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Abstract
Using flash-based solid state drives (SSDs) as main memory

has been proposed as a practical solution towards scaling

memory capacity for data-intensive applications. However,

almost all existing approaches rely on the paging mechanism

to move data between SSDs and host DRAM. This inevitably

incurs significant performance overhead and extra I/O traffic.

Thanks to the byte-addressability supported by the PCIe

interconnect and the internal memory in SSD controllers, it

isfeasible to access SSDs in both byte and block granularity

today. Exploiting the benefits of SSD’s byte-accessibility in

today’s memory-storage hierarchy is, however, challenging

as it lacks systems support and abstractions for programs.

In this paper, we present FlatFlash, an optimized unified

memory-storage hierarchy, to efficiently use byte-addressable

SSD as part of the main memory. We extend the virtual mem-

ory management to provide a unified memory interface so

that programs can access data across SSD and DRAM in

byte granularity seamlessly. We propose a lightweight, adap-

tive page promotion mechanism between SSD and DRAM

to gain benefits from both the byte-addressable large SSD

and fast DRAM concurrently and transparently, while avoid-

ing unnecessary page movements. Furthermore, we propose

an abstraction of byte-granular data persistence to exploit

the persistence nature of SSDs, upon which we rethink the

design primitives of crash consistency of several represen-

tative software systems that require data persistence, such

as file systems and databases. Our evaluation with a variety
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of applications demonstrates that, compared to the current

unified memory-storage systems, FlatFlash improves the per-

formance for memory-intensive applications by up to 2.3×,

reduces the tail latency for latency-critical applications by up

to 2.8×, scales the throughput for transactional database by

up to 3.0×, and decreases the meta-data persistence overhead

for file systems by up to 18.9×. FlatFlash also improves the

cost-effectiveness by up to 3.8× compared to DRAM-only

systems, while enhancing the SSD lifetime significantly.
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Keywords byte-addressable SSD; unified memory man-
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1 Introduction
Using SSDs as main memory [5, 20, 27, 60] has been pre-

sented as a practical approach to expanding the memory

capacity for data-intensive applications, as the cost of SSDs

is fast approaching that of hard disk drives, and their perfor-

mance has improved by more than 1,000× over the past few

years [23, 29, 59]. Also, SSDs today can scale up to terabytes

per PCIe slot [44], whereas DRAM scales only to gigabytes

per DIMM slot [26].

To overcome the DRAM scaling issue, the state-of-the-art

approaches leverage the memory mapped interface and pag-

ing mechanism in operating systems and treat SSDs as fast

backing storage for the DRAM [20, 27, 60]. Although these

approaches simplify the development, they suffer from three

drawbacks. First, the paging mechanism incurs performance

overhead. For each memory access to data that is not present
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in DRAM, a page fault is triggered and a software page han-

dler moves the accessed page from SSD to main memory,

resulting in an execution delay. Second, the paging mecha-

nism faces the thrashing problem caused by data-intensive

applications whose working set sizes are significantly larger

than the available DRAM capacity. Third, the page granu-

larity of data access incurs a tremendous amount of extra

I/O traffic by moving the whole page even if a small portion

within that page is needed [47], which not only affects SSD

performance but also hurts the SSD lifetime.

Thanks to the byte-addressability provided by the PCIe

interconnect and the internal memory in SSD controllers, it

is feasible today to have a byte-addressable SSD by leverag-

ing the available Base Address Registers (BARs) in the SSD

controller through the PCIe memory-mapped I/O interface

(MMIO) [6]. Henceforth, we can access SSDs in both byte

and block granularity. However, this inevitably increases the

complexity of managing SSDs in modern memory-storage

hierarchy and it is still unclear how systems software and

applications will benefit from this new property.

In this paper, we exploit the byte-accessibility of SSDs

and rethink the design of a unified memory-storage hier-

archy to address the aforementioned challenges. We first

map the SSD page locations into the host address space and

extend virtual memory management to make use of the phys-

ical pages across the byte-addressable SSD and host DRAM.

Since NAND flash chips are not natively byte-addressable

and can only be accessed in page granularity, we utilize the

DRAM present in the SSD controller and use it as a cache

for accessed pages. Thus, the host CPU can issue memory

requests (load/store) to a unified memory space, which eases

the programmability and management of byte-addressable

SSDs and makes programs access data across SSD and host

DRAM seamlessly.

Accessing the SSD for each memory request is, however,

slower than accessing DRAM. We propose a lightweight,

adaptive page promotion mechanism to determine which

flash pages should be placed in the host DRAM, therefore, ap-

plications can transparently exploit the advantages of both

the byte-addressable SSD and the faster DRAM. We sup-

port promoting multiple hot pages concurrently to the host

DRAM for fast access while keeping cold pages in the SSD

for direct, byte-granular access to avoid thrashing. To avoid

program stalls caused by the page promotion, we propose

a promotion look-aside buffer (PLB) in the host bridge for

redirecting memory requests for a page being promoted to

its current physical address. As PLB is only used for pages

being promoted, its storage overhead is trivial.

Furthermore, to preserve the persistent nature of SSDs

in the unified memory-storage hierarchy, we propose byte-

granular data persistence to exploit the fine-grained durable

write with a battery-backed DRAM in SSDs. Unlike conven-

tional persistent storage that uses a block interface, such a

new persistence feature of SSDs significantly reduces the

crash consistency overhead for software systems that have

strict requirement on data persistence. With case studies of

file systems and transactional databases, we demonstrate

the benefits of this new feature and its impact on the design

primitives of storage systems. Overall, this paper makes the

following contributions:

• We present FlatFlash, a unified memory and storage archi-

tecture with byte-addressable SSDs and DRAM. It presents

a unified memory interface to simplify the management

and programmability of the dual byte and block-accessible

interfaces of SSDs.

• We propose an adaptive page promotion scheme that en-

ables applications to benefit from both byte-addressable

SSDs and DRAM simultaneously while incurring negligi-

ble performance and storage overhead.

• We exploit the byte-granular data persistence in FlatFlash,

rethink the design primitives of ensuring crash consistency

in several representative systems such as file systems and

database, and demonstrate its performance benefits.

We implement FlatFlash in Linux on top of an SSD em-

ulator with the new abstractions proposed. Compared to

the state-of-the-art unified memory-storage solution, Flat-

Flash improves the performance of memory-intensive work-

loads such as the High-Performance Computing Challenge

benchmark HPCC-GUPS [43] and graph analytics frame-

work GraphChi [41] by up to 2.3×, reduces the tail latency

for the NoSQL key-value store Redis [58] by up to 2.8×, scales

the throughput of transactional database Shore-MT [34] by

up to 3.0×, decreases the meta-data persistence overhead

of file systems EXT4, XFS, and BtrFS by up to 18.9×. Be-

yond the performance and persistence benefits gained from

FlatFlash, our evaluation also shows FlatFlash improves the

cost-effectiveness by up to 3.8× compared to the DRAM-only

system, while enhancing the SSD lifetime significantly.

The rest of the paper is organized as follows: § 2 explains

the background and motivation of this work. The FlatFlash

design and implementation are detailed in § 3 and § 4 respec-

tively. Our evaluation methodology and results are presented

in § 5. We discuss the related work in § 6 and conclude the

paper in § 7.

2 Background and Motivation
To meet the ever-increasing demand for memory capacity

from data-intensive applications, system designers either

use a large amount of DRAM [42, 51] or leverage fast stor-

age medium such as SSDs as backup store to scale up the

application-usable memory capacity of systems [5, 20, 60].

Scaling up with DRAM is expensive, for example, a capac-

ity of 512GB will cost about $8,950 with eight 64GB DDR4

DIMMs in 2018 [26]. And it is limited by the number of

DIMM slots available on the servers [16, 66]. SSDs, on the

other hand, scale to terabytes in capacity per PCIe slot [44]

and are significantly cheaper than DRAM (e.g., a 1TB SSD
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Figure 1. (a) The state-of-the-art approach relies on paging

mechanism to migrate pages; (b) FlatFlash provides direct

memory accesses to the SSD with adaptive page promotion.

costs around $600 in 2018 [49]). As SSD’s capacity increases

and cost decreases, using SSDs to expand memory capacity

has become a cost-effective solution in practice [20, 27, 68].

System designers deploy SSDs as fast backing stores for

memory mapped data and swap spaces for large datasets in

virtual memory while leveraging the paging mechanism to

move data between the DRAM and the SSD.

2.1 Using SSDs as Extended Memory
The state-of-the-art system using an SSD as extended mem-

ory (i.e., unified memory-storage hierarchy) relies on paging

mechanism to manage SSDs, as shown in Figure 1a. Applica-

tions running on the CPU are allowed to access the DRAM

in cache line granularity. However, a page fault occurs when-

ever an application accesses data in the extended memory

region backed by SSD. The application is stalled until the

OS’s page fault handler migrates the requested page from the

SSD to DRAM and updates the page table. For applications

with large datasets that cannot fit in the DRAM, a significant

number of page faults are triggered and pages are frequently

swapped between DRAM and SSD [27]. For workloads with

random page access patterns to a large data set, such as the

HPCC-GUPS [43], the traffic between the SSD and DRAM

is increased drastically due to the thrashing, a phenomenon

where pages brought into DRAM are simply replaced before

they can be accessed again.

2.2 Byte vs. Block-Accessible Interface for SSDs
The cost of page migration is exacerbated for workloads

accessing only a few bytes or cache lines of a page, as any

access to a page in SSD requires migration of the whole page

between SSD and DRAM in the current memory-storage hi-

erarchy. Being able to issue memory requests (i.e., load/store)
directly to the SSD eliminates the need to migrate pages

between the SSD and the DRAM. With the existing interface

standards like PCIe (or NVMe) [48, 53], CCIX [12], QPI [4],

and OpenCAPI [50], CPUs are capable of issuing load/store
accesses, including atomic operations, directly to the SSD
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Figure 2. System architecture of FlatFlash.

using memory-mapped I/O. However, NAND Flash chips,

the memory technology commonly used in SSDs, are not

byte-addressable. We can leverage the DRAM (a few GBs)

present inside SSDs, originally for the purpose of storing

the flash translation layer (FTL) and data buffering, to ser-

vice the CPU’s memory requests [6, 49, 59]. With the byte-

addressable SSD memory extension (see Figure 1b), appli-

cations with a random access pattern can issue memory

requests directly to the SSD in cache line granularity, thus

reducing the I/O traffic. For an application that exhibits data

locality, we can still promote its working set into fast DRAM

for better performance. We will discuss how FlatFlash man-

ages and exploits the byte-addressable SSD in detail in § 3.

3 FlatFlash Design
An overview of the FlatFlash system architecture is shown in

Figure 2. FlatFlash addresses the challenges associated with

exploiting the byte-accessibility of SSDs in five steps. First,

we discuss the techniques used to enable byte-accessibility

of SSDs in FlatFlash (§ 3.1). Second, we combine the SSD and

DRAM into a unified and flat memory space. That is, a virtual

memory page can be mapped either to the DRAM or the SSD.

Such a unified memory interface simplifies the programma-

bility of byte-addressable SSDs. Applications can directly

access the SSD using regular memory requests without the

need of paging mechanism (§ 3.2). Third, to gain benefits

from the faster accesses to the DRAM, we propose a mecha-

nism for promoting pages from the SSD to host DRAM. The

mechanism keeps the page promotion activities from stalling

application execution and ensures data consistency during

the promotion process (§ 3.3). Fourth, to further bring bene-

fits for applications, we develop an adaptive promotion policy

that is dependent on their access patterns. The adaptive pro-

motion mechanism is an integral part of Promotion Manager

and interacts with the SSD-Cache to determine which pages

to promote (§ 3.4). Fifth, FlatFlash enables byte-granular data

persistence which facilitates critical-data persistence for sys-

tems software and applications that have strict requirement

on data persistence (§ 3.5).
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Figure 3. Page table support for memory-mapped SSD vs.

FlatFlash. Both of them support unified address translation,

however, FlatFlash enables direct memory access without

relying on paging.

3.1 Enabling Byte-Addressability of SSDs
The PCIe standard defines a set of Base Address Registers

(BARs) for end-point devices like SSDs to advertise the mem-

ory mappable region to the host at the system reset stage.

During boot time, the BIOS and OS check the BAR registers

of the PCIe-based end-point devices to add the extended

memory mapped regions to the host. All memory requests

to these extended memory-mapped regions are redirected

to the respective PCIe end-point devices by the host bridge

in Figure 2. The end-point device is responsible for mapping

internal resources to the respective address ranges. With

PCIe MMIO, the memory requests including atomic reads

and writes, can be directly issued to the PCIe end-point de-

vice. FlatFlash exploits one of the PCIe BARs to expose the

SSD as a byte-addressable memory mapped region to the

host. During PCIe enumeration, the flash memory region is

mapped into the memory space in the host.

Since the host PCIe bridge does not support cache coher-

ence between the host machine and PCIe devices yet, the

PCIe MMIO accesses are not cached in the host processor

cache, which would miss the chance of exploiting the per-

formance benefit of processor cache for applications. This is

not much of a concern as commodity PCIe-based devices are

increasingly employing the cache coherent protocol such as

CAPI/OpenCAPI [25], CCIX [12], and GenZ [65] to acceler-

ate applications. We leverage the cache coherent protocol in

CAPI to enable cache-able memory accesses in FlatFlash.

Although PCIe MMIO supports memory requests in byte

granularity, NAND flash memory chips have to be accessed

in page granularity. To fill this gap, we leverage the DRAM

(normally used for FTL but no longer needed since the FTL

has been merged with the page table in the host, see § 3.2)

inside the SSD as a cache (SSD-Cache in Figure 2) for the

memory-mapped flashmemory region. Therefore, SSD-Cache

provides the necessary bridge between the byte-addressable

interface and NAND Flash chips. The SSD-Cache Manager

is responsible for handling all the operations related to SSD-

Cache. Note that we organize SSD-Cache in page granularity.

We will discuss the SSD-Cache details in § 3.4.

3.2 Unified Memory with Byte-Addressable SSD
SSDs can be used as memory via the memory-mapped inter-

face provided by operating systems. In the traditional system,

the page table entries point to the physical DRAM addresses

in the host. For an access to the page in SSD, a page fault

will occur, resulting in the page migration from the SSD

to DRAM. Recently, Huang et al. [27] proposed the unified

address translation for memory-mapped SSDs. It combines

the traditional system’s memory, storage, and device-level

address translation (i.e., flash translation layer) into page

tables in the virtual memory system. Therefore, the page

table entries can point to the physical addresses in SSD as

shown in Figure 3a. However, it still relies on paging mech-

anism to use DRAM as the cache when applications access

the memory-mapped SSD.

FlatFlash differs from these existing work that require a

page to be moved to the host DRAM before it can be accessed

through the memory interface, it provides direct cache line

access to the SSD as shown in Figure 3b. FlatFlash leverages

the unified address translation mechanism in [27] to reduce

the address translation overhead, and it further enables ap-

plications to issue memory requests directly to the pages

in the SSD. This removes the need for the paging mecha-

nism for a regular memory access to the memory-mapped

SSD. FlatFlash handles memory requests to the SSD in the

following ways.

• memory read request: The SSD-Cache manager in the SSD

controller serves the memory read request by searching

the SSD-Cache with the given physical address. For an

SSD-Cache hit, it issues a PCIe MMIO response to the

host with the data. If it is a cache miss, it reads the page

from the flash device with the physical address. The SSD-

Cache manager then issues a PCIe MMIO response with

the requested cache line from the page.

• memory write request: For memory write request, if it is a
SSD-Cache hit, SSD-Cache manager updates the page in

the SSD-Cache with the new data. If it is a cache miss, it

loads the page from the flash device into SSD-Cache and

updates it with the new data.

FlatFlash relies on the garbage collection (GC) of the SSD

to collect dirty pages in SSD-Cache and write them back to

the SSD periodically. The GC is discussed in details in § 4.

Since accesses to SSD are slower than accesses to DRAM,

pages that are frequently accessed (i.e., hot pages) can be

promoted to the host DRAM for better performance. How-

ever, promoting a page from the SSD to the host DRAM is

not free (it takes 12.1 µs as shown in Table 2). Also, a write

request to the page that is being promoted would result in

inconsistent view of the data to the application. To overcome

these challenges, FlatFlash performs off-critical path page

promotion to avoid application stall.



3.3 Off-Critical Path Page Promotion
To facilitate effective page promotion and ensure data consis-

tency during the promotion procedure, we add a Promotion

Look-aside Buffer (PLB, see Figure 2) to the host bridge (a.k.a.,

Root Complex) that connects the CPU, memory controller,

and I/O interfaces. Note that the page promotion is executed

in cache line granularity and concurrent promotions for mul-

tiple cache lines are enabled.
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Figure 4. An example for the Promotion Look-Aside Buffer.

The PLB consists of a PLB table and a controller to manage

any memory requests to the in-flight promotion page. As

shown in Figure 4a, each in-flight page promotion has an

entry in the PLB table with its source SSD physical address

(SSD tag) and its destination DRAM physical address (Mem
tag). The PLB entry also has a valid bit (V) and a bit vector

(Copied Cache Line) to indicate if each cache line (CL) in

the page is currently residing in the host DRAMor not.When

a page promotion is requested by the promotion manager,

the PLB will get a free page from a reserved memory region

in host DRAM for caching the page being promoted and

initialize a PLB entry with the SSD and DRAM addresses.

PLB uses the Copied CL field to ensure the data consis-

tency between the SSD and host DRAM. During the page

promotion, for each cache line that is promoted from the

SSD to the host, the PLB controller checks if the correspond-

ing bit in Copied CL field is set or not. If it has been set by

an evicted cache line from the CPU during the promotion,

PLB controller will cancel the promotion of that cache line

from the SSD. Otherwise, the PLB controller first sets the

corresponding bit in the Copied CL field to inform that the

most recent copy of that cache line exists in the host DRAM

and then all the memory operations to this cache line will be

forwarded to the host DRAM. When PLB receives requests

to the same cache line from both the host CPU (for regular

memory operations) and the SSD controller (for page pro-

motion), it gives higher priority to the requests from host

CPU to avoid conflicts.

Once the promotion of a page is completed, its correspond-

ing entry in PLB is cleaned, and the corresponding page table

entry (PTE) and translation lookaside buffer (TLB) entry are

updated. As the latency of accessing data in the SSD is much

higher than the latency of TLB shootdown, the overhead of

TLB shootdown is small and has negligible impact on the

performance of the whole system.

In FlatFlash, the PLB table has 64 entries. Each entry has

24 bytes (8 bytes for each tag) and 1 valid bit. Thus, its stor-

age overhead is trivial. Once the promotion of a page is

completed, its corresponding entry in the PLB table will be

cleaned for future use. As we index the PLB entries following

the principles of the content-addressable memory (CAM) de-

sign, each PLB entry lookup takes only one CPU cycle [52],

thus its performance overhead is negligible. Since PLB has

multiple entries, it enables concurrent promotion of multiple

hot flash pages.

As host DRAM capacity is limited, the least-recently used

pages will be evicted out for free space in host DRAM and

written back to SSD with page granularity, and the corre-

sponding TLB entries will be updated to the flash addresses.

Since the latency of writing a page to SSD is much higher (16

µs for ultra-low latency Z-SSD [67]) than the latency of TLB

shootdown [3], the TLB shootdown overhead is relatively

small and has negligible effect.

We use an example to demonstrate the in-flight page pro-

motion process. As shown in Figure 4, a hot page (❶) is

identified for promotion. The SSD promotion manager ini-

tiates the promotion by informing the PLB controller with

the source and destination physical addresses. The PLB con-

troller then inserts a valid entry to the PLB table (❷) as

shown in 4a. For each CL that is promoted, the PLB con-

troller sets the corresponding bit in the Copied CL field (❸).

Figure 4b illustrates the case for a store (cache eviction) to a

CL within the in-flight page promotion (❹). PLB controller

set the Copied CL field (❺) in the PLB entry and redirects

the CL to the host DRAM using the Mem Tag field (❻). As for

the promotion of an inbound CL from the SSD promotion

manager, the PLB controller checks the Copied CL flag to

determine if the CL is updated or not. As shown in Figure 4c,

if the Copied CL is set, it means the most recent copy of

the corresponding CL is in the host DRAM, the inbound CL

from the SSD will be discarded (❼).

3.4 Adaptive Page Promotion Scheme
We now discuss how we identify pages for promotion within

SSD-Cache. SSD-Cache in FlatFlash uses a set-associative

cache structure and leverages Re-reference Interval Predic-

tion (RRIP) as its replacement policy since it can achieve

a better cache hit rate [31], especially for random page ac-

cesses. Each entry in SSD-Cache has a valid bit (V), tag (Tag),
re-reference interval value counter (RRPV), page hit counter
(pageCnt), and page data (Page). The pageCnt increments

when a cache line of a corresponding page is accessed.



Variables: PageCntArray({0}), NetAggCnt(0), AccessCnt(0), AggPro-

motedCnt(0), LwRatio(0.25), HiRatio(0.75), MaxThreshold(7), Re-

setEpoch(10K), CurrThreshold(7)

1: procedure adjust_cnt(set ,way)
2: NetAggCnt← NetAggCnt - PageCntArray[set ][way]
3: PageCntArray[set ][way]← 0

4: procedure update(paдeSet ,paдeW ay)
5: NetAggCnt++

6: AccessCnt++

7: pageCnt← ++PageCntArray[paдeSet ][paдeW ay]
8: promoteFlag← pageCnt = CurrThreshold

9: if promoteFlag then
10: AggPromotedCnt← AggPromotedCnt + pageCnt

11: promote(paдeSet , paдeW ay)
12: currRatio← AggPromotedCnt / AccessCnt

13: if currRatio ≤ LwRatio then
14: if CurrThreshold < MaxThreshold then
15: CurrThreshold++

16: else if currRatio ≥ HiRatio then
17: if CurrThreshold > 1 and promoteFlag then
18: CurrThreshold--

19: if AccessCnt = ResetEpoch then ▷ reset counters

20: AccessCnt← NetAggCnt

21: AggPromotedCnt← 0

22: CurrThreshold← maxThreshold

Algorithm 1. The adaptive page promotion algorithm. The

variables are listed with their initial values. UPDATE pro-

cedure is called on every memory access to the SSD and

ADJUST_CNT is invoked on a page eviction in SSD-Cache.

A naive approach, taken from the paging mechanism, pro-

motes every accessed page. This can pollute the DRAM as

many of these pages have low reuse. To manage page pro-

motions, an access counter can be added for each page in

the SSD-Cache, pageCnt, whose value is compared against

a threshold, maxThreshold, on every access to determine if

it should be promoted or not. However, comparison against

a fixed threshold is insufficient to dynamically adapt to dif-

ferent memory access patterns. Thus an adaptive thresh-

old, CurrThreshold, is needed so that pages are promoted

frequently when there is high page-reuse and infrequently

when there is low page-reuse.

In order to detect page re-use pattern, we set currRatio

to
AggPromotedCnt

AccessCnt , where AggPromotedCnt is the sum of the

page access counters that have reached CurrThreshold and

AccessCnt is the total number of accesses to the SSD-Cache.

A high value of currRatio signifies high page-reuse asmany

pages’ access counters reached the CurrThreshold value

and were promoted. Similarly, a low value of currRatio
signifies low page-reuse as not many pages’ access counters

reached the CurrThreshold. The adaptive promotion algo-

rithm adapts the CurrThreshold value based on whether

the currRatio is high or low. If currRatio is greater than
or equal to HiRatio, then CurrThreshold is decremented

so that the pages are promoted frequently. If currRatio is
less than or equal to LwRatio, then CurrThreshold is incre-

mented so that the pages are promoted infrequently.

To mitigate the slow unlearning rate of the adaptive pro-

motion algorithm, we reset the counters of CurrThreshold,
AggPromotedCnt, and AccessCnt at every epoch, ResetEpoch.
To preserve the access pattern for the pages currently in the

SSD-Cache, we set AccessCnt to NetAggCnt, the sum of the

pageCnt for all pages present in the SSD-Cache, avoiding the
overhead of scanning the PageCntArray which has 512K en-

tries for a 2GB SSD-Cache. The storage overhead of the page

promotion mechanism is 0.2% of the SSD-Cache size, mostly

contributed by the PageCntArray. We show the adaptive

promotion scheme in Algorithm 1.

3.5 Byte-Granular Data Persistence
As discussed, the unified memory interface simplifies the

programmability with byte-addressable SSDs, and programs

can transparently obtain the performance benefits from both

byte-addressable large SSDs and fast DRAM. As a new in-

terface enabled in SSDs, the byte-accessibility also helps

programs achieve fine-grained data persistence by exploit-

ing the byte-granular durable write in combination with the

persistence nature of SSDs.

Unlike conventional persistent storage that uses a block

interface, FlatFlash enables byte-granular data persistence,

which significantly reduces the I/O traffic to SSDs. This fea-

ture can be used to achieve fine-grained data persistence for

specific data structures in software, such as log persistence

in database and meta-data persistence in file systems.

To implement this feature, FlatFlash leverages the existing

PCIe-based atomic memory operations (see § 3.1). As many

modern SSDs employ battery-backed DRAM or large capaci-

tors [2, 6, 57] in their controllers, the received memory write

requests via PCIe MMIO will be persistent without much

hardware modifications. FlatFlash employs battery-backed

DRAM inside the SSD to simplify its implementation for

data persistence. It allows applications to create a dedicated

persistent memory region with the provided function: cre-
ate_pmem_region (void* vaddr, size_t size). All of the virtual
addresses in the persistent memory region are mapped to

the address space of the SSD.

However, ensuring the data persistence is challenging, be-

cause (1) the update to the persistent memory region could

be cached in processor cache and (2) a page in SSD could

be promoted to the volatile DRAM in the host. To overcome

the first challenge, FlatFlash enforces applications to flush

the corresponding cache lines when they write to the per-

sistent memory region and employs the "write-verify read"

approach [6, 11] which functions similarly to mfence to en-

force the ordering of writes and cache flushing in host bridge.

To overcome the second challenge, FlatFlash leverages one

of the reserved bits in the PTE as the Persist (P) bit to

indicate whether a page should be promoted or not. For ev-

ery memory access to the SSD, during address translation,

the physical address is prefixed with the P bit, and this new

physical address is transferred to the host bridge. When the
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Figure 5. The workflow of enforcing byte-granular data

persistence.

host bridge detects a memory request for the SSD, it cre-

ates a PCIe packet. In this packet, the Address field is set

to the memory address with the P bit masked out, and the

Attribute field is set to the value of the P bit [53]. When the

SSD receives a packet with the P bit set, it will not execute
update in Algorithm 1 to avoid the promotion of these pages.

The entire workflow is presented in Figure 5.

For decades, the upper-level storage software and appli-

cations were built based on the block I/O interface. We are

motivated to rethink their design primitives with the byte-

granular data persistence enabled in SSDs. To facilitate our

discussion, we use two representative systems as examples.
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Figure 6. The metadata structure of a file system.

Improving Metadata Persistency in File Systems. In
almost any type of file system, maintaining the metadata

(e.g., inode) persistence is critical for ensuring data consis-

tency. Although metadata operations incur only small up-

dates (usually 8–256 bytes in current file systems), they are

on the critical path, which significantly affects the storage

performance. A small metadata update inevitably causes a

page update, resulting in large write amplification as shown

in Figure 6. For example, file creation requires the alloca-

tion of a new inode and a update to the parent directory, it

generates 16-116 KB write IO and 24-40 KB of read IO in

different file systems [47]. With FlatFlash, we can allocate

persistent memory regions for the critical data structures

like inode and metadata journal, and persist their updates

with byte-granular data persistence.

Decentralizing the Logging for Databases. Transac-
tional databases require logging to preserve the ACID prop-

erties for transactions. In the traditional storage system stack,

databases usually have a centralized write-ahead log to group

logs (64-1,424 bytes per transaction according to our study

on database workloads TPCC, TPCB, and TATP) for avoid-

ing frequent I/O operations and generating sequential data

SSD

Centralized
Log Buffer

Lock
Contention

TXA
TXB

TXc

SSD

Log

TXA TXB TXc

Log Log

(a) Logging with block I/O (b) Logging with FlatFlash

Figure 7. Per-transaction logging with FlatFlash.

access pattern [46]. Such a design causes serious logging

contention in multi-core era [69] which limits the scalabil-

ity of transaction operations, especially when the persistent

storage device like SSD becomes faster. With FlatFlash, we

can decentralize the log buffer and apply the per-transaction

logging (similar to the logging approach proposed in [28])

to issue multiple atomic and persistent log writes concur-
rently (see Figure 7). Therefore, the logging bottleneck can

be reduced for better scalability. We integrate the discussed

approaches in both examples and evaluate them in § 5.

4 FlatFlash Implementation
FlatFlash Memory Management: We build a unified ad-

dress translation layer in the memory manager using a simi-

lar approach as described in [27], where all of the indirection

layers of the memory mapping of an SSD have been com-

bined into a single layer. FlatFlash uses the memory-mapped

interface to create a unified memory address space while

providing direct access to any data that is mapped to the

SSD in cache line granularity. Since the FTL of the SSD is

integrated into the page table in the virtual memory system

in the host, FlatFlash allows the SSD controller to update

the address mapping in PTEs and TLB entries for memory-

mapped regions when garbage collection (GC) of the SSD

moves pages to new flash blocks. To avoid frequent TLB

shootdown, FlatFlash maintains a mapping table in SSD that

maps the old physical address to the new one. Thus, it can

serve memory requests from the host machine using the old

physical address, and the entries in the mapping table will be

lazily propagated to the page table entries and TLB entries

in batches using a single interrupt [3, 8, 39].

Byte-Addressable SSDEmulation: To emulate the byte-

addressable SSD, we convert a real SSD to a byte-addressable

SSD and emulate the promotion look-aside buffer in the host

bridge (the only hardware modification required by Flat-

Flash). The host memory is used to model the SSD-cache

while the real SSD is utilized to model the raw flash device.

The host memory has been divided into two different regions:

the first region represents a regular main memory; the sec-

ond region models the SSD-Cache. We use a red-black tree



to index the pages in these regions separately. The SSD emu-

lation has been implemented as part of the memory manager

which keeps track of the pages cached in the SSD-Cache

and the pages promoted to host DRAM, and fulfills the PLB

functions and the page promotion algorithm as described in

§ 3. To reflect the memory access timings of the SSD regions,

the memory manager leverages the protection bit in the page

table entries for the SSD regions using mprotect. When the

application accesses any page within the SSD regions, an

exception is raised and the handler introduces additional la-

tency and clears the protection bit. To emulate the SSD-cache,

we flush the TLB entries of the recently accessed pages and

reset the read protection bit in these PTE entries for the SSD

region with a dedicated thread.

FlatFlash uses a similar read-modify-write garbage collec-

tion (GC) scheme as used in other SSDs [7, 24, 73], to collect

dirty pages in SSD-Cache and write them back to the SSD

periodically. In the read phase, the GC reads a flash block

into memory. In the modify phase, it overwrites the invalid

pages in the memory copy of the flash block with the dirty

pages from the SSD-Cache. In the write phase, it writes the

in-memory copy of the flash block into a free flash block

and updates the page table entries and TLB entries lazily

(as discussed previously) for these flushed dirty pages in

SSD-Cache.

5 Evaluation
Our evaluation demonstrates that: (1) FlatFlash improves

performance for data-intensive applications by adaptively

using a byte-addressable SSD and the host DRAM according

to workload characteristics (§ 5.1, § 5.2, § 5.3, and § 5.4); (2) It

minimizes the persistence overhead with byte-granular data

persistence and enables new optimization opportunities for

software systems with persistence requirement (§ 5.5 and

§ 5.6); (3) It provides a cost-effective solution to physically

extend memory capacity in a transparent way (§ 5.7). We

compare FlatFlash against the following systems:

• SeparatedMemory-Storage Stack (TraditionalStack):
The traditional memory and storage stack consisted of

DRAM with byte-addressability and SSD with a block I/O

interface. Systems software, such as the virtual memory

manager and EXT4 file system, are used to manage DRAM

and SSD, respectively. An unmodified mmap interface is

used to map the storage into virtual memory and the pag-

ing mechanism is used by default to swap pages between

DRAM and SSD. We consider TraditionalStack with plac-

ing the SSD FTL in the host DRAM for high performance,

which is similar to ioMemory [20]. All indirections are

separated but used on demand for performance.

• UnifiedMemory-Mapped Storage (UnifiedMMap): Sim-

ilar to the previous work such as FlashMap [27] that com-

bines all three indirection layers into a unified layer, it

Table 1. Real workloads used in our evaluation. We summa-

rize FlatFlash’s average improvements on both performance

and SSD lifetime compared to UnifiedMMap.

Applications Benchmarks FlatFlash Improvement (Avg.)

Performance SSD
Lifetime

HPC Challenge (§ 5.2) GUPS 1.6× 1.3×

Graph Analytics: PageRank 1.3× 1.5×

GraphChi (§ 5.3)
Connected

Component

1.5× 1.9×

Key-Value Store: YCSB-B 2.1× 1.3×

Redis (§ 5.4) YCSB-D 2.2× 1.3×

CreateFile 3.6-11.2× 2.2-8.4×

File Systems RenameFile 2.6-6.7× 1.5-12.1×

EXT4, XFS, BtrFS (§ 5.5) CreateDirectory 3.6-15.3× 1.4-9.8×

VarMail 3.2-6.2× 1.9-8.0×

WebServer 5.3-18.9× 1.5-3.1×

Transactional Database: TPCC 1.9× 1.0×

ShorMT (§ 5.6)
TPCB 2.8× 1.0×

TATP 1.3× 1.0×

Table 2. Latency of the major components in FlatFlash

Overhead Source Average (µsec)
Read a cache line in SSD-Cache via PCIe MMIO 4.8

Write a cache line in SSD-Cache via PCIe MMIO 0.6

Promote a page from SSD-Cache to host DRAM 12.1

Update PTE and TLB entry in host machine 1.4

Page table walking to get the page location 0.7

reduces the address translation overhead for memory-

mapped storage and utilizes the DRAM resource by low-

ering the storage cost of maintaining metadata for each

indirection layer. UnifiedMMap bypasses the conventional

storage software stack to access data in SSDs.

We use a server machine with a 24-core Intel Haswell

based Xeon CPU running at 2.6 GHz with 64GB of DRAM

and an Intel DC P3700 series PCIe-based SSD with the capac-

ity of 1.6TB. We use the system described in § 4 to emulate

FlatFlash.We set the size of the SSD-Cache to be 0.125% of the

SSD capacity by default. To quantify the performance bene-

fits of FlatFlash in different aspects, we use a variety of data-

intensive applications that contain both high-performance

computing and enterprise workloads. We summarize the

experimental results in Table 1.

To measure the read/write latency of accessing a cache

line via PCIe MMIO, we used a Xilinx Virtex-7 [70] and

annotated the driver of a reference design. We used the mea-

sured numbers (see Table 2) in our byte-addressable SSD

emulator. The MMIO write operation is a posted transaction

which is completed when the written data reaches the write

buffer [11]. Therefore, the latency of the write transaction is

significantly lower than that of the read transaction.

5.1 Byte-Addressable SSD vs. Paging Mechanism
We first evaluate the performance of FlatFlash with synthetic

workloads. We vary the SSD size from 32GB to 1TB while

keeping the host DRAM size at 2 GB for the workloads (with-

out including the main memory required by host OS). We

allocate 2 million pages (4 KB) that distribute uniformly from



(a) Sequential Access (b) Random Access

Figure 8. Average latencies of accessing a cache line (64

bytes) in sequential and random manner respectively.

a file that spans the entire SSD. We perform both sequential

and random memory accesses against these pages in cache

line granularity (64 Bytes). At the beginning, we randomly

access the 2 million pages to warm up the system.

We compare the read/write latencies of FlatFlash with

TraditionalStack and UnifiedMMap as described above and

report the average latencies of accessing 64 bytes of data

in Figure 8. For sequential memory access, the latency of

accessing a cache line in FlatFlash is close to that of Unified-
MMap with a slight overhead as shown in Figure 8a. The

additional overhead is introduced by the off-critical path

page promotion (see § 3.3) which takes 12.1 µs on average

for a 4KB page. Both FlatFlash and UnifiedMMap performs

much better than TraditionalStack because they bypass the

storage software stack with the unified address translation.

For random memory access, FlatFlash reduces the laten-

cies by 1.2-1.4× and 1.8-2.1× compared to the UnifiedMMap
and TraditionalStack respectively, because accessing a cache

line of a page in SSD-Cache via PCIe MMIO is more efficient

than moving a flash page with low reuse to host DRAM.

FlatFlash will automatically switch between the PCIe MMIO

mode and page promotion according to workload patterns.

In summary, for memory accesses with high page-reuse,

FlatFlash promotes pages to host DRAM for better perfor-

mance. For low page-reuse cases, FlatFlash outperforms oth-

ers because it adaptively issues memory requests to the SSD

over PCIe rather than using the conventional paging mecha-

nism. We evaluate FlatFlash with real applications as follows.

5.2 Performance Benefit for HPC Applications
For high-performance computing applications, a representa-

tive benchmark is the High-Performance Computing Chal-

lenge (HPCC-GUPS) [43]. We use its RandomAccess bench-
mark in our experiment, as it is usually used to test the

capability of memory systems. In this benchmark, multi-

ple threads cooperate to solve a large scientific problem by

updating random locations of a large in-memory table. We

set the table size to be 32GB, which is larger than the host

DRAM available for GUPS (2GB). Therefore, SSDwill be used

to expand the memory space when the benchmark runs.

(a) HPCC-GUPS Performance (b) Sensitivity to SSD-Cache Size

Figure 9. (a) FlatFlash performs 1.6× and 2.7× faster than

UnifiedMMap and TraditionalStack for HPCC-GUPS. The

lines represent the number of page movements between

SSD and host DRAM. (b) FlatFlash benefits more from the

increased SSD-Cache size.

FlatFlash performs 1.5-1.6× and 2.5-2.7× faster than Uni-
fiedMMap and TraditionalStack respectively as shown in Fig-

ure 9a. FlatFlash outperforms UnifiedMMap because many

of the random memory accesses are issued to the SSD di-

rectly with PCIe MMIO. In this case, fewer pages are moved

between the SSD and host DRAM. FlatFlash reduces page

movement by 1.3-1.5× compared to the UnifiedMMap and

TraditionalStack solutions (see the lines in Figure 9a). Uni-
fiedMMap has slightly fewer page movements than that of

TraditionalStack because it has more available DRAM for the

application’s working set by combining the address transla-

tion layers across the storage stack and thus reducing the

size of the page index. For applications that demand a large

amount of memory and have random memory accesses, Flat-

Flash provides a practical solution by leveraging the SSD

to expand the memory capacity while exploiting its byte-

accessibility for better performance.

To understand how SSD-Cache size affects the FlatFlash

performance, we vary the SSD-Cache size while keeping

the same working set size for GUPS, and maintaining the

SSD:DRAM ratio at 512. Figure 9b shows the performance

speedup of FlatFlash over UnifiedMMap and TraditionalStack
is increased as we increase the SSD-Cache size. This is be-

cause both UnifiedMMap and TraditionalStack have to mi-

grate pages from the SSD to host DRAM irrespective of the

SSD-Cache size. FlatFlash can utilize the SSD-Cache capacity

and directly access the data in SSD without migrating pages.

5.3 Performance Benefit for Graph Analytics
Beyond HPC workload, we also evaluate the performance

benefit of FlatFlash for enterprise graph analytics applica-

tions. These graph analytics applications are typically used

for large social networks and genomics analysis, which are

memory intensive. The experiments with graph analytics

aim to demonstrate that FlatFlash can also benefit memory-

intensive applications that preserve certain levels of data

locality (e.g., power-law distribution [21]).

We use GraphChi [41], which is a graph analytics frame-

work that partitions large graphs such that each partition
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Figure 10. Performance of graph analytics on Twitter and Friendster graph datasets with various DRAM size. Compared to

UnifiedMMap, FlatFlash provides 1.1-1.6× better performance for PageRank and 1.1-2.3× better performance for Connected-

Component Labeling algorithm. The lines represent the number of page movement between SSD and host DRAM.

can fit in DRAM. We modify GraphChi to place the entire

graphs in FlatFlash and run graph analytic algorithms with

various DRAM sizes. The size of the graph data is beyond the

available amount of DRAM, thus, the SSD is used as mem-

ory. We run two graph analytics algorithms, PageRank and

Connected Component Labeling, on two different graphs: (1)

Twitter graph dataset [40], which has 61.5 million vertices

and 1.5 billion edges; (2) Friendster graph dataset [71], which

has 65.6 million vertices and 1.8 billion edges.

We first run the PageRank algorithm on both Twitter and

Friendster datasets. FlatFlash outperforms UnifiedMMap by

1.1-1.6× as shown in Figure 10. Aswe increase the SSD:DRAM

ratio, the benefit brought by FlatFlash over UnifiedMMap is

increased, because the thrashing of the limited DRAM is

reduced since the host can directly issue memory requests

to the SSD to avoid page movement between the SSD and

host DRAM. As FlatFlash performs 1.2-3.3× better than Tra-
ditionalStack, as it leverages the unified address translation

to improve DRAM efficiency.

We next evaluate the Connected-Component Labeling

algorithm. FlatFlash performs 1.1-2.3× and 1.3-4.8× better

than UnifiedMMap and TraditionalStack, respectively. For the
Friendster graph dataset, a significant number of page move-

ments are incurred due to misses in host DRAM, as shown

in Figure 10d. FlatFlash improves such types of workload

significantly as it enables the host CPU to access flash pages

directly without paging them to host DRAM.

5.4 Latency Benefit for Key-Value Store
We now demonstrate the benefit of FlatFlash for latency-

critical applications. We use the in-memory key-value store

Redis [58] as a representative for such applications. We run

Yahoo Cloud Serving Benchmark (YCSB) [15] workloads that

represent the typical cloud services to test the latencies of

accessing Redis. In our evaluation, we use workloads B and D.

Workload B consists of 95% reads and 5% updates, modeling a

photo tagging application. Workload D consists of 95% reads

and 5% inserts, modeling social media status updates. Both

workloads issue requests with Zipfian distribution.

(a) YCSB-B (b) YCSB-D

Figure 11. Tail latency reduction for key-value store Redis.

FlatFlash reduces the tail latency by 1.8-2.7× and 2.0-2.8×

compared to TraditionalStack andUnifiedMMap, respectively.

(a) YCSB-B (b) YCSB-D

Figure 12. Average latency reduction for key-value store

Redis with YCSB. FlatFlash reduces the average latency by

1.2-3.2× and 1.1-1.4× compared to TraditionalStack and Uni-
fiedMMap, respectively. The lines represent cache hit ratio.

We use 16 client threads to issue key-value operations

against Redis. Each key-value pair is 64 bytes. We conduct 64

million operations for each workload and adjust the working

set sizes by setting the request distribution parameter in

YCSB.Wemaintain the SSD:DRAM ratio at 256while varying

the ratio of working set size to DRAM size.

In these workloads, the tail latency is important as it dic-

tates the performance guarantees for 99% of the requests (i.e.,

99th percentile latency). FlatFlash reduces the 99th percentile

latency by 2.2× and 2.5× on average compared to Unified-
MMap and TraditionalStack, respectively (see Figure 11). The
benefit mainly comes from FlatFlash’s promotion algorithm,

which decreases page movement between the SSD and host



Figure 13. FlatFlash improves the performance of the com-

mon file system operations by up to 18.9×. VarMail bench-
mark emulates a mail server that stores each email in a file;

WebServer emulates the storage operations in a web-server.

DRAM as it avoids promoting low-reuse pages. Taking the

YCSB workload B for example, when its working set size is

16× larger than the available host DRAM size, the number of

pages moved between SSD and host DRAM is reduced from

3.9 million in TraditionalStack to 2.7 million in FlatFlash as

shown in Figure 11a. Such a policy can avoid pollution in the

host DRAM and reduce the I/O traffic to the SSD, therefore,

the performance interference is reduced. Similar results have

been seen in YCSB workload D as shown in Figure 11b.

FlatFlash improves the average latency of Redis by up

to 3.2× and 1.4× compared to TraditionalStack and Unified-
MMap respectively, as demonstrated in Figure 12. For YCSB

workloads that have certain levels of data locality, FlatFlash

further improves application performance by reducing the la-

tency of the remaining random requests (see Figure 8) while

exploiting the DRAM speed for requests with data locality.

5.5 Persistency Benefit for File Systems
In this section, we demonstrate the benefit of FlatFlash on

data persistence by applying the byte-granular data persis-

tence to file systems as the case study discussed in § 3.5.

We modified EXT4 (e.g., ext4_setattr in inode.c), XFS (e.g.,

xfs_setattr_size in xfs_iops.c), and BtrFS (e.g., btrfs_setattr
in inode.c) to instrument their metadata persistence proce-

dures and collect the storage traces of metadata and data

operations when running a variety of file system bench-

marks from FileBench [64]. Each benchmark executes about

50 million file system operations. As shown in Figure 13,

FlatFlash improves the performance of these common file

system operations such as file creation, file rename, and di-

rectory creation by 2.6-18.9×, 5.3-11.2×, 3.2-15.3× for EXT4,

XFS, and BtrFS, respectively. The benefits of FlatFlash mainly

come from the byte-accessibility of SSDs. Since each file sys-

tem has its own implementation for data consistency, the

performance improvement varies for the same workload.

Instead of persisting a page for each metadata operation,

FlatFlash guarantees the atomicity and durability of the small

updates with PCIe operations and their persistency with

a battery-backed DRAM cache inside SSD. Beyond perfor-

mance benefits, FlatFlash also significantly reduces the write

amplification for file system operations by avoiding the re-

dundant journaling (for EXT4 and XFS) and copy-on-write

Table 3. Cost-effectiveness of FlatFlash vs. DRAM-only.

Application Workloads Slow-
down

Cost-
Saving

Cost-
Effectiveness

HPC Challenge GUPS 8.9× 14.6× 1.6×

Graph Analytics

PageRank 11.0× 14.6× 1.3×

Conn-

Component

6.9× 14.6× 2.1×

Key-Value Store

YCSB-B 6.1× 15.0× 2.5×

YCSB-D 5.5× 15.0× 2.7×

Transactional TPCC 1.4× 2.4× 1.7×

Database TPCB 1.9× 2.6× 1.4×

TATP 1.2× 4.5× 3.8×

logging (for BtrFS), which further improves SSD lifetime as

shown in Table 1.

5.6 Persistency Benefit for Transactional Database
To evaluate the persistency benefit of FlatFlash for database,

we modify the open-source database Shore-MT [34] and

implement per-transaction logging with TraditionalStack,
UnifiedMMap, and FlatFlash respectively. We use Shore-Kits

benchmarks that include TPCC, TPCB, and TATP database

workloads. We reserve 6GB for the memory manager of

Shore-MT database engine. The database size used is 48GB.

We vary the number of client threads from 4 to 16.

FlatFlash scales the throughput of transaction operations

by up to 3.0× and 4.2× compared to UnifiedMMap and Tra-
ditionalStack, respectively, as demonstrated in Figure 14.

Applying the per-transaction logging scheme to Tradition-
alStack and UnifiedMMap does not improve their (TPCC

and TATP) throughput significantly, because they interact

with SSD using page granularity and scalable logging has

less chance to group logs and thus increases the I/O traf-

fic as the transaction log entry is usually small (64–1,424

bytes). As TPCB is an update-intensive workload, the per-

transaction logging brings benefit to TraditionalStack and

UnifiedMMap, however, FlatFlash still performs the best. Flat-

Flash treats byte-addressable SSD as a non-volatile memory

device, which enables new optimization opportunities for

persistence-critical systems. As the SSD latency decreases

with newmemory technologies (e.g., PCM [56], 3DXPoint [1]),

FlatFlash can achieve even more performance benefits as

shown in Figure 14d. FlatFlash has the same write amplifica-

tion factor for logging as other two schemes with centralized

log buffer, thus its SSD lifetime is not improved (see Table 1).

5.7 FlatFlash vs. DRAM-Only Systems
In this section, we analyze the cost-effectiveness of FlatFlash

in comparison to DRAM-only systems. We rerun the work-

loads in Table 1 by hosting their entire working sets in DRAM.

Our analysis uses the ratio of the DRAM-only system’s per-

formance to FlatFlash’s performance as the performance

slowdown, with the DRAM and SSD cost for hosting all rele-

vant data for the workloads. The unit prices for DRAM and

the PCIe SSD used in our experiments are $30/GB and $2/GB,

respectively.DRAM-only system increases the server’s base

cost by $1,500 as more DIMM slots are required. As shown



(a) TPCC (b) TPCB (c) TATP (d) Various device latency

Figure 14. Throughput of running database with scalable logging for TPCC, TPCB, and TATP. For Flash with 20 µs device
latency, FlatFlash improves the throughput by 1.1-3.0× and 1.6-4.2× compared to UnifiedMMap and TraditionalStack. As we
reduce the device latency in (d), FlatFlash outperforms UnifiedMMap by up to 5.3× when running database with 16 threads.

in Table 3, FlatFlash costs 2.4-15.0× less compared to the

DRAM-only setup for different applications, improving the

normalized performance per cost by 1.3-3.8×.

6 Related Work
Using SSDs as Memory. SSDs have been used to expand

the main memory capacity with the memory-mapped inter-

face and swapping mechanism in operating systems [5, 13,

17, 27, 35, 54, 60, 62, 63]. They treat SSDs as block devices

and rely on paging mechanism to manage the data move-

ment between the SSD and host DRAM. FlatFlash exploits

the byte-accessibility of SSDs and investigates its impact on

the unified memory-storage hierarchy. To improve the per-

formance of accessing SSDs, previous solutions either bypass

the storage software stack [9, 14, 27, 38, 55] or move system

functions closer to the hardware [22, 36]. FlatFlash shares

the similar performance goals with these work by bypassing

the storage software stack, but it focuses on exploiting the

performance benefits of byte-addressable SSDs.

Byte-addressable SSDs. Jacob et al. [30] proposed amem-

ory architecture that leverages DRAM as a cache to provide

quasi-byte-addressability for Flash. Jin et al. proposed Pebb-

leSSD [33] that architects non-volatile memory inside SSD

controller to reduce the metadata management overhead for

SSDs. Bae et al. proposed a dual, byte- and block-addressable
SSD with a persistent memory [6] by leveraging the byte-

addressability of PCIe interconnect. FlatFlash acknowledges

these work and moves further to rethink the unified mem-

ory system design to manage the byte-addressable SSD and

exploit its byte-accessibility in computing systems. For in-

stance, FlatFlash performs higher throughput for transac-

tional databases by decentralizing the logging for databases

as discussed in § 5.6.

Hybrid Memory Systems. To overcome the scaling lim-

its of DRAM, alternative memory technologies such as non-

volatile memories (NVMs) like PCM, STT-RAM, and 3D

Xpoint have been proposed [18, 45, 56, 74]. As these tech-

nologies have different characteristics in terms of perfor-

mance, capacity, lifetime, and cost, it is unlikely that a single

memory technology will simply replace others to satisfy all

the requirements of applications [6, 18, 19, 37]. The byte-

addressable SSD has its unique properties. It is developed

based on the commodity PCIe attached SSD and provides

both byte and block-accessible interfaces. FlatFlash focuses

these unique parts, rethinks the current system design, and

investigates its performance and persistency benefits for sys-

tems software and applications. In hybrid memory systems,

the page migration between different memory devices has

been a classical topic [10, 32, 61, 72], FlatFlash proposes an

adaptive page promotion mechanism dedicated for the byte-

addressable SSD and host DRAM with the goal of exploiting

their advantages concurrently and transparently. As NVM

such as PCM is slower than DRAM, we believe FlatFlash tech-

niques (e.g., page promotion) can shed light on the unified

DRAM-NVM hierarchy.

7 Conclusion
In this paper, we exploit the byte-accessibility of SSDs inmod-

ern memory-storage hierarchy. We leverage a unified mem-

ory interface to simplify the management and programma-

bility of byte-addressable SSDs. We develop an adaptive page

promotion mechanism between the SSD and host DRAM,

thus programs can exploit benefits from both of them concur-

rently. We also exploit the byte-granular data persistence of

SSDs and apply it to representative software systems such as

file systems and database. Experiments show that FlatFlash

is a cost-effective solution, which brings significant perfor-

mance and persistency benefits to a variety of applications.
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