings is one
such limitation. Cloud storage and database systems
have started colocating multiple tenants on the same
SSDs [14, 58, 79] which further exacerbates the already
well known tail latency problem of SSDs [25, 26, 60, 78].

The cause of tail latency is the set of complex flash
management algorithms in the SSD’s controller, called
the Flash Translation Layer (FTL). The fundamental
goals of these algorithms are decades-old and were

meant for an age when SSDs had limited capacity and lit-
tle parallelism. The goals were meant to hide the idiosyn-
crasies of flash behind a layer of indirection and expose
a block interface. These algorithms, however, conflate
wear leveling (to address flash’s limited lifetime) and re-
source utilization (to exploit parallelism) which increases
interference between tenants sharing an SSD.

While application-level flash-awareness [31, 36, 37,
51, 75] improves throughput by efficiently leveraging the
device level parallelism, these optimizations do not di-
rectly help reduce the interference between multiple ten-
ants sharing an SSD. These tenants cannot effectively
leverage flash parallelism for isolation even when they
are individually flash-friendly because FTLs hide the
parallelism. Newer SSD interfaces [38, 49] that pro-
pose exposing raw parallelism directly to higher layers
provide more flexibility in obtaining isolation for tenants
but they complicate the implementation of wear-leveling
mechanisms across the different units of parallelism.

In this work, we propose leveraging the inherent par-
allelism present in today’s SSDs to increase isolation be-
tween multiple tenants sharing an SSD. We propose cre-
ating virtual SSDs that are pinned to a dedicated num-
ber of channels and dies depending on the capacity and
performance needs of the tenant. The fact that the chan-
nels and dies can be more or less operated upon indepen-
dently helps such virtual SSDs avoid adverse impacts on
each other’s performance. However, different workloads
can write at different rates and in different patterns, this
could age the channels and dies at different rates. For
instance, a channel pinned to a TPC-C database instance
wears out 12x faster than a channel pinned to a TPC-
E database instance, reducing the SSD lifetime dramat-
ically. This non-uniform aging creates an unpredictable
SSD lifetime behavior that complicates both provision-
ing and load-balancing aspects of data center clusters.

To address this problem, we propose a two-part wear-
leveling model which balances wear within each virtual
SSD and across virtual SSDs using separate strategies.
Intra-virtual SSD wear is managed by leveraging exist-
ing SSD wear-balancing mechanisms while inter-virtual

USENIX Association 15th USENIX Conference on File and Storage Technologies 375

100 105 110 115 120 125

Time (seconds)

0
100
200
300
400
500
600
700

B
an

dw
id

th
 (M

B
/s

ec
)

Instance-1-read
Instance-2-write
Instance-3-read

Instance-4-write

(a) Software Isolated Instances

100 105 110 115 120 125

Time (seconds)

0
100
200
300
400
500
600
700

B
an

dw
id

th
 (M

B
/s

ec
)

Instance-1-read
Instance-2-write
Instance-3-read

Instance-4-write

(b) Hardware Isolated Instances

Software
Isolated

Hardware
Isolated

0
5

10
15
20
25
30
35
40
45

La
te

nc
y

(m
ill

is
ec

s) Instance-1-read
Instance-2-write
Instance-3-read
Instance-4-write

(c) 99th Percentile Latency

Software
Isolated

Hardware
Isolated

0

5

10

15

20

Av
g.

 N
um

be
r

of
 B

lo
ck

s
E

ra
se

d
Pe

r
Se

co
nd CH-1

CH-2
CH-3
CH-4

CH-5
CH-6
CH-7
CH-8

(d) Wear Leveling

Figure 1: Tenants sharing an SSD get better bandwidth (compare (a) vs. (b)) and tail latency as shown in (c) when
using new hardware isolation. However, dedicating channels to tenants can lead to wear-imbalance between the various
channels as shown in (d). Note that the number of blocks erased in the first, fourth and fifth channels is close to zero
because they host workloads with only read operations. This imbalance of write bandwidth across different workloads
creates wear-imbalance across channels. A new design for addressing such a wear-imbalance is proposed in this paper.

SSD wear is balanced at coarse-time granularities to re-
duce interference by using new mechanisms. We con-
trol the wear imbalance between virtual SSDs using a
mathematical model and show that the new wear-leveling
model ensures near-ideal lifetime for the SSD with neg-
ligible disruption to tenants. More specifically, this work
makes the following contributions:

• We present a system named FlashBlox using which
tenants can share an SSD with minimal interference
by working on dedicated channels and dies.

• We present a new wear-leveling mechanism that al-
lows measured amounts of wear imbalance to obtain
better performance isolation between such tenants.

• We present an analytical model and a system that
control the wear imbalance between channels and
dies, so that they age uniformly with negligible in-
terruption to the tenants.

We design and implement FlashBlox and its new wear-
leveling mechanisms inside an open-channel SSD stack
(from CNEX labs [18]), and demonstrate benefits for a
Microsoft data centers’ multi-tenant storage workloads:
the new SSD delivers up to 1.6x better throughput and
reduces the 99th percentile latency by up to 3.1x. Fur-
thermore, our wear leveling mechanism provides 95% of
the ideal SSD lifetime even in the presence of adversar-
ial write workloads that execute all the writes on a single
channel while only reading on other channels.

The rest of this paper is organized as follows: § 2
presents the challenges that we address in this work. De-
sign and implementation of FlashBlox are described in
§ 3. Evaluation results are shown in § 4. § 5 presents the
related work. We present the conclusions in § 6.

2 SSD Virtualization: Opportunity
and Challenges

Premium storage Infrastructure-as-a-Service (IaaS) of-
ferings [4, 7, 22], persistent Platform-as-a-Service
(PaaS) systems [8] and Database-as-a-Service (DaaS)
systems [2, 5, 9, 23] need SSDs to meet their service
level objectives (SLO) that are usually outside the scope

of HDD performance. For example, DocDB [5] guaran-
tees 250, 1,000 and 2,500 queries per second respectively
for the S1, S2 and S3 offerings [6].

Storage virtualization helps such services make effi-
cient use of SSDs’ high capacity and performance by
slicing resources among multiple customers or instances.
Typical database instances in DaaS systems are 10 GB –
1 TB [6, 10] whereas each server can have more than 20
TB of SSD capacity today.

Bandwidth, IOPS [48, 56] or a convex combination
of both [57, 74] is limited on a per-instance basis using
token bucket rate limiters or intelligent IO throttling [41,
59, 66] to meet SLOs. However, there is no analogous
mechanism for sharing the SSD while maintaining low
IO tail latency – an instance’s latency still depends on
the foreground reads/writes [25, 42, 73] and background
garbage collection [34] of other instances.

Moreover, it is becoming increasingly necessary to co-
locate diverse workloads (e.g. latency-critical applica-
tions and batch processing jobs), to improve resource uti-
lization, while maintaining isolation [33, 42]. Virtualiza-
tion and container technologies are evolving to exploit
hardware isolation of memory [11, 47], CPU [16, 40],
caches [28, 52], and networks [30, 72] to support such
scenarios. We extend this line of research to SSDs by
providing hardware-isolated SSDs, complete with a so-
lution for the wear-imbalance problem that arises due to
the physical flash partitioning across tenants with diverse
workloads.

2.1 Hardware Isolation vs. Wear-Leveling
To understand this problem, we compare the two differ-
ent approaches to sharing hardware. The first approach
stripes data from all the workloads across all the flash
channels (eight total), just as existing SSDs do. This
scheme provides the maximum throughput for each IO,
and uses the software rate limiter which has been used
for Linux containers and Docker [12, 13] to implement
weighted fair sharing of the resources (the scenario for
Figure 1(a)). Note that instances in the software-isolated
case do not share physical flash blocks with other colo-
cated instances. This eliminates the interference due to

376 15th USENIX Conference on File and Storage Technologies USENIX Association

Flash
Channel

Die

P
la
n
e

…

P
la
n
e

Die

P
la
n
e

…

P
la
n
e

……

Channel

Die

P
la
n
e

…

P
la
n
e

Die

P
la
n
e

…

P
la
n
e

…………

Figure 2: SSD Architecture: Internal parallelism in SSDs
creates opportunities for hardware-level isolation.

garbage collection in one instance affecting another in-
stance’s read performance [34]. The second approach
uses a configuration from our proposed mechanism that
provides the hardware isolation by assigning a certain
number of channels to each instance (the scenario for
Figure 1(b)).

In both scenarios, there are four IO-intensive work-
loads. These workloads request 1/8th, 1/4th, 1/4th and
3/8th of the shared storage resource. The rate limiter
uses these as weights in the first approach, while Flash-
Blox assigns 1, 2, 2 and 3 channels respectively. Work-
loads 2 and 4 perform 100% writes and workloads 1 and
3 perform 100% reads. All workloads issue sequentially-
addressed and aligned 64 KB IOs.

Hardware isolation not only reduces the 99th per-
centile latencies by up to 1.7x (Figure 1(c)), but also in-
creases the aggregate throughput by up to 10.8% com-
pared to software isolation. However, pinning instances
to channels prevents the hardware from automatically
leveling the wear across all the channels, as shown in
Figure 1(d). We exaggerate the variance of write rates
to better motivate the problem of wear-imbalance that
stems from hardware-isolation of virtual SSDs. Later in
the paper, we will use applications’ typical write rates
(see Figure 5) to design our final solution. To moti-
vate the problem further, we must first explore the par-
allelism available in SSD hardware, and the aspects of
FTLs which cause interference in the first approach.

2.2 Leveraging Parallelism for Isolation
Typical SSDs organize their flash array into a hierar-
chy of channels, dies, planes, blocks and pages [1, 17].
As shown in Figure 2, each SSD has multiple channels,
each channel has multiple dies, and each die has mul-
tiple planes. The number of channels, dies and planes
varies by vendor and generation. Typically, there are 2 -
4 planes per die, 4 - 8 dies per channel, and 8 - 32 chan-
nels per drive. Each plane is composed of thousands of
blocks (typically 4-9MB) and each block contains 128-
256 pages.

This architecture plays an important role in defining
isolation boundaries. Channels, which share only the re-
sources common to the whole SSD, provide the strongest
isolation. Dies execute their commands with complete
independence, but they must share a bus with other dies
on the same channel. Planes’ isolation is limited because
the die contains only one address buffer. The controller

may isolate data to different planes, but operations on
these data must happen at different times or to the same
address on each plane in a die [32].

In current drives, none of this flexibility is exposed to
the host. Drives instead optimize for a single IO pat-
tern: extremely large or sequential IO. The FTL logically
groups all planes into one large unit, creating “super-
pages” and “super-blocks” are hundreds of times larger
than their base unit. For example, a drive with 4MB
blocks and 256 planes has a 1GB super-block.

Striping increases the throughput of large, sequential
IOs, but introduces the negative side effect of interfer-
ence between multiple tenants sharing the drive. As all
data is striped, every tenant’s reads, writes and erases can
potentially conflict with every other tenant’s operations.

Previous work had proposed novel techniques to help
tenants place their data such that underlying flash pages
are allocated from separate blocks. This helps improve
performance by reducing the write amplification factor
(WAF) [34]. Lack of block sharing has the desirable side
effect of clumping garbage into fewer blocks, leading to
more efficient garbage collection (GC), thereby reducing
tail latency of SSDs [25, 42, 43, 73].

However, significant interference still exists between
tenants because when data is striped, every tenant uses
every channel, die and plane for storing data and the
storage operations of one tenant can delay other tenants.
Software isolation techniques [57, 67, 68] split the the
SSD’s resources fairly. However, they cannot maximally
utilize the flash parallelism when resource contention ex-
ists at a layer below because of the forced sharing of in-
dependent resources such as channels, dies and planes.

New SSD designs, such as open-channel SSDs that ex-
plicitly expose channels, dies and planes to the operating
system [44, 38, 49], can help tenants who share an SSD
avoid some of these pitfalls by using dedicated channels.
However, the wear imbalance problem between chan-
nels that ensues from different tenants writing at different
rates remains unsolved. We propose a holistic approach
to solve this problem by exposing flash channels and dies
as virtual SSDs, while the system underneath wear-levels
within each vSSD and balances the wear across channels
and dies at coarse time granularities.

FlashBlox is concerned only with sharing of the re-
sources within a single NVMe SSD. Fair sharing mech-
anisms that split PCIe bus bandwidth across multiple
NVMe devices, network interface cards, graphic pro-
cessing units and other PCIe devices is beyond the scope
of this work.

3 Design and Implementation
Figure 3 shows the FlashBlox architecture. At a high
level, FlashBlox consists of the following three compo-
nents: (1) A resource manager that allows tenants to al-

USENIX Association 15th USENIX Conference on File and Storage Technologies 377

App

Virtual SSD

Intra virtual

SSD wear

leveling

Intra virtual

SSD wear

leveling

… …

App

Host-level

Flash

Manager

Flash

App

Virtual SSD

Virtual SSD to Channel/Die/Plane Mappings

(Enables Hardware Isolation with Flash-level Parallelism)

Resource

Manager

…

SSD-Level

Flash

Manager

Inter virtual SSD

wear-leveling with

migration

Other FTL

Algorithms

…

Figure 3: The system architecture of FlashBlox.

Table 1: Virtual SSD types supported in FlashBlox.
Virtual SSD Type Isolation Level Alloc. Granularity
Channel Isolated vSSD (§ 3.1) High Channel
Die Isolated vSSD (§ 3.2) Medium Die
Software Isolated vSSD (§ 3.3) Low Plane/Block
Unisolated vSSD (§ 3.3) None Block/Page

locate and deallocate virtual SSDs (vSSD); (2) A host-
level flash manager that implements inter-vSSD wear-
levelling by balancing wear across channels and dies
at coarse time granularities; (3) An SSD-level flash
manager that implements intra-vSSD wear-levelling and
other FTL functionalities.

One of the key new abstractions provided by Flash-
Blox is that of a virtual SSD (vSSD) which can reduce
tail latency. It uses dedicated flash hardware resources
such as channels and dies that can be operated indepen-
dently from each other. The following API creates a
vSSD:
vssd t AllocVirtualSSD(int isolationLevel,

int tputLevel, size t capacity);

Instead of asking tenants to specify absolute numbers,
FlashBlox enables them to create different sizes and
types of vSSDs with different levels of isolation and
throughput (see Table 1). These parameters are compat-
ible with the performance and economic cost levels such
as the ones [3, 6] advertised in DaaS systems to ease us-
age and management. Tenants can scale up capacity by
creating multiple vSSDs of supported sizes just as it is
done in DaaS systems today. A vSSD is deallocated with
void DeallocVirtualSSD(vssd t vSSD).

Channels, dies and planes are used for providing dif-
ferent levels of performance isolation. This brings sig-
nificant performance benefits to multi-tenant scenarios
(details discussed in § 4.2) because they can be operated
independently from each other.

Higher levels of isolation have larger resource alloca-
tion granularities as channels are larger than dies. There-
fore, channel-granular allocations can have higher inter-
nal fragmentation compared to die-granular allocations.
However, this is less of a concern for FlashBlox’s design
for several reasons. First, a typical data center server
can house eight NVMe SSDs [46]. Therefore, the maxi-

FlashBlox SSD

Channel

vSSD_A vSSD_B

D
ie

vSSD_C vSSD_D vSSD_E vSSD_F

Soft-Plane for Software Isolated vSSD

Figure 4: A FlashBlox SSD: vSSD A and B use one and
two channels respectively. vSSD C and D use three dies
each. vSSD E, and F use three soft-planes each.

mum number of channel-isolated and die-isolated vSSDs
we can support is 128 and 1024 respectively using 16-
channel SSDs. Further, SSDs with 32 channels are on the
horizon which can double the number of vSSDs which
should be sufficient based on our conversations with the
service providers at Microsoft.

Second, the differentiated storage offerings of DaaS
systems [3, 6, 10] allow tenants to choose from a certain
fixed number of performance and capacity classes. This
allows the cloud provider to reduce complexity. In such
applications, the flexibility of dynamically changing ca-
pacity and IOPS is obtained by changing the number of
partitions dedicated to the application. FlashBlox’s de-
sign of bulk channel/die allocations aligns well with such
a model. Third, the differentiated isolation levels match
with the existing cost model for cloud storage platforms,
in which better services are subject to increased pricing.
This is a natural fit for FlashBlox where channels are
more expensive and performant than dies.

In DaaS systems, capacity is simply scaled up by cre-
ating new partitions. For instance in Amazon RDS and
Azure DocumentDB, applications scale capacity by in-
creasing the number of partitions. Each partition is of-
fered as a fixed unit containing a certain amount of stor-
age and IOPS (or application-relevant operations per sec-
ond). We designed FlashBlox for meeting the demands
of DaaS applications. Finally, hardware-isolated vSSDs
can coexist with software-isolated ones. For instance,
a few channels of each SSD can be used for provid-
ing traditional software-isolated SSDs whereby the cloud
provider further increases the number of differentiated
performance and isolation levels.

Beyond providing different levels of hardware isola-
tion, FlashBlox has to overcome the unbalanced wear-
leveling challenge to prolong the SSD lifetime. We de-
scribe the design of each vSSD type and its correspond-
ing wear-leveling mechanism respectively as follows.

3.1 Channel Isolated Virtual SSDs
A vSSD with high isolation receives its own dedicated
set of channels. For instance, the resource manager of an
SSD with 16 channels can host up to 16 channel-isolated
vSSDs, each containing one or more channels inaccessi-
ble to any other vSSD. Figure 4 illustrates vSSD A and
B that span one and two channels respectively.

378 15th USENIX Conference on File and Storage Technologies USENIX Association

YCSB-A
YCSB-B

YCSB-C
YCSB-D

YCSB-E
YCSB-F

Cloud Storage

Web Search

Web PageRank

MapReduce
TPCC

TATP
TPCB

TPCE
0
1
2
3
4
5

Av
g.

 #
B

lo
ck

s
 E

ra
se

d
/ S

ec

0.0002 0.001

Figure 5: The average rate at which flash blocks are
erased for various workloads, including NoSQL, SQL
and batch processing workloads.

3.1.1 Channel Allocation

The throughput level and target capacity determine
the number of channels allocated to a channel iso-
lated vSSD. To this end, FlashBlox allows the data
center/DaaS administrator to implement the size t
tputToChannel(int tputLevel) function that
maps between throughput levels and required num-
ber of channels. The number of channels allo-
cated to the vSSD is, therefore, the maximum of
tputToChannel(tputLevel) and dcapacity /
capacityPerChannele.

Within a vSSD, the system stripes data across its al-
located channels similar to traditional SSDs. This maxi-
mizes the peak throughput by operating on the channels
in parallel. Thus, the size of the super-block of vSSD A
in Figure 4 is half that of vSSD B. Pages within the
super-block are also striped across the channels similar
to existing physical SSDs.

The hardware-level isolation present between the
channels by virtue of hardware parallelism allows the
read, program and erase operations on one vSSD to
largely be unaffected by the operations on other vSSDs.
Such an isolation enables latency sensitive applications
to significantly reduce their tail latencies.

Compared to an SSD that stripes data from all appli-
cations across all channels, a vSSD (over fewer chan-
nels) delivers a portion of the SSD’s all-channel band-
width. Customers of DaaS systems are typically given
and charged for a fixed bandwidth/IOPS level, and soft-
ware rate-limiters actively keep their consumption in
check. Thus, there is no loss of opportunity for not pro-
viding the peak-bandwidth capabilities for every vSSD.

3.1.2 Unbalanced Wear-Leveling Challenge

A significant side effect of channel isolation is the risk
of uneven aging of the channels in the SSD as different
vSSDs may be written at different rates. Figure 5 shows
how various storage workloads erase blocks at different
rates indicating that channels pinned naively to vSSDs
will age at different rates if left unchecked.

Such uneven aging may exhaust a channel’s life long
before other channels fail. Premature death of even a
single channel would render significant capacity losses
(> 6% in our SSD). Furthermore, premature death of a
single channel leads to an opportunity loss of never be-

ing able to create a vSSD that spans all the 16 channels
for the rest of the server’s lifetime. Such an imbalance
in capability of servers represents lost opportunity costs
given that other components in the server such as CPU,
network and memory do not prematurely lose capabili-
ties. Furthermore, unpredictable changes in capabilities
also complicate the job of load-balancers which typically
assume uniform or predictably non-uniform (by design)
capabilities. Therefore, it is necessary to ensure that all
the channels are aging at the same rate.

3.1.3 Inter-Channel Wear-Leveling

To ensure uniform aging of all channels, FlashBlox uses
a simple yet effective wear-leveling scheme:

Periodically, the channel that has incurred the maxi-
mum wear thus far is swapped with the channel that has
the minimum rate of wear.

A channel’s wear rate is the average rate at which
it erased blocks since the last time the channel was
swapped. This prevents the most-aged channels from
seeing high wear rates, thus intuitively extending their
lifetime to match that of the other channels in the sys-
tem.

Our experiments with workload traces from Mi-
crosoft’s data center workloads show that such an ap-
proach works well in practice. We can ensure near-
perfect wear-leveling with this mechanism and a swap
frequency of once every few weeks. Furthermore, the
impact on tail-latency remains low during the 15-minute
migration period (see § 4.3.1). We analytically derive the
minimum necessary frequency in § 3.1.4 and present the
design of the migration mechanism in § 3.1.5.

3.1.4 Swap Frequency Analysis

Let σi denote the wear (total erase count of all the blocks
till date) of the ith channel. ξ = σmax/σavg denotes the
wear imbalance1 which must not exceed 1 + δ ; where
σmax = Max(σ1, ...,σN), σavg = Avg(σ1, ...,σN), N is the
total number of channels, and δ measures the imbalance.

When the device is new, it is obviously not possible
to ensure that ξ ≤ 1+ δ without aggressively swapping
channels. On the other hand, it must be brought within
bounds early in the lifetime of the server (L = 150–250
weeks typical) such that all the channels are available for
as much of the server’s lifetime as possible.

SSDs are provisioned with a target erase workload and
we analyze for the same – let’s say M erases per week.
We mathematically study the wear-imbalance vs. fre-
quency of migration (f) tradeoff and show that manage-

1The ratio of maximum to average is an effective way to quantify
imbalance [45]. This is especially true in our case, as the lifetime of
the new SSD is determined by the maximum wear of a single channel,
whereas the lifetime of ideal wear-leveling is determined by the aver-
age wear of all the channels. The ratio of maximum to average thus
represents the loss of lifetime due to imperfect wear leveling.

USENIX Association 15th USENIX Conference on File and Storage Technologies 379

able values of f can provide acceptable wear imbalance
where ξ comes below 1+δ after αL weeks, where α is
between 0 and 1.

The worst-case workload for FlashBlox is when all the
writes go to a single channel.2 The assumption that a
single channel’s bandwidth can handle the entire provi-
sioned bandwidth is valid for modern SSDs: most SSDs
are provisioned with 3,000-10,000 erases per cell to last
150–250 weeks. The provisioned erase rate for a 1TB
SSD is therefore M=21–116 MBPS, which is lower than
a channel’s erase bandwidth (typically 64–128MBPS).

For an SSD with N channels, the wear imbalance
of ideal wear-leveling is ξ = 1, while the worst case
workload for FlashBlox gives a ξ = N: σmax/σavg =
M ∗ time/(M ∗ time/N) = N before any swaps. A sim-
ple swap strategy of cycling the write workload through
the N channels (write workload spends 1/ f weeks per
channel) is analyzed. Let’s assume that after K rounds of
cycling through all the channels, KN/ f ≥ αL holds true
– that is αL weeks have elapsed and ξ has become less
than 1+ δ and continues to remain there. At that very
instant ξ equals 1. Therefore, σmax = MK and σavg =
MK, then after the next swap, σmax = MK +M and σavg
= MK +M/N. In order to guarantee that the imbalance
is always limited, we need:

ξ = σmax/σavg = (MK +M)/(MK +M/N) ≤ (1 + δ)

This implies K ≥ (N − 1− δ)/(Nδ) which is up-
per bounded by 1/δ . Therefore, to guarantee that ξ ≤
(1+δ), it is enough to swap NK = N/δ times in the first
αL weeks. This implies that, over a period of five years,
if α were 0.9 then a swap must be performed once ev-
ery 12 days (= 1/ f) for a δ = 0.1 (N = 16). Table 2
shows how the frequency of swaps increases with the
number of channels (shown as decreasing time period).
This also implies that 2

16
th

of the SSD is erased to per-
form the swap once every 12 days, which is negligible
compared to the 3,000–10,000 cycles that typical SSDs
have. However, for realistic workloads that do not have
such a skewed write pattern with a constant bandwidth,
swaps must be adaptively performed according to work-
load patterns (see Table 5) to reduce the number of swaps
needed while maintaining balanced wear.

3.1.5 Adaptive Migration Mechanism

We assume a constant write rate of M for analysis pur-
poses, but in reality writes are bursty. High write rates
must trigger frequent swaps while swapping may not be
needed as often during periods of low write rates. To
achieve this, FlashBlox maintains a counter per channel

2This worst-case is from a non-adversarial point of view. An adver-
sary could change the vSSD write bandwidth at runtime such that no
swapping strategy can keep up. But most data center workloads are not
adversarial and have predictable write patterns. We leave it to a security
watch dog to kill over-active workloads that are not on a whitelist.

Table 2: The frequency of swaps increases as the number
of channels increase to maintain balanced wear – swap
periods shown below for the SSD to last five years.

Number of Channels 8 16 32 64
Swap Period (days) 26 12 6 3

to represent the amount of space erased (MB) in each
channel since the last swap. Once one of the counters
goes beyond a certain threshold γ , a swap is performed,
and the counters are cleared. γ is set to the amount of
space erased if the channel experiences the worst-case
write workload between two swaps (i.e., M/ f).

The rationale behind this mechanism is that the chan-
nels must always be positioned in a manner to be able
to catch up in the worst-case. FlashBlox then swaps the
channels with σmax and λmin, where λi denotes the wear
rate of the ith channel and λmin = Min(λ1, ...,λN).

FlashBlox uses an atomic block-swap mechanism to
gradually migrate the candidate channels to their new lo-
cations without any application involvement. The mech-
anism uses an erase-block granular mapping table (de-
scribed in § 3.4) for each vSSD that is maintained in a
consistent and durable manner.

The migration happens in four steps. First, FlashBlox
stops and queues all of the in-flight read, program and
erase operations associated with the two erase-blocks be-
ing swapped. Second, the erase-blocks are read into a
memory buffer. Third, the erase-blocks are written to
their new locations. Fourth, the stopped operations are
then dequeued. Note that only the IO operations for the
swapping erase blocks in the vSSD are queued and de-
layed. The IO requests for other blocks are still issued
with higher priority to mitigate the migration overhead.

The migrations affect the throughput and latency of
the vSSDs involved. However, they are rare (happen less
than once in a month for real workloads) and take only
15 minutes to finish (see § 4.3.1).

As a future optimization, we wish to modify the DaaS
system to perform the read operations on other replicas to
further reduce the impact. For systems that perform reads
only on the primary replica, the migration can be staged
within a replica-set such that the replica that is currently
undergoing a vSSD migration is, if possible, first con-
verted into a backup. Such an optimization would reduce
the impact of migrations on the reads in applications that
are replicated.

3.2 Die-Isolated Virtual SSDs
For applications which can tolerate some interference
(i.e., medium isolation) such as the non-premium cloud
database offerings (e.g., Amazon’s small database in-
stance [3] and Azure’s standard database service [62]),
FlashBlox provides die-level isolation. The num-

380 15th USENIX Conference on File and Storage Technologies USENIX Association

ber of dies in such a vSSD is the maximum of
tputToDie(tputLevel) (defined by the adminis-
trator) and dcapacity / capacityPerDiee. Their
super-blocks and pages stripe across all the dies within
the vSSD to maximize throughput. Figure 4 illustrates
vSSD C, and D containing three dies each (vSSD D
has dies from different channels). These vSSDs, how-
ever, have weaker isolation guarantees since dies within
a channel must share a bus.

The wear-leveling mechanism has to track wear at the
die level as medium-level isolated vSSDs are pinned to
dies. Thus, we split the wear-leveling mechanism in
FlashBlox into two sub-mechanisms: channel level and
die level. The job of the channel-level wear-balancing
mechanism is to ensure that all the channels are aging at
roughly the same rate (see § 3.1). The job of the die-level
wear-balancing mechanism is to ensure that all the dies
within a channel are aging roughly at the same rate.

As shown in § 3.1.4, an N channel SSD has to swap at
least N/δ times to guarantee ξ ≤ (1+δ) within a target
time period. This analysis also holds true for dies within
a channel. For the SSDs today, in which each channel
has 4 dies, FlashBlox has to swap dies in each channel
40 times in the worst case during the course of the SSD’s
lifetime or once every month.

As an optimization, we leverage the channel-level mi-
gration to opportunistically achieve the goal of die-level
wear-leveling, based on the fact that dies have to mi-
grate along with the channel-level migration. During
each channel-level migration, the dies within the mi-
grated channels with the largest wear is swapped with the
dies that have the lowest write rate in the respective chan-
nels. Experiments with real workloads show that such a
simple optimization can effectively provide satisfactory
lifetime for SSDs (see § 4.3.2).

3.3 Software Isolated Virtual SSDs
For applications that have even lower requirements of
isolation like Azure’s basic database service [62], the
natural possibility of using plane level isolation arises.
However, planes within a die do not provide the same
level of flexibility as channels and dies with respect to
operating them independently from each other: Each die
allows operating either one plane at a time or all the
planes at the same address offset. Therefore, we use
an approach where all the planes are operated simultane-
ously but their bandwidth/IOPS is split using software.

Each die is split into four regions of equal size called
soft-planes by default, the size of each soft-plane is 4 GB
in FlashBlox (other configurations are also supported).
Planes are physical constructs inside a die. Soft-planes
however are simply obtained by striping data across all
the planes in the die. Further, each soft-plane in a die ob-
tains an equal share of the total number of blocks within a

die. They also receive fair share of bandwidth of the die.
The rationale behind this is to make it easier for data cen-
ter/PaaS administrator to map the throughput levels re-
quired from tenants to quantified numbers of soft-planes.

vSSDs created using soft-planes are otherwise indis-
tinguishable from traditional virtual SSDs where soft-
ware rate limiters are used to split an SSD across multiple
tenants. Similar to such settings, we use the state-of-the-
art token bucket rate-limiter [13, 67, 78] which has been
widely used for Linux containers and Docker [12] to im-
prove isolation and utilization at the same time. Our ac-
tual implementation is similar to the weighted fair-share
mechanisms in prior work [64]. In addition, separate
queues are used for enqueuing requests to each die.

The number of soft-planes used for creating these
vSSDs is determined similarly to the previous cases: as
the maximum of tputToSoftPlane(tputLevel)
and dcapacity / capacityPerSoftPlanee. Fig-
ure 4 illustrates vSSDs E and F that contain three soft-
planes each. The super-block used by such vSSDs is sim-
ply striped across all the soft-planes used by the vSSD.
We use such vSSDs as the baseline for our comparison
of channel and die isolated vSSDs.

The software mechanism allows the flash blocks of
each vSSD to be trimmed in isolation, which can reduce
the GC interference. However, it cannot address the sit-
uation where erase operations on one soft-planes occa-
sionally block all the operations of other soft-planes on
the shared die. Thus, such vSSDs can only provide soft-
ware isolation which is lower than die-level isolation.

Besides these isolated vSSDs, FlashBlox also supports
an unisolated vSSD model which is similar to software
isolated vSSD, but a fair sharing mechanism is not used
to isolate such vSSDs from each other. To guarantee the
fairness between vSSDs in today’s cloud platforms, soft-
ware isolated vSSDs are enabled by default in FlashBlox
to meet low isolation requirements.

For both software isolated and unisolated vSSDs, their
wear-balancing strategy is kept the same rather than
swapping soft-planes. The rationale for this is that isola-
tion between soft-planes of a die is provided using soft-
ware and not by pinning vSSDs to physical flash planes.
Therefore, a more traditional wear-leveling mechanism
of simply rotating blocks between soft-planes of a die
is sufficient to ensure that the soft-planes within a die
are all aging roughly at the same rate. We describe this
mechanism in more detail in the next section.

3.4 Intra Channel/Die Wear-Leveling
The goals of intra die wear-leveling are to ensure that
the blocks in each die are aging at the same rate while
enabling applications to access data efficiently by avoid-
ing the pitfalls of multiple indirection layers and redun-
dant functionalities across these layers [27, 35, 54, 77].

USENIX Association 15th USENIX Conference on File and Storage Technologies 381

Application Log

Device Level

Mapping

Other SSD Aspects

Fine-Granular

Log-Structured

Data Store

M

a

p

App

Address
Log

Address

Garbage

Collector &

Compactor

Erase-Block

Granular

FTL

M

a

p

Logical

Erase-Block

Address

Physical

Erase-Block

Address

Wear

Leveling

ECC, Energy Management & Bad Block Management

API: Read/Program Logical Page & Read/Erase Logical Erase-Block

API: Read/Program Physical Page & Read/Erase Physical Erase-Block

Figure 6: In FlashBlox, applications manage a fine-
granular log-structured data store and align compaction
units to erase-blocks. A device level indirection layer is
used to ensure all erase-blocks are aging at the same rate.

With both die-level (see § 3.3) and intra-die wear leveling
mechanisms, FlashBlox inevitably achieves the goal of
intra-channel wear-leveling as well: all the dies in each
channel and all the blocks in each die age uniformly.

The intra-die wear-leveling in FlashBlox is illustrated
in Figure 6. We leverage flash-friendly application or file
system logic to perform GC and compaction, and sim-
plify the device level mapping. We also leverage the
drive’s capabilities to manage bad blocks without hav-
ing to burden applications with error correction, detec-
tion and scrubbing. We base our design for intra-die
wear-levelling on existing open SSDs [27, 38, 49]. We
describe our specific design for completeness.

3.4.1 Application/Filesystem Level Log

The API of FlashBlox, as shown in Table 3, is designed
with log-structured systems in mind. The only restriction
it imposes is that the application or the file system per-
form the log-compaction at a granularity that is the same
as the underlying vSSD’s erase granularity.

When a FlashBlox based log-structured application
or a filesystem needs to clean an erase-block that con-
tains a live object (say O) then, (1) It first allocates a
new block via AllocBlock; (2) It reads object O via
ReadData; (3) It writes object O in to the new block
via WriteData; (4) It modifies its index to reflect the
new location of object O; (5) It frees the old block via
FreeBlock. Note that the newly allocated block still
has many pages that can be written to, which can be used
as the head of the log for writing live data from other
cleaned blocks or for writing new data.

FlashBlox does not assume that the log-structured sys-
tem frees all the allocated erase-blocks at the same rate.
Such a restriction would force the system to implement
a sequential log cleaner/compactor as opposed to tech-
niques that give weight to other aspects such as garbage
collection efficiency [37, 38]. Instead, FlashBlox ensures
uniform wear of erase-blocks at a lower level.

3.4.2 Device-Level Mapping

The job of the lower layers is to ensure: (1) that all erase-
blocks within a die are being erased at roughly the same

Table 3: FlashBlox API
vssd t AllocVirtualSSD(int isolationLevel, int
tputLevel, size t capacity)
/*Creates a virtual SSD*/
void DeallocVirtualSSD(vssd t vSSD)
/*Deletes a virtual SSD*/
size t GetBlockSize(vssd t vSSD)
/*Erase-block size of vSSD: depends on the number of channels/dies used*/
int ReadData(vssd t vSSD, void* buf, off t offset,
size t size)
/*Reads data; contiguous data is read faster with die-parallel reads*/
block t AllocBlock(vssd t vSSD)
/*Allocates a new block; it can be written to only once and sequentially*/
int WriteData(vssd t vSSD, block t
logical block id, void* buf, size t size)
/*Writes page aligned data to a previously allocated (erased) block;
contiguous data is written faster with die-parallel writes*/
void FreeBlock(vssd t vSSD, block t
logical block id)
/*Frees a previously allocated block*/

rate and (2) that erase-blocks that have imminent fail-
ures have their data migrated to a different erase-block
and the erase-block be permanently hidden from appli-
cations; both without requiring application changes.

With device-level mapping, the physical erase-blocks’
addresses are not exposed to applications – only logi-
cal erase-block addresses are exposed to upper software.
That is, the device exposes each die as an individual SSD
that uses a block-granular FTL, while application-level
log in FlashBlox ensures that upper layers only issue
block-level allocation and deallocation calls. The indi-
rection overhead is small since they are maintained at
erase-block granularity (requiring 8MB per TB of SSD).

Unlike tradtional SSDs, in FlashBlox, tenants cannot
share pre-erased blocks. While this has the advantage
that the tenants control their own write-amplification fac-
tors, write and GC performance, the disadvantage is that
bursty writes within a tenant cannot opportunistically use
pre-erased blocks from the entire device.

In FlashBlox, each die is given its own private block-
granular mapping table, and a IO queue with a depth of
256 by default (it is configurable) to support basic stor-
age operations and software rate limiter for software iso-
lated vSSDs. The out-of-band metadata (16 bytes used)
in each block is used to note the logical address of the
physical erase-block; this enables atomic, consistent and
durable operations. The logical address is a unique and
global 8 bytes number consisting of die ID and block ID
within the die. The other 8 bytes of the metadata are
used for a 2 bytes erase counter and a 6 byte erase times-
tamp. FlashBlox caches the mapping table and all other
out-of-band metadata in the host memory. Upon system
crashes, FlashBlox leverages the reverse mappings and
timestamps in out-of-metadata to recover the mapping
table [24, 80]. More specifically, we use the implemen-
tation from our prior work [27].

The device-level mapping layer can be implemented
either in the host or in the drive’s firmware itself [49] if
the device’s controller has under-utilized resources; we

382 15th USENIX Conference on File and Storage Technologies USENIX Association

implement it in the host. Error detection, correction and
masking, and other low-level flash management systems
remain unmodified in FlashBlox.

Both the application/filesystem level log and the
device-level mapping need to over provision, but for
different reasons. The log needs to over-provision for
the sake of garbage collection efficiency. Here, we
rely on the existing logic within log-structured, flash-
aware applications and file systems to perform their own
over-provisioning appropriate for their workloads. The
device-level mapping needs its own over-provisioning
for the sake of retiring error-prone erase-blocks. In our
implementation, we set this to 1% based on the error rate
analysis from our prior work [29].

3.5 Implementation Details
Prototype SSD. We implement FlashBlox using a
CNEX SSD [18] which is an open-channel SSD [44]
containing 1 TB Toshiba A19 flash memory and an open
controller that allows physical resource access from the
host. It has 16 channels, each channel has 4 dies, each
die has 4 planes, each plane has 1024 blocks, each block
has 256 pages with 16 KB page size. This hardware pro-
vides basic I/O control commands to issue read, write
and erase operations against flash memory. We use a
modified version of the CNEX firmware/driver stack that
allows us to independently queue requests to each die.
FlashBlox is implemented using the C programming lan-
guage in 11,219 lines of code (LoC) layered on top of the
CNEX stack.

Prototype Application and Filesystem. We were
able to modify LevelDB key-value store and the Shore-
MT database engine to use FlashBlox using only 38 and
22 LoC modifications respectively. These modifications
are needed to use the APIs in Table 3. Additionally,
we implemented a user-space log-structured file system
(vLFS) with 1,809 LoC (only 26 LoC are from Flash-
Blox API) based on FUSE for applications which cannot
be modified.

Resource Allocation. For each call to create a vSSD,
the resource manager performs a linear search of all the
available channels, dies and soft-planes to satisfy the re-
quirements. A set of free lists of them are maintained for
this purpose. During deallocation, the resource manager
takes the freed channels, dies and soft-planes and coa-
lesces them when possible. For instance, if all the four
dies of a channel become free then the resource manager
coalesces the dies into a channel and adds the channel to
the free channel set. In the future, we wish to explore ad-
mission control and other resource allocation strategies.

4 Evaluation
Our evaluation demonstrates that: (1) FlashBlox has
overheads (WAF and CPU) comparable to state-of-the-

Table 4: Application workloads used for evaluation.
Workload I/O Pattern

K
ey

-V
al

ue
St

or
e YCSB-A 50% read, 50% update

YCSB-B 95% read, 5% update
YCSB-C 100% read
YCSB-D 95% read, 5% insert
YCSB-E 95% scan, 5% insert
YCSB-F 50% read, 50% read-modify-write

D
at

a
C

en
te

r Cloud Storage 26.2% read, 73.8% write
Web Search 83.0% read, 17.0% write

Web PageRank 17.7% read, 82.2% write
MapReduce 52.9% read, 47.1% write

D
at

ab
as

es TPC-C mix (65.5% read, 34.5% write)
TATP mix (81.2% read, 18.8% write)

TPC-B account update (100% write)
TPC-E mix (90.7% read, 9.3% write)

art FTLs (§ 4.1); (2) Different levels of hardware isola-
tion can be achieved by utilizing flash parallelism, and
they perform better than software isolation (§ 4.2.1);
(3) Hardware isolation enables latency-sensitive appli-
cations such as web search to effectively share an SSD
with bandwidth-intensive workloads like MapReduce
jobs (§ 4.2.2); (4) The impact of wear-leveling migra-
tions on data center applications’ performance is low
(§ 4.3.1) and (5) FlashBlox’s wear-leveling is near to
ideal (§ 4.3.2).

Experimental Setup: We used FIO benchmarks [20]
and 14 different workloads for the evaluation (Table 4):
six NoSQL workloads from the Yahoo Cloud Serv-
ing Benchmarks (YCSB) [19], four database workloads:
TPC-C [70], TATP [65], TPC-B [69] and TPC-E [71],
and four storage workload traces collected from Mi-
crosoft’s data centers.

YCSB is a framework for evaluating the performance
of NoSQL stores. All of the six core workloads con-
sisting of A, B, C, D, E and F are used for the evalua-
tion. LevelDB [39] is modified to run using the vSSDs
from FlashBlox with various isolation levels. The open-
source SQL database Shore-MT [55] is modified to work
over the vSSDs of FlashBlox. The table size of the four
database workloads TPC-C, TATP, TPC-B and TPC-E
range from 9 - 25 GB each. A wear-imbalance factor
limit of 1.1 is used for all our experiments to capture re-
alistic swapping frequencies. The number of dies, chan-
nels and planes used for each experiment is specified sep-
arately for each experiment.

Storage intensive and latency sensitive applications
from Microsoft’s data centers are instrumented to col-
lect traces for cloud storage, web search, PageRank and
MapReduce workloads. These applications are the first-
party customers of Microsoft’s storage IaaS system.

4.1 Microbenchmarks
We benchmark two vSSDs that each run an FIO bench-
mark to evaluate FlashBlox’s WAF. Compared to the un-
modified CNEX SSD’s page-level FTL, FlashBlox deliv-

USENIX Association 15th USENIX Conference on File and Storage Technologies 383

RW+SW RW+RW RW+SR RW+RR SW+SW SW+SR SW+RR
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

W
AF

FlashBlox
Unmodified SSD

Figure 7: WAF comparison between FlashBlox and a tra-
ditional SSD. RW/RR: random write/read; SW/SR: se-
quential write/read.

ers lower WAFs as shown in Figure 7 because of the fact
that FlashBlox’s vSSDs never share the same physical
flash blocks for storing their pages. As shown by previ-
ous work [34], this reduces WAF because of absence of
false sharing of blocks at the application level. The dif-
ferent types of vSSDs of FlashBlox have similar WAFs
because they all use separate blocks, yet they provide dif-
ferent throughput and tail latency levels (shown in Sec-
tion 4.2) because of higher levels of isolation.

In addition, FlashBlox has up to 6% higher total sys-
tem CPU usage compared to the unmodified CNEX
SSD when running FIO. Despite merging the file sys-
tem’s index with that of the FTL’s by using FlashBlox’s
APIs which reduces latency as shown by existing open-
channel work [38, 49], the additional CPU overhead is
due to the device-level mapping layer that is accesed in
every critical path. As a future optimization for the pro-
duction SSD, we plan to transparently move the device-
level mapping layer into the SSD.

4.2 Isolation Level vs. Tail Latency
In this section, we demonstrate that higher levels of iso-
lation provide lower tail latencies. Multiple instances of
application workloads are run on individual vSSDs of
different kinds. In each workload, the number of client
threads executing transactions is gradually increased un-
til the throughput tapers off. The maximum through-
put achieved for the lowest number of threads is then
recorded. The average and tail latencies of transactions
are recorded for the same number of threads.

4.2.1 Hardware Isolation vs. Software Isolation

In this experiment, the channel and die isolated vSSDs
are evaluated against the software isolated vSSDs (with
weighted fair sharing of storage bandwidth enabled). We
begin with a scenario of two LevelDB instances. They
run on two vSSDs in three different configurations, each
using a different isolation level: high, medium, and low;
they contain one channel, four dies and sixteen soft-
planes respectively to ensure that the resources are con-
sistent across experiments. The two instances run a
YCSB workload each. The choice of YCSB is made for
this experiment to show how removing IO interference
can improve the throughput and reduce latency for IO-
bottlenecked applications.

A+A A+B A+C A+D A+E A+F
0

20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

) DB1-in-Channel-Isolated-vSSD
DB1-in-Die-Isolated-vSSD
DB1-in-Software-Isolated-vSSD

DB2-in-Channel-Isolated-vSSD
DB2-in-Die-Isolated-vSSD
DB2-in-Software-Isolated-vSSD

Figure 8: The throughput of LevelDB+YCSB workloads
running at various levels of storage isolation.

Unisolated-vSSD

Software-Isolated-vSSD

Channel-Isolated-vSSD
0.25

0.5
1
2
4
8

16
32
64

99
th

 P
er

ce
nt

ile

La
te

nc
y

(m
ill

is
ec

s) WebSearch
MapReduce

(a) 99th Percentile Latency

Unisolated-vSSD

Software-Isolated-vSSD

Channel-Isolated-vSSD
0

30
60
90

120
150
180
210

B
an

dw
id

th
 (M

B
/s

ec
)

(b) Bandwidth
Figure 11: The performance of colocated Web Search
and MapReduce workload traces.

Each LevelDB instance is first populated with 32 GB
of data and each key-value pair is 1 KB. The YCSB client
threads perform 50 million CRUD (i.e., create, read, up-
date and delete) operations against each LevelDB in-
stance. We pick the size of the database and number of
operations such that GC is always triggered. YCSB C is
read-only, thus we report results for read operations only.

The total number of dies in each setting is the same. In
the channel isolation case, two vSSDs are allocated from
two different channels. In the die isolation case, both
vSSDs share the channels, but are isolated at the die level
within the channel. In the software isolation case, both
vSSDs are striped across all the dies in two channels.

Figure 8 shows that on average, channel isolated vSSD
provides 1.3x better throughput compared to die isolated
vSSD and 1.6x compared to the software isolated vSSD.
Similarly, higher levels of isolation lead to lower average
latencies as shown in Figure 9 (a) and Figure 9 (b). This
is because higher levels of isolation suffer from less in-
terference between read and write operations from other
instances. Die isolated vSSDs have to share the bus with
each other, thus, their performance is worse than chan-
nel isolated vSSDs, which are fully isolated in hardware.
Software isolated vSSDs share the same dies with each
other, suffering from higher interference.

Tail latency improvements are much more significant.
As shown in Figure 9 (c) and Figure 9 (d), channel iso-
lated vSSDs provide up to 1.7x lower tail latency com-
pared to die isolated vSSDs and up to 2.6x lower tail la-
tency compared to vSSDs that stripe data across all the
dies akin to software isolated vSSDs whose operations
are not fully isolated from each other.

A similar experiment with four LevelDB instances is
also performed. Tail latency results are shown in Fig-
ure 10 where channel isolated vSSDs provide up to 3.1x
lower tail latency compared the software isolated vSSDs.

384 15th USENIX Conference on File and Storage Technologies USENIX Association

A+A A+B A+C A+D A+E A+F
(a) Read (Average)

0
50

100
150
200
250
300
350
400

M
ic

ro
se

co
nd

s
DB1-in-Channel-Isolated-vSSD DB1-in-Die-Isolated-vSSD DB1-in-Software-Isolated-vSSD DB2-in-Channel-Isolated-vSSD DB2-in-Die-Isolated-vSSD DB2-in-Software-Isolated-vSSD

A+A A+B A+C A+D A+E A+F
(b) Update (Average)

A+A A+B A+C A+D A+E A+F
(c) Read (99th Percentile)

0
200
400
600
800

1000
1200
1400

A+A A+B A+C A+D A+E A+F
(d) Update (99th Percentile)

Figure 9: The average and 99th percentile latencies of LevelDB+YCSB workloads running at various levels of storage
isolation. Compared to die and software isolated vSSDs, channel isolated vSSD reduces the average latency by 1.2x
and 1.4x respectively, and decreases the 99th percentile latency by 1.2 - 1.7x and 1.9 - 2.6x respectively. Note that the
update latencies are not applicable for workload C which is read-only.

A+A+A+A
A+B+A+B

A+C+A+C
A+D+A+D

A+E+A+E
A+F+A+F

A+B+C+D
C+D+E+F

0
200
400
600
800

1000
1200
1400
1600

La
te

nc
y

 (m
ic

ro
se

co
nd

s) DB1-in-Channel-Isolated-vSSD
DB2-in-Channel-Isolated-vSSD
DB3-in-Channel-Isolated-vSSD
DB4-in-Channel-Isolated-vSSD

DB1-in-Software-Isolated-vSSD
DB2-in-Software-Isolated-vSSD
DB3-in-Software-Isolated-vSSD
DB4-in-Software-Isolated-vSSD

(a) Read Latency (99th Percentile)

A+A+A+A
A+B+A+B

A+C+A+C
A+D+A+D

A+E+A+E
A+F+A+F

A+B+C+D
C+D+E+F

(b) Update Latency (99th Percentile)

Figure 10: The 99th percentile latency of running four LevelDB instances with various levels of storage isolation. The
channel isolated vSSD reduces the 99th percentile latency by 1.3 - 2.7x and 1.5 - 3.1x for read and update operation
respectively, compared to software isolated vSSD.

4.2.2 Latency vs. Bandwidth Sensitive Tenants

We now evaluate how hardware isolation provides bene-
fits for instances that share the same physical SSD when
one is latency sensitive while others are not (for resource
efficiency [42]). Channel, software isolated and uniso-
lated vSSDs are used in this experiment. The total num-
ber of dies is the same in all three settings and is eight.
The workloads from a large cloud provider are used for
performing this experiment. Web search is the instance
that requires lower tail latencies while MapReduce jobs
are not particularly latency sensitive.

Results shown in Figure 11 demonstrate three trends:
First, channel isolated vSSDs provide the best compro-
mise between throughput and tail latency: tail latency
of the web search workloads decreases by over 2x for a
36% reduction of bandwidth of the MapReduce job when
compared to an unisolated vSSD. The fall in throughput
of MapReduce is expected because it only has half of the
channels of the unisolated case where its large sequential
IOs end up consuming the bandwidth unfairly due to the
lack of any isolation techniques.

Second, software isolated vSSDs for web search and
MapReduce can reduce the tail latency of web search to
the same level as the channel-isolated case, but the band-
width of the MapReduce job decreases by more than 4x
when compared to the unisolated vSSD. This is also ex-
pected because the work that an SSD can perform is a
convex combination of IOPS and bandwidth. Web search
takes a significant number of small IOPS when sharing
bandwidth fairly with MapReduce and this in-turn re-
duces the total bandwidth available for MapReduce.

4.3 Wear-Leveling Efficacy and Overhead
Wear-leveling in FlashBlox is supported in two different
layers. One layer ensures that all the dies in the system
are aging at the same rate overall with channel migra-
tions, while the other layer ensures that blocks within a
given die are aging at the same rate overall. Its overhead
and efficacy are evaluated in this section.

4.3.1 Migration Overhead

We first evaluate the overhead of the migration mecha-
nism. We migrate one channel and measure the change
in throughput and 99th percentile latency on a variety of
YCSB workloads that are running on the channel.

The throughput of LevelDB running on that channel
drops by no more than 33.8% while the tail latencies of
reads and updates increase by up to 22.1% (Figure 12).
For simplicity, we show results for migrating 1 GB of
the 64GB channel. We use a single thread and the data
moves at a rate of 78.9MBPS. Moving all of the 64 GB
of data would take close to 15 minutes.

The impact of migration on web search and MapRe-
duce workloads is shown in Figure 13. During migra-
tion, the bandwidth of the MapReduce job decreases by
36.7%, the tail latencies of reads and writes of the web
search increase by 34.2%. These performance slow-
downs bring channel-isolation numbers on par with the
software isolation. This implies that a 36.7% drop for
15 minutes when amortized over our recommended swap
rate represents a 0.04% overall drop.

4.3.2 Migration Frequency Analysis

To evaluate the wear-leveling efficacy, we built a simula-
tor and used it to understand how the device ages for var-

USENIX Association 15th USENIX Conference on File and Storage Technologies 385

A B C D E F
0

30
60
90

120

Th
ro

ug
hp

ut

(K
 o

ps
/s

ec
) Without Migration With Migration

(a) Throughput

A B C D E F
0

100
200
300
400

M
ic

ro
se

co
nd

s

(b) Read (99th Percentile)

A B C D E F
0

100
200
300
400
500
600

M
ic

ro
se

co
nd

s

(c) Update (99th Percentile)

Figure 12: The impact of a channel migration on workloads: LevelDB’s throughput falls by 33.8%, its 99th percentile
read and update latencies increase by 22.1% and 18.7% respectively.

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

0

50

100

B
an

dw
id

th

(M
B

/s
ec

) Read Write

(a) Bandwidth of MapReduce

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

0.30
0.35
0.40
0.45
0.50

La
te

nc
y

(m
ill

is
ec

on
ds

)

Read

(b) Read Latency of Web Search

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

1.0
1.2
1.4
1.6
1.8

La
te

nc
y

(m
ill

is
ec

on
ds

)

Write

(c) Write Latency of Web Search

Figure 13: The overhead of migrating 1GB of data as MapReduce and web search are running on the channels involved:
MapReduce’s bandwidth falls by up to 36.7% while web search’s latency increases by up to 34.2%.

1 2 4 8 12 16
Number of Workloads

0
1
2
3
4
5
6

Ye
ar

s

NoSwap
Ideal SSD
swap per 1 week
swap per 2 weeks
swap per 4 weeks
swap per 8 weeks
FlashBlox

(a) Channel Killer

1 2 4 8 12 16
Number of Workloads

0
2
4
6
8

10
12

Ye
ar

s

(b) Die Killer

Figure 14: SSD lifetime of running adversarial write
workloads that stress a single channel or a die.

ious workloads. For workload traces that are not from a
log-structured application, we first execute the workload
on the log-structured file system vLFS built using Flash-
Blox and trace FlashBlox API calls. We measure the
block consumption rate of these traces to evaluate the ef-
ficacy of wear-leveling. For the CNEX SSD, γ = M/ f =
24 TB (discussed in § 3.1.5). The supported number of
program erase (PE) cycles is 10 K in our drive. Our ab-
solute lifetimes scale linearly for other SSDs and factor
improvements remain the same regardless of the number
of supported PE cycles.

Worst-case workloads. To evaluate the possible
worst cases for SSDs, we run the most write-intensive
workloads against a few channels (channel killer) and
dies (die killer). We gradually increase the number of
such workloads to stress the SSD. Each workload is
pinned to exactly one channel or one die while keeping
other channels or dies for read-only operations.

Figure 14 shows the SSD’s lifetime for a variety of
wear-leveling schemes. Without wear-leveling (NoSwap
in Figure 14), the SSD dies after less than 4 months,
while FlashBlox can always guarantee 95% of the ideal
lifetime within migration frequency of once per ≤ 4
weeks for both channel and die killer workloads. The
adaptive wear-leveling scheme in FlashBlox automati-
cally migrates a channel by adjusting to write-rates.

Mixed workloads. In real-world scenarios, a mix of
various kinds of workloads would run on the same SSD.
We use all the 14 workloads (Table 4) simultaneously in

1 12 24 36 48 60 72 84 96 108 120 132 144 156

Time (weeks)

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

W
ea

r
Im

ba
la

nc
e

(M
ax

/A
vg

) No Swap
swap per 1 week
swap per 2 weeks
swap per 4 weeks
swap per 8 weeks
FlashBlox

Figure 15: Wear imbalance of FlashBlox with different
wear-leveling schemes. The ideal wear imbalance is 1.0.

Table 5: Monte Carlo simulation (10K runs) of SSD life-
time with randomly sampled workloads on the channels.

#vSSD
NoSwap

Lifetime (Years)
Ideal vs. FlashBlox

Lifetime (Years) Wear Im-
balance

Swap Once in
Days (Avg)99th 50th 99th 50th

4 1.2 1.6 6.2/6.1 13.8/13.5 1.02 94
8 1.2 1.3 3.7/3.6 6.7/6.6 1.02 22
16 1.2 1.2 2.1/2.1 3.4/3.3 1.01 19

the experiment, and measure FlashBlox’s wear leveling.
Fourteen channel isolated vSSDs are created for running
these workloads and migrations. Figure 5 shows how the
erase rates of these applications vary.

For the scheme without any migrations, the wear im-
balance is 3.1, and the SSD dies after 1.2 years. Also,
results show that blocks are more or less evenly aged for
a migration frequency as high as once in four weeks, as
shown in Figure 15. This indicates that for realistic sce-
narios, where write traffic is more evenly matched, sig-
nificantly fewer swaps could be tolerated.

Figure 16 shows the absolute erase counts of the chan-
nels (including the erases needed for migrations and
GC). Compared to the ideal wear-leveling, the absolute
erase counts are almost the same with the migration fre-
quency of a week.

To further evaluate FlashBlox’s wear-leveling efficacy,
we run a Monte Carlo simulation (10K runs) of the SSD
lifetime. We create various number of vSSDs and assign

386 15th USENIX Conference on File and Storage Technologies USENIX Association

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 52 26 13 6 8 N/A
#CH-1
#CH-2
#CH-3
#CH-4

#CH-5
#CH-6
#CH-7
#CH-8

#CH-9
#CH-10
#CH-11
#CH-12

#CH-13
#CH-14
#CH-15
#CH-16

(a) After 1 year

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

15

20

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 104 52 26 13 16 N/A

(b) After 2 years

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

15

20

25

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 156 78 39 19 29 N/A

(c) After 3 years

Figure 16: Erase counts over three years for workloads in Table 4. The erase count per block in each channel of
FlashBlox is close to that of the ideal SSD. The numbers on the top shows the cumulative migration count.

them uniformly at random to one of the fourteen work-
loads. The SSD is then simulated to end-of-life.

We report the 99th and 50th percentile lifetime of ideal
SSD, SSD without swapping (NoSwap) and FlashBlox in
Table 5. For the case of running 16 instances, 99% of the
ideal SSDs last 2.1 years, and half of them can work for
3.4 years. With adaptive wear-leveling scheme, Flash-
Blox’s lifetime is close to ideal and its wear imbalance is
close to the ideal case. In real world, where not all ap-
plications are adversarial (channel/die-killer workloads),
the swap frequency automatically increases.

5 Related Work
Open Architecture SSDs. Recent research has proposed
exposing flash parallelism directly to the host [38, 49, 61,
76]. This is immensely helpful for applications where
each unit of flash parallelism receives more or less sim-
ilar write workloads. However, this is often not the case
in multi-tenant cloud platform where workloads with a
variety of write-rates co-exist on the same SSD. Flash-
Blox takes a holistic approach to solve this problem, it
not only provides hardware isolation but also ensures all
the units of parallelism are aging uniformly.

SSD-level Optimizations. Recent work has success-
fully improved SSDs’ performance by enhancing how
FTLs leverage the flash parallelism [17, 32]. We extend
this line of research for performance isolation for appli-
cations in a multi-tenant setting. FlashBlox uses dedi-
cated channels and dies for each application to improve
isolation and balances inter-application wear using a new
strategy, while existing FTL optimizations are relevant
for intra-application wear-leveling.

SSD Interface. Programmable and flexible SSD inter-
faces have been proposed to improve the communication
between applications and SSD hardware [15, 50, 53].
SR-IOV [63] is a hardware bus standard that helps vir-
tual machines bypass the host to safely share hardware
to reduce CPU overhead. These techniques are compli-
mentary to FlashBlox which helps applications use dedi-
cated flash regions. Multi-streamed SSDs [33] addresses
a similar problem with a stream tag, isolating each stream
to dedicated flash blocks but sharing all channels, dies
and planes to achieve maximum per-stream throughput.
OPS isolation [34] has been proposed to dedicate flash
blocks to each virtual machine sharing an SSD. They re-

duce fragmentation and GC overheads. FlashBlox builds
upon this work and extends the isolation to channels and
dies without compromising on wear-leveling.

Storage Isolation. Recent research has demonstrated
that making software aware of the underlying hardware
constraints can improve isolation. Shared SSD per-
formance [56, 57] can be improved by observing the
convex-dependency between IOPS and bandwidth, and
also by predicting future workloads [64]. In contrast,
FlashBlox identifies the relation between flash isolation
and wear when using hardware isolation, and makes
software schedulers aware of it. It solves this problem
by helping software perform coarse time granular wear-
levelling across channels and dies.

6 Conclusions and Future Work
In this paper, we propose leveraging channel and die-
level parallelism present in SSDs to provide isolation for
latency sensitive applications sharing an SSD. Further-
more, FlashBlox provides near-ideal lifetime despite the
fact that individual applications write at different rates
to their respective channels and dies. FlashBlox achieves
this by migrating applications between channels and dies
at coarse time granularities. Our experiments show that
FlashBlox can improve throughput by 1.6x and reduce
tail latency by up to 3.1x. We also show that migrations
are rare for real world workloads and do not adversely
impact applications’ performance. In the future, we wish
to take FlashBlox in two directions. First, we would like
to investigate how to integrate with the virtual hard drive
stack such that virtual machines can leverage FlashBlox
without modification. Second, we would like to under-
stand how FlashBlox should be integrated with multi-
resource data center schedulers to help applications ob-
tain predictable end-to-end performance.

Acknowledgments
We would like to thank our shepherd Ming Zhao as well
as the anonymous reviewers. This work was supported in
part by the Center for Future Architectures Research (C-
FAR), one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA. We would also like to thank
the great folks over at CNEX for supporting our research
by providing early access to their open SSDs.

USENIX Association 15th USENIX Conference on File and Storage Technologies 387

References
[1] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design Tradeoffs for SSD
Performance. In Proc. USENIX ATC, Boston, MA, June
2008.

[2] Amazon Relational Database Service.
https://aws.amazon.com/rds/.

[3] Amazon Relational Database Service Pricing.
https://aws.amazon.com/rds/pricing/.

[4] Amazon’s SSD Backed EBS.
https://aws.amazon.com/blogs/aws/new-
ssd-backed-elastic-block-storage/.

[5] Azure DocumentDB.
https://azure.microsoft.com/en-
us/services/documentdb/.

[6] Azure DocumentDB Pricing.
https://azure.microsoft.com/en-
us/pricing/details/documentdb/.

[7] Azure Premium Storage.
https://azure.microsoft.com/en-
us/documentation/articles/storage-
premium-storage/.

[8] Azure Service Fabric.
https://azure.microsoft.com/en-
us/services/service-fabric/.

[9] Azure SQL Database.
https://azure.microsoft.com/en-
us/services/sql-database/.

[10] Azure SQL Database Pricing.
https://azure.microsoft.com/en-
us/pricing/details/sql-database/.

[11] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova.
A Case for NUMA-aware Contention Management on
Multicore Systems. In Proc. USENIX ATC’11, Berkeley,
CA, June 2011.

[12] Block IO Bandwidth (Blkio) in Docker.
https://docs.docker.com/engine/
reference/run/#block-io-bandwidth-
blkio-constraint.

[13] Block IO Controller.
https://www.kernel.org/doc/
Documentation/cgroup-v1/blkio-
controller.txt.

[14] Y. Bu, H. Lee, and J. Madhavan. Comparing SSD-
placement Strategies to scale a Database-in-the-Cloud. In
Proc. SoCC’13, Santa Clara, CA, Oct. 2013.

[15] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De, J. Coburn,
and S. Swanson. Providing safe, user space access to fast,
solid state disks. In Proc. ACM ASPLOS’12, London,
United Kingdom, Mar. 2012.

[16] CGROUPS.
https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.

[17] F. Chen, R. Lee, and X. Zhang. Essential Roles of Ex-
ploiting Internal Parallelism of Flash Memory based Solid
State Drives in High-Speed Data Processing. In Proc.
HPCA’11, San Antonio, Texas, Feb. 2011.

[18] CNEX Labs.
http://www.cnexlabs.com/index.php.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proc. SoCC’12, Indianapolis, Indiana, June
2010.

[20] FIO Benchmarks.
https://linux.die.net/man/1/fio.

[21] Fusion-io ioDrive.
https://www.sandisk.com/business/
datacenter/products/flash-devices/
pcie-flash/sx350.

[22] Google Cloud Platform: Local SSDs.
https://cloud.google.com/compute/docs/
disks/local-ssd.

[23] Google Cloud SQL.
https://cloud.google.com/sql/.

[24] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In Proc. ACM
ASPLOS, Washington, DC, Mar. 2009.

[25] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote,
A. A. Chien, and H. S. Gunawi. The Tail at Store: A Rev-
elation from Millions of Hours of Disk and SSD Deploy-
ments. In Proc. FAST’16, Santa Clara, CA, Feb. 2016.

[26] J. He, D. Nguyen, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Reducing File System Tail Latencies
with Chopper. In Proc. FAST’15, Santa Clara, CA, Feb.
2015.

[27] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan. Uni-
fied Address Translation for Memory-Mapped SSD with
FlashMap. In Proc. ISCA’15, Portland, OR, June 2015.

[28] Intel Inc. Improving Real-Time Performance by Utilizing
Cache Allocation Technology. White Paper, 2015.

[29] Iyswarya Narayanan and Di Wang and Myeongjae Jeon
and Bikash Sharma and Laura Caulfield and Anand Siva-
subramaniam and Ben Cutler and Jie Liu and Badriddine
Khessib and Kushagra Vaid. SSD Failures in Datacenters:
What? When? and Why? In Proc. ACM SYSTOR’16,
Haifa, Israel, June 2016.

[30] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,
C. Kim, and A. Greenberg. EyeQ: Practical Network Per-
formance Isolation at the Edge. In Proc. NSDI’13, Berke-
ley, CA, Apr. 2013.

[31] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:
A File System for Virtualized Flash Storage. ACM Trans.
on Storage, 6(3):14:1–14:25, 2010.

[32] M. Jung and M. K. Ellis H. Wilson III. Physically Ad-
dressed Queueing (PAQ): Improving Parallelism in Solid
State Disks. In Proc. ISCA’12, Portland, OR, June 2012.

388 15th USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/pricing/details/documentdb/
https://azure.microsoft.com/en-us/pricing/details/documentdb/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.cnexlabs.com/index.php
https://linux.die.net/man/1/fio
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/sql/

[33] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi-
Streamed Solid-State Drive. In Proc. HotStorage’14,
Philadelphia, PA, June 2014.

[34] J. Kim, D. Lee, and S. H. Noh. Towards SLO Complying
SSDs Through OPS Isolation. In Proc. FAST’15, Santa
Clara, CA, Feb. 2015.

[35] W.-H. Kim, B. Nam, D. Park, and Y. Won. Resolving
Journaling of Journal Anomaly in Android IO: Multi-
version B-tree with Lazy Split. In FAST’14, Santa Clara,
CA, Feb. 2014.

[36] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and
S. Moriai. The Linux implementation of a log-structured
file system. SIGOPS OSR, 40(3), 2006.

[37] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New
File System for Flash Storage. In Proc. FAST’15, Santa
Clara, CA, Feb. 2015.

[38] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind.
Application-Managed Flash. In Proc. FAST’16, Santa
Clara, CA, Feb. 2016.

[39] LevelDB.
https://github.com/google/leveldb.

[40] J. Leverich and C. Kozyrakis. Reconciling High Server
Utilization and Sub-millisecond Quality-of-Service. In
Proc. EuroSys’14, Amsterdam, Netherlands, Apr. 2014.

[41] N. Li, H. Jiang, D. Feng, and Z. Shi. PSLO: Enforcing the
Xth Percentile Latency and Throughput SLOs for Consol-
idated VM Storage. In Proc. EuroSys’16, London, United
Kingdom, Apr. 2016.

[42] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving Resource Efficiency
at Scale. In Proc. ISCA’15, Portland, OR, June 2015.

[43] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations. In Proc. MI-
CRO’11, Porto Alegre, Brazil, Dec. 2011.

[44] Matias Bjorling and Javier Gonzalez and Philippe Bon-
net. LightNVM: The Linux Open-Channel SSD Subsys-
tem. In Proc. USENIX FAST’17, Santa Clara, CA, Feb.
2016.

[45] H. Menon and L. Kale. A Distributed Dynamic Load Bal-
ancer for Iterative Applications. In Proc. SC’13, Denver,
Colorado, Nov. 2013.

[46] Microsoft’s Open Source Cloud Hardware.
https://azure.microsoft.com/en-
us/blog/microsoft-reimagines-open-
source-cloud-hardware/.

[47] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kan-
demir, and T. Moscibroda. Reducing Memory Interfer-
ence in Multicore Systems via Application-Aware Mem-
ory Channel Partitioning. In Proc. MICRO’11, Porto Ale-
gre, Brazil, Dec. 2011.

[48] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds:
Managing Performance Interference Effects for QoS-
Aware Clouds. In Proc. EuroSys’12, Paris, France, Apr.
2010.

[49] J. Ouyang, S. Lin, S. Jiang, Y. Wang, W. Qi, J. Cong, and
Y. Wang. SDF: Software-Defined Flash for Web-Scale
Internet Storage Systems. In Proc. ACM ASPLOS, Salt
Lake City, UT, Mar. 2014.

[50] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda. Beyond Block I/O: Rethinking Traditional Storage
Primitives. In Proc. HPCA’11, San Antonio, Texas, Feb.
2014.

[51] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Trans. on Computer Systems, 10(1):26–52, Feb. 1992.

[52] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Ef-
ficient Fine-Grain Cache Partitioning. In Proc. ISCA’11,
San Jose, CA, June 2011.

[53] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,
Y. Jin, Y. Liu, and S. Swanson. Willow: A User-
Programmable SSD. In Proc. OSDI’14, Broomfield, CO,
Oct. 2014.

[54] K. Shen, S. Park, and M. Zhu. Journaling of journal is
(almost) free. In Proc. FAST’14, Berkeley, CA, 2014.

[55] Shore-MT.
https://sites.google.com/site/
shoremt/.

[56] D. Shue and M. J. Freedman. From Application Requests
to Virtual IOPs: Provisioned Key-Value Storage with Li-
bra. In Proc. EuroSys’14, Amsterdam, Netherlands, Apr.
2014.

[57] D. Shue, M. J. Freedman, and A. Shaikh. Performance
Isolation and Fairness for Multi-Tenant Cloud Storage. In
Proc. OSDI’12, Hollywood, CA, Oct. 2012.

[58] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah,
S. Ziuzin, K. Sundama, M. G. Guajardo, A. Wawrzy-
niak, S. Boshra, R. Ferreira, M. Nassar, M. Koltachev,
J. Huang, S. Sengupta, J. Levandoski, and D. Lomet.
Schema-agnostic indexing with azure documentdb. In
Proc. VLDB’15, Kohala Coast, Hawaii, Sept. 2015.

[59] A. Singh, M. Korupolu, and D. Mohapatra. Server-
Storage Virtualization: Integration and Load Balancing in
Data Centers. In Proc. SC’08, Austin, Texas, Nov. 2008.

[60] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and
S. Brandt. Flash on rails: consistent flash performance
through redundancy. In Proc. USENIX ATC’14, Philadel-
phia, PA, June 2014.

[61] X. Song, J. Yang, and H. Chen. Architecting Flash-
based Solid-State Drive for High-performance I/O Virtu-
alization. IEEE Computer Architecture Letters, 13:61–64,
2014.

[62] SQL Database Options and Performance: Understand
What’s Available in Each Service Tier.
https://azure.microsoft.com/en-us/
documentation/articles/sql-database-
service-tiers/#understanding-dtus.

USENIX Association 15th USENIX Conference on File and Storage Technologies 389

https://github.com/google/leveldb
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://sites.google.com/site/shoremt/
https://sites.google.com/site/shoremt/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus

[63] SR-IOV for SSDs.
http://www.snia.org/sites/default/
files/Accelerating%20Storage%20Perf%
20in%20Virt%20Servers.pdf.

[64] Sungyong Ahn and Kwanghyun La and Jihong Kim.
Improving I/O Resource Sharing of Linux Cgroup for
NVMe SSDs on Multi-core Systems. In Proc. USENIX
HotStorage’16, Denver, CO, June 2016.

[65] TATP Benchmark.
http://tatpbenchmark.sourceforge.net/.

[66] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,
A. Rowstron, T. Talpey, R. Black, and T. Zhu. IOFlow:
A Software-Defined Storage Architecture. In Proc.
SOSP’13, Farmington, PA, Nov. 2013.

[67] Throtting IO with Linux.
https://fritshoogland.wordpress.com/
2012/12/15/throttling-io-with-linux.

[68] Token Bucket Algorithm.
https://en.wikipedia.org/wiki/token_
bucket.

[69] TPCB Benchmark.
http://www.tpc.org/tpcb/.

[70] TPCC Benchmark.
http://www.tpc.org/tpcc/.

[71] TPCE Benchmark.
http://www.tpc.org/tpce/.

[72] Traffic Control HOWTO.
http://linux-ip.net/articles/Traffic-
Control-HOWTO/.

[73] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson. The SCADS Director: Scal-

ing a Distributed Storage System Under Stringent Perfor-
mance Requirements. In Proc. FAST’11, Santa Clara, CA,
Feb. 2016.

[74] H. Wang and P. Varman. Balancing Fairness and Effi-
ciency in Tiered Storage Systems with Bottleneck-Aware
Allocation. In Proc. FAST’14, Santa Clara, CA, Feb.
2014.

[75] J. Wang and Y. Hu. WOLF: A Novel reordering write
buffer to boost the performance of log-structured file sys-
tems. In Proc. FAST’02, Monterey, CA, Jan. 2002.

[76] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang,
and J. Cong. An Effective Design and Implementation
of LSM-Tree based Key-Value Store on Open-Channel
SSD. In Proc. EuroSys’14, Amsterdam, the Netherlands,
Apr. 2014.

[77] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sun-
dararaman. Don’t stack your Log on my Log. In Proc.
INFLOW’14, Broomfield, CO, Oct. 2014.

[78] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krish-
namurthy, S. AI-Kiswany, R. T. Kaushik, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Split-Level I/O
Scheduling. In Proc. SOSP’15, Monterey, CA, Oct. 2015.

[79] N. Zhang, J. Tatemura, J. M. Patel, and H. Hacigu-
mus. Re-evaluating Designs for Multi-Tenant OLTP
Workloads on SSD-based I/O Subsystems. In Proc. SIG-
MOD’14, Snowbird, UT, June 2014.

[80] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. De-indirection for Flash-based SSDs
with Nameless Writes. In Proc. 10th USENIX FAST, San
Jose, CA, Feb. 2012.

390 15th USENIX Conference on File and Storage Technologies USENIX Association

http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://tatpbenchmark.sourceforge.net/
https://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux
https://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux
https://en.wikipedia.org/wiki/token_bucket
https://en.wikipedia.org/wiki/token_bucket
http://www.tpc.org/tpcb/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://linux-ip.net/articles/Traffic-Control-HOWTO/

	Introduction
	SSD Virtualization: Opportunity and Challenges
	Hardware Isolation vs. Wear-Leveling
	Leveraging Parallelism for Isolation

	Design and Implementation
	Channel Isolated Virtual SSDs
	Channel Allocation
	Unbalanced Wear-Leveling Challenge
	Inter-Channel Wear-Leveling
	Swap Frequency Analysis
	Adaptive Migration Mechanism

	Die-Isolated Virtual SSDs
	Software Isolated Virtual SSDs
	Intra Channel/Die Wear-Leveling
	Application/Filesystem Level Log
	Device-Level Mapping

	Implementation Details

	Evaluation
	Microbenchmarks
	Isolation Level vs. Tail Latency
	Hardware Isolation vs. Software Isolation
	Latency vs. Bandwidth Sensitive Tenants

	Wear-Leveling Efficacy and Overhead
	Migration Overhead
	Migration Frequency Analysis

	Related Work
	Conclusions and Future Work

