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Abstract
Cloud platforms have been virtualizing storage devices like
flash-based solid-state drives (SSDs) to make effective use
of storage resources. They enable either software-isolated
instance or hardware-isolated instance for facilitating the
storage sharing between multi-tenant applications. However,
for decades, they have to combat the fundamental tussle
between the performance isolation and resource utilization.
They suffer from either long tail latency caused by weak
isolation or low storage utilization caused by strong isolation.

In this paper, we present FleetIO, a learning-based storage
virtualization framework that employs reinforcement learn-
ing (RL) for managing virtualized SSDs. FleetIO explores
the unique features of RL to handle the dynamic changes of
application workloads and storage states, and integrates the
storage scheduling into the RL decision-making process. It
achieves both performance isolation and improved storage
utilization by enabling dynamic fine-grained storage harvest-
ing across collocated application instances, while minimizing
its negative impact on their service-level objectives (SLOs).
FleetIO clusters workloads into different types (e.g., latency-
sensitive and bandwidth-intensive) based on the collected
I/O traces at runtime, and fine-tunes the RL reward functions
for each type of workloads. We implement FleetIO on a real
programmable SSD board and evaluate it with diverse cloud
applications. We show that FleetIO improves the overall stor-
age utilization of the shared SSD by up to 1.4×, and decreases
the tail latency of I/O requests by 1.5× on average, compared
to the state-of-the-art storage sharing approaches.

CCSConcepts: •Hardware→External storage; •Theory
of computation → Reinforcement learning; • Informa-
tion systems → Storage virtualization.
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1 Introduction
In cloud platforms today, storage devices such as flash-based
SSDs are shared by multiple applications via storage virtu-
alization [2, 22, 36, 38, 46]. They slice SSDs into multiple
virtual instances (i.e., virtual SSDs or vSSDs) and map each
vSSD to the underlying flash chips according to its demands
of storage capacity and bandwidth [17, 27, 42, 54]. This not
only enables storage sharing among cloud virtual machines
(VMs) but also facilitates cloud storage management. How-
ever, it has been a longstanding challenge to develop efficient
SSD virtualization, due to the fundamental tussle between
the performance isolation and storage utilization.
As we collocate multiple cloud applications on a shared

SSD, two approaches have been developed to enforce the stor-
age isolation: software-isolated approach [3, 16, 42, 47] and
hardware-isolated approach [9, 17, 38]. The software-isolated
approach enables sharing among multi-tenant applications
using I/O throttling [3]. It can maximize the overall storage
utilization, but offers limited performance isolation due to
the interference between application instances, resulting in
long tail latency and SLO violations. The hardware-isolated
approach takes advantage of the software-defined flash ar-
chitecture [17, 34], and maps each vSSD to the flash channels
by utilizing the internal parallelism of SSDs (Figure 1). As
each instance fully owns the flash channels, it provides the
strongest isolation but at the sacrifice of utilization. Our
study with cloud applications shows that the storage utiliza-
tion of the hardware-isolated approach can be 1.5× worse
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than the software-isolated one, while its tail latency can be
2.0× less than the software-isolated approach (see §2.2).

Ideally, we wish to achieve both strong performance isola-
tion and maximum storage utilization simultaneously. Most
recently, researchers [26] used pre-trained deep neural net-
works (DNNs) to learn workload patterns, and decided an
optimized number of flash channels that should be allocated.
And heuristic-based approaches [2, 38, 55] have been devel-
oped in cloud platforms to predict the availability of idle
resources that can be harvested by low-priority VMs such
as spot VMs [5, 6]. However, all these approaches cannot
quickly capture the dynamic changes of workload patterns at
runtime, and the updates to the storage states of the shared
SSD after each I/O activity (e.g., read, write, and garbage
collection). Thus, they still result in suboptimal efficiency.
Moreover, they mainly target storage utilization without
considering the performance isolation (i.e., SLO violation
and tail latency reduction) in their decision-making process.
Thus, it is difficult to rely on them to achieve the ideal goal.

To this end, we present FleetIO, an RL-based storage virtu-
alization framework that employs RL techniques to manage
virtualized SSD instances. We argue that RL is a natural fit for
managing virtualized SSDs and their shared storage states,
thanks to its unique advantages of taking actions to meet
defined purposes in a dynamic environment (see Figure 4).
Developing FleetIO with RL techniques is not easy. We

first need to extract the essential storage states of virtualized
SSDs that can be represented as the RL states for assisting
RL agents in making decisions. These states include the mea-
sured average I/O latency and throughput, measured tail
latency, I/O queue delays, available storage capacity, and
active garbage collection (GC) events. To support multiple
vSSDs concurrently, FleetIO deploys one RL agent in each
vSSD, and allows each agent to make independent actions.

FleetIO reflects the goal of improving both performance
isolation and storage utilization in its RL actions and reward
function. Specifically, FleetIO defines three types of actions
in each agent: (1) set the priority for I/O requests, which
enables flexible I/O scheduling in FleetIO to help each vSSD
meet the specified SLOs; (2) harvest storage resource from
collocated vSSDs, which enables FleetIO to improve the over-
all storage utilization by harvesting idle storage resources
across collocated vSSDs; (3) decide how much storage re-
source are harvestable for collocated vSSDs, which offers the
flexibility for each vSSD to balance storage performance and
utilization. To facilitate fine-grained storage harvesting, we
rethink the structure of virtualized SSDs and develop a new
abstraction named ghost superblock (gSB) to track the blocks
that can be harvested across flash channels (see §3.6). The
gSB abstraction simplifies the allocation and deallocation of
harvestable flash blocks in vSSDs and eases the execution of
harvesting actions for RL agents.
FleetIO formulates the RL reward function based on the

measured I/O throughput and the SLO violations of issued

I/O requests, as the former reflects how much bandwidth of
a vSSD has been utilized, and the latter indicates the level
of performance isolation. To improve the overall storage
utilization, instead of having complicated coordination be-
tween RL agents, FleetIO uses a coefficient factor to balance
the rewards of collocated RL agents. Thus, each agent takes
actions independently while aiming to meet the overall goal.
To further improve the effectiveness of FleetIO, we fine-

tune the reward function for different types of workloads
(e.g., latency-sensitive vs. bandwidth-intensive). This is be-
cause different types of workloads are in favor of different
performance metrics. Instead of having a unified reward
function, FleetIO categorizes the workloads into different
types based on their I/O access patterns. FleetIO only needs
to fine-tune the reward function for each type of workloads,
based on our study that workloads with similar I/O access
patterns can be clustered into the same type (see Figure 6).
For workloads that cannot be categorized into an existing
type, FleetIO uses a unified reward function for simplicity.
We implement the SSD virtualization framework of Flee-

tIO on a real programmable SSD (i.e., open-channel SSD)
using 3.5K lines of code with C/C++ based on the SDK li-
brary of the storage device, and 2K lines of code using Python.
We develop the RL model using RLlib [25] and PyTorch, and
pre-train the model offline on Ray [32] using a set of work-
loads. The RL model is 2.2MB. Our experiments with diverse
cloud applications show that FleetIO can improve the over-
all utilization of the shared SSD by up to up to 1.4×, and
decrease the tail latency of I/O requests by 1.5× on average,
in comparison with the state-of-the-art storage sharing ap-
proaches. FleetIO still outperforms these existing approaches
significantly as we scale the number of collocated vSSDs on
a shared SSD. Overall, we make the following contributions:

• We propose an RL-based SSD virtualization framework
FleetIO that can achieve both performance isolation and
improved storage utilization with automated decision-
making process for storage harvesting and I/O scheduling.

• We extend the virtualized SSD abstraction for support-
ing RL in FleetIO and facilitating the fine-grained storage
harvesting between collocated application instances.

• We study the impact of workload types on the RL learning
efficiency, based on which we fine-tune the RL reward
function for different types of workloads.

• We develop a system prototype of FleetIO on a real virtu-
alized SSD platform and demonstrate its effectiveness and
scalability with diverse cloud applications.

2 Background and Motivation
2.1 SSD Virtualization
Flash-based SSDs have been widely deployed in cloud plat-
forms for their high performance and low cost [36, 38]. As
shown in Figure 1 (a), an SSD has multiple flash channels.
Each flash channel has a set of flash chips, and can issue
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Figure 1. SSD virtualization that supports software-isolated
and hardware-isolated approaches.

I/O commands independently with the flash controller. Each
flash chip has multiple flash blocks. SSDs employ out-of-
place update to tolerate expensive block erase operations,
have the flash translation layer (FTL) to handle the logical-to-
physical address mapping, and perform garbage collection
(GC) to reclaim flash blocks to free up space for future use.

SSDs are usually virtualized and shared by multiple vir-
tual machines (VMs) or containers for utilization improve-
ment. Thanks to the development of software-defined flash
(SDF) [8, 17, 34, 39] that allows the upper-level software to
directly manage and access the underlying flash chips, SSD
virtualization can map each virtual SSD (vSSD) to a set of
flash channels and chips, and collocate multiple vSSDs on
the shared SSD, as shown in Figure 1 (b). Cloud platforms can
follow the pay-as-you-go model to allocate flash channels
and chips for each vSSD. Such an SSD virtualization solution
offers sufficient flexibility for resource management and has
become popular in cloud platforms today [8, 18, 30, 44, 45].
As we collocate multiple application instances or vSSDs

on the shared SSD, two approaches have been developed
to enforce their performance isolation: software-isolated
approach and hardware-isolated approach. As shown in Fig-
ure 1 (b), vSSD-1 and vSSD-2 are software-isolated vSSDs,
they are mapped to the same flash channels, and use I/O
throttling techniques like token bucket rate limiting [3, 46]
to achieve the performance isolation. The software-isolated
vSSDs can maximize the storage utilization of shared chan-
nels, but offer poor performance isolation due to the inter-
ference between vSSDs. The hardware-isolated vSSDs, such
as vSSD-3 and vSSD-4 in Figure 1 (b), fully own the flash
channels and leverage their device-level independence to
obtain the strongest isolation. However, they suffer from
low storage utilization, especially for applications that have
dynamic demands on storage resources.

2.2 Storage Utilization vs. Performance Isolation
To further understand the trade-off between performance
isolation and storage utilization, we conduct a quantitative
study with a variety of cloud workloads (see §4.1 for the de-
tailed experimental setup). In each experiment, we collocate
two different types of workloads : (1) bandwidth-intensive
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Figure 2. The SSD utilization with different isolation ap-
proaches. We show both the average and P95 utilization
(error bars) during the execution of different workloads.
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Figure 3. Storage performance of the collocated workloads
with different performance isolation approaches.

workloads (e.g., TeraSort, PageRank, and ML Preparation)
and (2) latency-sensitive workloads (e.g., YCSB and VDI-
Web). As shown in Figure 2, the software isolation approach
can improve the average bandwidth utilization by up to
1.52× (1.39× on average). We also plot the P95 bandwidth
utilization in Figure 2, and show that the hardware isolation
always cannot fully utilize the SSD bandwidth.
We also present the throughput and latency of the two

collocated workloads in Figure 3 (a) and Figure 3 (b), respec-
tively. The software isolation delivers up to 1.84× (1.64×
on average) higher bandwidth for bandwidth-intensive ap-
plications, but causes up to 2.02× higher tail latency for
latency-sensitive applications, in comparison with the hard-
ware isolation approach. As the software isolation approach
allows bandwidth-intensiveworkloads to utilize the available
SSD bandwidth, therefore, it benefits the storage utilization
improvement (e.g., YCSB+ML Prep in Figure 2 and Figure 3).
However, the read/write interference between collocated
applications will cause long tail latency. Since hardware-
isolated vSSDs are fully isolated, even though a vSSD has idle
storage bandwidth, it does not allow the collocated vSSDs
to utilize it, resulting in resource underutilization.

In summary, neither software isolation nor hardware iso-
lation can achieve both performance isolation and improved
storage utiliztion at the same time.
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Figure 4. An example of the learning process of RL.

2.3 ML for Storage Resource Management
Most recently, researchers proposed using machine learning
(ML) techniques for storage management [2, 26, 38, 49]. For
instance, SSDKeeper [26] developed a DNN model to learn
the demanded number of flash channels for a vSSD based on
its workload patterns. BlockFlex [38] used a heuristic-based
approach to predict the availability of storage resources that
can be harvested by low-priority VMs like spot VMs [5, 6].
Unfortunately, these approaches fall short of achieving

both performance isolation and improved storage utilization
simultaneously for three reasons. First, as cloud applications
would change their data access patterns and resource de-
mands at runtime, existing approaches cannot capture their
changes in a timely manner, which misses potential optimiza-
tion opportunities. Second, the storage states of the shared
SSD will be updated at runtime after each I/O activity. These
state updates have a significant impact on storage perfor-
mance, e.g., a read/write request would delay the incoming
requests, and a GC event will stop the SSD from issuing new
I/O requests. However, none of existing approaches consid-
ers the runtime changes of storage state in their decision-
making process. Third, all these existing approaches mainly
targeted storage utilization improvement, they did not treat
the performance isolation as the first-class citizen.
Why RL? With the above reasons, we argue that RL is a
natural fit to meet our goal in the multi-tenant cloud setting,
because of its unique advantages of taking actions to meet
defined purposes in a dynamic environment. As shown in
Figure 4, a standard RL setting has an agent interactingwith a
given environment repeatedly. The agent obtains a state (𝑆𝑡 )
from the environment and then takes an action (𝐴𝑡 ) based
on its policy in a model. The policy maps the current state to
an action from an action set (i.e., 𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡𝑎𝑡𝑒) → 𝑎𝑐𝑡𝑖𝑜𝑛).
After the selected action is conducted, the agent will receive
a reward (𝑅𝑡 ), and the next state will be generated.

For virtualized SSDs in the multi-tenant cloud setting, the
workload patterns and SSD states change dynamically, form-
ing the dynamic environment. The interaction between each
vSSD and the environment is similar to that of an RL agent:
taking actions against the environment, and receiving re-
wards depending on their impact on the defined optimization
goals. Thus, we can map the virtualized SSD management
and I/O scheduling problem to the RL learning process. To
the best of our knowledge, this is the first work to investigate
RL in virtualized storage resource management.
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Figure 5. System architecture of FleetIO.

3 Design and Implementation
Exploring RL to manage virtualized SSDs is not easy, we
have to overcome the following research challenges.

3.1 Research Challenges
• First, we need to abstract the virtualized SSD management
into the RL process, and define corresponding RL actions
and reward functions for achieving the specific goals (i.e.,
performance isolation and improved storage utilization).

• Second, we need to rethink the design and implementa-
tion of the virtualized SSD framework for facilitating the
employment and deployment of RL techniques.

• Third, as we support multiple virtualized SSD instances on
a shared SSD, the RL deployment should be able to scale
well to achieve improved overall efficiency.

• Fourth, the RL deployment should be lightweight, which
can make smart decisions instantly while introducing min-
imum overheads to the virtualized SSD infrastructure.

In the following, we will address these challenges through
the design and implementation of FleetIO.

3.2 System Overview of FleetIO
We show the system architecture of FleetIO in Figure 5. Flee-
tIO deploys an RL agent in each vSSD, enabling scalability
to support multiple vSSDs. Each agent will monitor the I/O
traffic of the vSSD, extract the essential storage states (e.g.,
I/O latency, throughput, and queue delay), and transfer them
into RL states that are the input for the RL model. An agent
will select the RL action that earns the highest predicted re-
ward and issue the action to the SSD virtualization platform.
The RL actions are validated by admission control before
they are executed on the shared SSD.

FleetIO optimizes its decision-making process through the
RL reward function. As eachworkload typically optimizes for
a combination of I/O latency and bandwidth, FleetIO defines
reward functions that balance the workload bandwidth while
minimizing the SLO violations. Different applications may
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have different trade-offs for these metrics. For instance, Tera-
Sort [12] is hungry for bandwidth while key-value stores are
sensitive to latency. FleetIO enables fine-tuning the reward
function for each RL agent to maximize its effectiveness. To
improve the storage utilization, it extends the SSD virtualiza-
tion and enables automated fine-grained storage harvesting
among collocated vSSDs by defining it as an RL action.

3.3 RL Formulation for Multi-Tenant vSSDs
FleetIO formulates the multi-tenant vSSD management and
scheduling into a multi-agent RL problem. It defines the RL
states, actions, and reward for each agent.

3.3.1 Representation of Storage States in RL. The state
space of our RL model is generated from the observable
virtualized SSD environment. The RL states include the key
storage performance indicators, storage states, and workload
patterns. We list the RL states in Table 1.

As for the performance indicators of each vSSD, we main-
tain performance counters to keep track of the average vSSD
bandwidth (𝐴𝑣𝑔_𝐵𝑊 ), the average IOPS (𝐴𝑣𝑔_𝐼𝑂𝑃𝑆), the av-
erage vSSD latency (𝐴𝑣𝑔_𝐿𝑎𝑡 ), and the percentage of SLO
violations (𝑆𝐿𝑂_𝑉𝑖𝑜) of the past I/O requests.

Cloud platforms usually offer predefined tail latency SLO
for vSSD instances. This can be specified in different ways,
such as the 99th percentile (P99) latency and a few times the
median latency with offline profiling. By default, we set the
SLO to the P99 tail latency of I/O requests in a hardware-
isolated vSSD. Instead of using the tail latency to indicate the
performance isolation level of a vSSD, we use the percentage
of SLO violations, as it provides a more reasonable way to
reflect the performance isolation level in real scenarios.
We also consider the workload characteristics in the RL

states. They include the read/write ratio (𝑅𝑊 _𝑅𝑎𝑡𝑖𝑜), and a
vSSD’s I/O request delay (𝑄𝐷𝑒𝑙𝑎𝑦). The read/write ratio of
the I/O requests is an indicator of the current I/O request
distribution. We quantify the I/O request delay by creating a
dynamic virtual queue in each vSSD to track all the pending
I/O requests. The 𝑄𝐷𝑒𝑙𝑎𝑦 is an indicator of the number of
outstanding requests and their queuing delay. A larger num-
ber of outstanding I/O requests means that the vSSD needs
more storage resources (e.g., more flash channels to serve
I/O requests). These RL states will help the model learn the
workload patterns so that it can adapt quickly to its changes.

To represent the vSSD states in the RL model, we include
the available storage capacity (𝐴𝑣𝑎𝑖𝑙_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦), garbage col-
lection status (𝐼𝑛_𝐺𝐶), and I/O request priority (𝐶𝑢𝑟_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦).
𝐴𝑣𝑎𝑖𝑙_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 represents the free storage capacity of a
vSSD. 𝐼𝑛_𝐺𝐶 is a boolean state indicating if the vSSD is
performing GC. As GC has a great impact on vSSD perfor-
mance, we include it in the RL state to help optimize the I/O
scheduling. 𝐶𝑢𝑟_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 represents the current I/O request
priority of a vSSD. The RL model uses it to adjust the priority
of I/O requests to meet the specified SLOs.

Table 1. Definition of RL states in FleetIO.
Symbol Definition
𝐴𝑣𝑔_𝐵𝑊𝑡 Average I/O bandwidth of the vSSD (𝑀𝐵/𝑠)
𝐴𝑣𝑔_𝐼𝑂𝑃𝑆𝑡 Average IOPS of the workload (𝑟𝑒𝑞𝑠/𝑠)
𝐴𝑣𝑔_𝐿𝑎𝑡𝑡 Average request latency of the vSSD (𝑢𝑠)
𝑆𝐿𝑂_𝑉𝑖𝑜𝑡 Percentage of vSSD SLO violations (%)
𝑄𝐷𝑒𝑙𝑎𝑦𝑡 I/O request delay in a vSSD

𝑅𝑊 _𝑅𝑎𝑡𝑖𝑜𝑡 Read/write ratio of the workload (%)
𝐴𝑣𝑎𝑖𝑙_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑡 Available storage capacity (GB)

𝐼𝑛_𝐺𝐶𝑡 Whether the vSSD is performing GC
𝐶𝑢𝑟_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡 The current I/O request priority

To help the agent make better decisions , we also include
two states that are shared among RL agents: (1) the sum of
average IOPS (𝐴𝑣𝑔_𝐼𝑂𝑃𝑆) of collocated agents and (2) the
sum of SLO violations (𝑆𝐿𝑂_𝑉𝑖𝑜) of collocated agents. These
shared states inform the agent about other agents, which can
help avoid conflicts. For example, the agent can harvest fewer
resources when the other agents have high SLO violations.
FleetIO does not explicitly include system-level information,
as it is transparent to upper-level VMs and applications.
We use a time window (2 seconds by default) to track

the RL states. There is a trade-off for deciding the time win-
dow length. Using a large time window would reduce the
opportunity for fine-grained harvesting, and using a small
time window will increase the decision frequency and intro-
duce more performance overheads. Each time window has
11 states (9 states in Table 1 and 2 shared states). To make
accurate decisions, we concatenate states from three prior
time windows together for capturing dynamic changes in
storage states. We do not concatenate too many time win-
dows, since this will enlarge the state space, which further
increases the training overhead.

3.3.2 Definition of RL Actions for Each vSSD. We de-
fine the RL actions in FleetIO based on our optimization
goals: (1) performance isolation guarantee and (2) storage
utilization improvement. For the former one, it takes the
best-effort approach to minimize the SLO violations for each
vSSD by adjusting its I/O request priority. Optimizing I/O
scheduling can enforce performance isolation by prioritiz-
ing requests from the vSSDs that have difficulty in meeting
the tail latency SLOs. For the latter one, FleetIO enables
fine-grained storage harvesting from collocated vSSDs. For
example, one vSSD can temporarily use the idle resources of
another vSSD to gain additional I/O bandwidth and increase
storage utilization. Therefore, FleetIO defines three actions
as shown in Table 2.

• 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 (𝑔𝑠𝑏_𝑏𝑤) decides how much storage resource a
vSSD should harvest from others, where 𝑔𝑠𝑏_𝑏𝑤 is a value
that specifies the storage bandwidth needed, and FleetIO
turns it into the demand of superblocks (see §3.6). To sim-
plify the decision process, we combine the read and write
bandwidth in 𝑔𝑠𝑏_𝑏𝑤 .

• 𝑀𝑎𝑘𝑒_𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 (𝑔𝑠𝑏_𝑏𝑤) decides how much storage
resource a vSSD makes harvestable for other collocated



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jinghan Sun et al.

Table 2. RL actions defined in FleetIO.
Symbol Definition

𝐻𝑎𝑟𝑣𝑒𝑠𝑡 (𝑔𝑠𝑏_𝑏𝑤 ) Storage bandwidth to harvest

𝑀𝑎𝑘𝑒_𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 (𝑔𝑠𝑏_𝑏𝑤 ) Storage bandwidth harvestable for
other vSSDs

𝑆𝑒𝑡_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑙𝑒𝑣𝑒𝑙 ) Set the I/O request priority

vSSDs. It offers the flexibility for each vSSD to decide the
harvestable bandwidth depending on its current state.

• 𝑆𝑒𝑡_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑙𝑒𝑣𝑒𝑙) decides the I/O request scheduling pri-
ority (i.e., low/medium/high) of a vSSD. It helps each vSSD
meet the performance isolation goal.
Each RL agent learns to take appropriate actions to ben-

efit the overall storage utilization and performance isola-
tion, based on the RL states (§3.3.1). An agent may take
the 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 () action to gain more bandwidth from its col-
located vSSDs with low 𝐴𝑣𝑔_𝐼𝑂𝑃𝑆 . It may also take the
𝑀𝑎𝑘𝑒_𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒() action to make its resource harvestable
if it has low bandwidth utilization. If a vSSD runs GC fre-
quently, FleetIO will reduce its harvestable storage resource
in𝑀𝑎𝑘𝑒_𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 () action. If a vSSD experiences high
SLO violations or high I/O queuing delay, the RL agent will in-
crease the priority level for its requests using 𝑆𝑒𝑡_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ().
We do not call 𝑆𝑒𝑡_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 () in other actions for simplifying
the management and reasoning of the RL action space.

FleetIO provides a device-agnostic design, it does not ex-
plicitly include device-level information in the RL model.
Specifically, the RL does not specify the flash channels/chips
and storage capacity that will be harvested. Instead, the RL
agent will only decide the storage bandwidth to harvest (or
make harvestable), as it is the most critical factor for the
optimization goals. We extend the SSD virtualization frame-
work to manage the harvestable blocks corresponding to
the underlying storage architecture in §3.6. Note that RL ac-
tions are executed in the background, and each vSSD issues
storage I/O requests normally.

3.3.3 Definition of Reward Functions. We also reflect
the optimization goals of the RL model in its reward function.
The most critical performance metrics of a vSSD are the stor-
age bandwidth and tail latency. The storage bandwidth of a
vSSD reflects how much it can utilize the provided storage
bandwidth. The tail latency of a vSSD reflects the perfor-
mance isolation level it can obtain. Therefore, we define the
reward function for each vSSD as follows:

𝑅𝑠𝑖𝑛𝑔𝑙𝑒 = (1 − 𝛼) ∗ 𝐴𝑣𝑔_𝐵𝑊𝑅𝐿

𝐴𝑣𝑔_𝐵𝑊𝑔𝑢𝑎𝑟

− 𝛼 ∗ 𝑆𝐿𝑂_𝑉𝑖𝑜𝑅𝐿
𝑆𝐿𝑂_𝑉𝑖𝑜𝑔𝑢𝑎𝑟

(1)

𝐴𝑣𝑔_𝐵𝑊𝑅𝐿 and 𝑆𝐿𝑂𝑅𝐿 represent the bandwidth and the
percentage of SLO violations. FleetIO can directly obtain
them from the RL states. 𝐴𝑣𝑔_𝐵𝑊𝑔𝑢𝑎𝑟 represents the I/O
bandwidth of the allocated storage resources. It can be mea-
sured by counting the number of allocated flash channels,
as the aggregated storage bandwidth increases linearly with
the number of flash channels (i.e., 𝑁 channels can deliver
𝑁 × 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑝𝑒𝑟_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 aggregated bandwidth). We
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Figure 6. A clustering of typical cloud workloads.

empirically set the bandwidth per channel depending on
the SSD hardware used in the deployment. 𝑆𝐿𝑂𝑔𝑢𝑎𝑟 is the
guaranteed SLO violation, which is usually set by the cloud
vendors. In our study, we set the target percentage of SLO
violations to be 1%. FleetIO uses 𝐴𝑣𝑔_𝐵𝑊𝑔𝑢𝑎𝑟 and 𝑆𝐿𝑂𝑔𝑢𝑎𝑟

as the baselines because we want to maximize bandwidth
utilization while minimizing SLO violations. The parameter
𝛼 manages the tradeoff between performance isolation and
storage utilization. A smaller 𝛼 prioritizes storage utilization,
and a larger 𝛼 prioritizes performance isolation.
Reward for Multiple Agents.While RL agents optimize
their reward, they should account for other agent’s rewards
to improve the overall storage efficiency. To achieve this, we
use a coefficient 𝛽 to balance the rewards among collocated
RL agents. We define the reward function for a 𝑣𝑆𝑆𝐷𝑖 as:

𝑅𝑖, 𝑚𝑢𝑙𝑡𝑖_𝑎𝑔𝑒𝑛𝑡 = 𝛽 ∗ 𝑅𝑖, 𝑠𝑖𝑛𝑔𝑙𝑒 + (1 − 𝛽) ∗
∑𝑣≠𝑖

𝑣∈𝑉 𝑅𝑣, 𝑠𝑖𝑛𝑔𝑙𝑒

|𝑉 | − 1
(2)

where𝑉 is the set of collocated vSSDs and |𝑉 | is its cardinal-
ity. With larger 𝛽 , each agent will care more about its own
reward. Otherwise, it will emphasize the rewards of other
agents. We set 𝛽 = 0.6 by default based on our study of its
impact on diverse cloud applications. We will demonstrate
the effectiveness of the multi-agent reward function in §4.4.

3.4 RL Fine-Tuning for Different Workload Types
Each vSSD may host workloads with various storage de-
mands that prefer optimizations for different metrics (e.g.,
latency-sensitive and bandwidth-intensive). Therefore, a uni-
fied reward function for all collocated vSSDs may result in
overall inefficiency. In FleetIO, we fine-tune each RL agent for
different workload characteristics. For example, bandwidth-
intensive workloads prefer high bandwidth, so we can cus-
tomize its reward function with a lower 𝛼 .
However, it is challenging to fine-tune the RL model for

each individual workload. Instead, FleetIO categorizes the
workloads into different types, and fine-tunes the reward
function for each type. FleetIO uses a clustering approach
to learn the workload type with collected block I/O traces
from the vSSD.
FleetIO divides the I/O traces into small windows (10K

requests per window). For each window, we extract four
I/O features: read bandwidth, write bandwidth, LPA entropy,
and average I/O size. We sample windows from 9 typical
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cloud workloads and cluster them with k-means, using 70%
of workload traces as the training set and 30% for testing.
We use Principal Component Analysis (PCA) to present
the result in two dimensions. Figure 6 shows that we can
separate the bandwidth-intensive workloads (e.g., TeraSort,
PageRank, andML Prep) from the latency-sensitive ones (e.g.,
TPCE, SearchEngine, and VDI-Web) from their I/O patterns.
Compared to other latency-sensitive workloads, YCSB-B has
lower LPA entropy (i.e., better locality), so it has its own clus-
ter. 98.4% of the testing data points fall into the ground-truth
clusters, showing that clustering has high accuracy.

To fine-tune the reward function for each workload type,
we use the workload closest to the center of each cluster. We
examine the percentage of SLO violations and bandwidth
utilization of the selected workload using different reward
functions by binary searching 𝛼 between 0 and 1. We select
the optimized reward function that ensures the workload
does not exceed the SLO violation threshold (5% by default)
while delivering the highest bandwidth improvement.

FleetIO uses the trained clusters to decide the optimized
reward function for new workloads. If the I/O pattern falls
into an existing cluster, FleetIO will use the pre-tuned reward
function. If not, FleetIO will use the unified reward function
(with 𝛼 = 0.01, see §3.3.3), mark this workload for offline
tuning, and utilize the aforementioned fine-tuning method to
learn an optimized 𝛼 . In FleetIO, we perform offline tuning
periodically (1 hour by default). As FleetIO aggregates more
of such workloads, a new cluster will be formed, such that
we can reuse the learned experience.

3.5 Admission Control for RL Actions
Although RL agents make decisions independently, it is nec-
essary to execute them in a coordinated fashion on the
shared SSD. It enables cloud providers to customize their
permission checking for each vSSD’s actions. For example,
cloud providers may prevent high-priority VMs frommaking
their resources harvestable, even if doing so would benefit
overall resource utilization. Alternatively, cloud providers
may prevent low-priority VMs (e.g., Spot VMs) from har-
vesting at all. Thus, we design an admission control mecha-
nism (Figure 5) that ingests each RL agent’s Harvest() and
Make_Harvestable() actions, filters out inadmissible actions,
and submits the remaining actions to the gSB manager (§3.6)
which is in charge of the harvestable storage.

Instead of processing each action individually, FleetIO pro-
cesses them in batches and reorders each batch to process
Make_Harvestable() actions first. This executes the actions
that provide the harvestable resource before the ones that
consume, which maximizes harvestable resources availabil-
ity and avoids immediate reclamation. By default, we select
a batch size of every 50 milliseconds without sacrificing the
benefit of executing actions promptly.

typedef struct gSB {
int n_chls;  //number of channels
int capacity;  //capacity of GSB (in GB)
boolean in_use;  //whether the gSB is harvested
vssd_t *home_vssd; //vSSD that owns the resource
vssd_t *harvest_vssd; //vSSD harvesting the gSB

} gSB_t;

Figure 7. The metadata of a ghost superblock (gSB).

FleetIO ranks the Harvest() actions when it detects the
demand for harvestable resources exceeds the supply. Flee-
tIO provides the flexibility for cloud providers to specify
the policies to handle such contention (e.g., priority-based
or fair-sharing). To support this, FleetIO stores additional
metadata in each vSSD. The admission control can query the
metadata to implement its custom policies. By default, the
admission control serves Harvest() actions using the first-
come-first-serve policy. If the harvest actions need to harvest
more storage resources than available gSBs, vSSDs with less
harvested resources will have higher priority to harvest the
available storage resources.
Note that the admission control is off the critical path of

storage I/O requests and its batch processing of actions also
incurs trivial performance overheads (see §4.7).

3.6 A New Abstraction in SSD Virtualization for RL
As FleetIO aims to improve the overall storage utilization
of the shared SSD by enabling storage resource harvesting
among collocated vSSDs (§3.3.2), it requires a simple way to
interact with the SSD virtualization framework for access-
ing the harvestable storage resources. Instead of relying on
the RL agents to manage the harvestable resources, FleetIO
proposes a new abstraction named ghost superblock (gSB)
and integrates it into the SSD virtualization framework.

3.6.1 Ghost Superblock. We show the metadata of a gSB
in Figure 7. Each gSB consists of a harvestable superblock
that stripes across one or more channels (i.e., n_chls). The
free blocks of the harvestable superblock are evenly striped
across all the chips in each channel. The capacity represents
the number of blocks in the gSB. By default, we harvest a
fixed number of blocks from each channel. For example, in
our SSD, the minimum size of a superblock that stripes across
a single channel is 16 flash blocks (64MB). The home_vssd,
harvest_vssd and in_use are used during the harvesting pro-
cess to indicate which vSSD gave up the resources for the
gSB, which vSSD harvests the gSB (if any), and if the gSB is
currently harvested, respectively. All metadata is stored in
the gSB and is initialized when the gSB is created.

3.6.2 gSB Management. Figure 8 shows an overview of
the gSB management. We now discuss the gSB management
and how it works with the RL actions in detail.
Managing gSBs. The gSB manager manages the gSBs in the
gSB pool using a set of linked lists. Each linked list stores
all gSBs with the same number of channels (i.e., 𝑛_𝑐ℎ𝑙𝑠). To
simplify best-fit searching, we index these lists by the 𝑛_𝑐ℎ𝑙𝑠
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Figure 8. gSB management in FleetIO.

of the gSBs they store and sort the lists by their gSBs’ n_chls.
The total number of lists in the pool corresponds to the
total number of physical channels in the SSD (e.g., up to 32
channels in many SSDs). To support high concurrency, the
gSB pool is implemented with lock-free linked lists [14].
Creating gSBs. FleetIO creates a new gSB when an RL agent
takes theMake_Harvestable() action. The action specifies the
harvestable bandwidth (i.e., gsb_bw) that the new gSB should
offer. To decide 𝑛_𝑐ℎ𝑙𝑠 for the gSB, we divide the harvestable
bandwidth by the maximum bandwidth of a single channel
(e.g., 64 MB/s), rounding down. The capacity is set to 𝑛_𝑐ℎ𝑙𝑠
multiplied by the minimal superblock size (i.e., 64MB). The
home_vssd is initialized with a pointer to the vSSD providing
the harvestable resources. The harvest_vssd and in_use are
set to null and 0, respectively. The gSB manager will then
obtain free blocks from the home_vssd and initialize a block-
level mapping table for them. Note that we do not create new
gSBs on channels with less than 25% free blocks (see §3.7).
The created gSB is inserted into the head of the list indexed
by its n_chls. We also add the gSB to the harvestable gSB list
maintained in the home_vssd metadata for future reference.
Harvesting gSBs. An RL agent harvests a gSB when the
agent takes the Harvest() action. Similar to gSB creation,
n_chls for the gSB is determined by the storage bandwidth
(i.e., gsb_bw) specified in the Harvest() action. To obtain a
gSB with the desired n_chls from the pool, we find the list
indexed by the same n_chls and then get the first gSB from
the list. If the list is empty, we first search the lists with
smaller 𝑛_𝑐ℎ𝑙𝑠 until we can obtain a gSB, before searching
lists with larger 𝑛_𝑐ℎ𝑙𝑠 . Once a suitable gSB is found, the
harvest_vssd is set to point to the vSSD that is harvesting and
in_use is set to 1 to indicate the gSB is harvested. After a gSB
is harvested, the home vSSD and the vSSD harvesting the
gSB will share the storage bandwidth of the corresponding
channels. Note that the gSB manager prevents a vSSD from
harvesting its own gSBs by checking the home_vssd.

gSBs are harvested transparently to workloads in the har-
vest vSSD. To support this, the address mapping in the vSSD
is extended to support an additional indirection layer that
maps the vSSD logical block addresses (LBAs) into the LBAs
of the gSB (see vSSD-2 in Figure 8). The gSB translates the
LBA to the physical block address (PBA). This also enables
each vSSD to harvest multiple gSBs to improve its bandwidth.
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Figure 9. Garbage collection in FleetIO.

Reclaiming gSBs. FleetIO checks whether it should also
reclaim gSBs when an RL agent takes theMake_Harvestable()
action. The gSB manager will scan the harvestable gSB list
maintained in the metadata of the home_vssd for any gSBs
with more n_chls than the n_chls specified byMake_Harvest-
able(). For each such gSB, the gSB manager checks its in_use
flag. gSBs with in_use set to 0 are removed from their list
in the pool, their free blocks are returned to the home_vssd,
and the gSB is destroyed. gSBs with in_use set to 1 will be
reclaimed in a lazy manner. GC will migrate the valid data in
those channels to blocks owned by the harvest_vssd (§3.7).

3.7 Exception Handling
We discuss how FleetIO gracefully handles the exceptions
during its execution.
Garbage Collection. As a vSSD offers gSBs for harvest-
ing, the free blocks in its channels may be consumed more
quickly, triggering more frequent GCs to erase the invalid
data, and even worse, may exhaust the capacity of the vSSD.
To solve this problem, FleetIO migrates data from blocks

harvested by other vSSDs (i.e., harvested blocks) to blocks
owned by the harvest_vssds. As shown in Figure 9, FleetIO
prioritizes selecting the blocks reclaimed by the home_vssd
(i.e., reclaimed blocks) and harvested blocks over the vSSD’s
regular blocks, and writes their valid data to free blocks of
the harvest_vssds. The harvested blocks may have a slightly
higher valid page ratio than those of the home vSSD. How-
ever, we observe that this does not introduce much write
amplification (< 5% in our experiments).
FleetIO tracks the reclaimed and harvested blocks with

a Harvested Block Table (HBT), it tracks the block type of
each PBA. FleetIO uses one bit to indicate the two block
types: regular (0) or harvested/reclaimed (1), consuming at
most 0.5MB storage space (assuming a 1TB SSD with a 4MB
block size). We do not differentiate between harvested and
reclaimed blocks as GC will treat them the same. The gSB
manager can detect both cases by marking the PBAs of all
harvested blocks as harvested/reclaimed (1) when it creates
the gSB. Blocks are marked as regular (0) after erased by GC.
vSSD Deallocation. When a vSSD is deallocated, all of
its data is marked as invalid, such that it will be erased in
the next GC. To support the harvesting of deallocated flash
blocks, FleetIO uses a placeholder vSSD that owns the free
resources and makes them available for harvesting.
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Table 3. Experimental parameters in FleetIO.
RL Parameters Value SDF Parameters Value
Decision interval 2 secs Capacity 1TB

Reward coefficient 𝛽 0.6 # Channels 16
Learning rate 10−4 # Chips/Channel 4

Discount factor 𝛾 0.9 Page Size 16KB
Hidden layer sizes [50, 50] Max queue depth 16

Batch size 32 Overprovisioning ratio 20%

3.8 Implementation Details
FleetIO Framework.We implement FleetIO on a real open-
channel SSD. We list the core configuration parameters for
the open-channel SSD in Table 3. It provides the programma-
bility for developers to implement their own flash manage-
ment layer in the host. We follow the prior studies [9, 17, 38]
to implement the basic vSSD abstraction on the open-channel
SSD, with 3.5K lines of C code with the SDK library of the
device. After that, we integrate our RL-based vSSD manage-
ment into it with 2K lines of Python code.
FleetIO Training.We develop our RL model based on Prox-
imal Policy Optimization (PPO) [40] using RLlib [25] and
PyTorch [35]. We list the hyper-parameters of the model
in Table 3. We pre-train the RL model offline using a set
of storage workloads (e.g., LiveMaps, TPCE, SearchEngine,
and Batch Analytics) that are not used in the evaluation. We
perform pre-training on a server configured with 24 Intel
Xeon CPU (E5-2687W v4) processors running at 3.0GHz and
96GB DRAM. We pre-train the model using Ray [32]. Since
we have a limited number of open-channel SSDs, we col-
lect training datasets by running multiple workloads on the
SSD simulator WiscSim in parallel to accelerate the training
process [15]. We pre-train the model with 2,000 iterations
using a batch size of 256. With the fine-tuning method dis-
cussed in §3.4, for the workload clusters LC-1, LC-2, and TO
in Figure 6, the values of their coefficients 𝛼 are 2.5 × 10−2,
5 × 10−3, and 0, respectively.
FleetIO Deployment. We deploy the pre-trained model in
FleetIO framework. Upon the creation of a vSSD, an RL agent
will be deployed. Its model size is 2.2MB with 9K parame-
ters. Each RL agent will monitor the vSSD states at runtime
(§3.3), collect storage I/O traces at the block level periodically
to learn the workload type (§3.4), and take actions accord-
ingly. FleetIO does not introduce much overheads to the SSD
virtualization (see our evaluation in §4.7).

4 Evaluation
Our evaluation shows that: (1) FleetIO achieves both im-
proved resource utilization and performance isolation (§4.2);
(2) the multi-agent design of FleetIO demonstrates its ef-
fectiveness as we scale the number of vSSDs (§4.3); (3) the
fine-tuned reward function of FleetIO shows its positive
impact on RL decisions (§4.4); (4) FleetIO can benefit both
hardware-isolated and software-isolated vSSDs (§4.5); (5)
FleetIO is resilient to workload changes in the collocated

Table 4. Workloads used in our evaluation.
Category Workload Description

Bandwidth-
intensive

TeraSort [12] Sort large datasets using Hadoop.
ML Prep [1] Image preprocessing for machine learning.
PageRank [11] Compute a graph’s pagerank.

Latency-
sensitive

VDI-Web [23] Enterprise virtual desktop running
interactive applications.

YCSB [51] YCSB workloads backed by SQLite.

vSSDs (§4.6); (6) FleetIO introduces negligible overhead to
the SSD virtualization (§4.7).

4.1 Experimental Setup
We describe the hardware setting for the experiments in §3.8.
We use 5 typical cloud workloads listed in Table 4. These
workloads cover both bandwidth-intensive workloads and
latency-sensitive workloads. For each experiment, we run
a combination of the workloads on the shared SSD. In the
experiments, we use all 16 channels of the SSD and allocate
them to vSSDs depending on the experimental setting. Be-
fore the experiments, we run a mix of different workloads to
warm up the vSSDs to consume at least 50% of the free blocks
to ensure that GC will be executed during the experiments.
The GC uses a lazy algorithm with a 20% free block thresh-
old. By default, each vSSD when using FleetIO starts with
hardware isolation unless otherwise specified. We compare
FleetIO with the following state-of-the-art approaches.
• Hardware Isolation: Each vSSD owns an equal share
of hardware-isolated flash channels. Hardware isolation
delivers the strongest performance isolation (see §2).

• SSDKeeper: SSDKeeper [26] uses a deep neural network
(DNN) to decide the hardware-isolated static resource par-
titioning for vSSDs that minimizes average latency.

• Adaptive: The number of flash channels allocated to vSSDs
in each time window is proportional to their bandwidth
utilization in the prior time window [31].

• Software Isolation: All vSSDs have shared access to all
the allocated flash channels.We use a token bucket I/O rate
limiter to throttle I/O requests from different vSSDs [46].
To further minimize interference, we use stride schedul-
ing [48, 52] to ensure that workloads with high I/O in-
tensity do not starve workloads with low I/O intensity.
Software isolation has the best overall storage utilization.

4.2 Resource Utilization and Performance Isolation
FleetIO achieves both improved storage utilization and per-
formance isolation. To demonstrate this, we collocate two
vSSDs, one running a bandwidth-intensive workload and
one running a latency-sensitive workload (see Table 4).
We present the tradeoff between improved storage uti-

lization and P99 tail latency in Figure 10. FleetIO improves
the bandwidth utilization over Hardware Isolation by up to
1.39× (1.30× on average) while reducing the P99 tail latency
over Software Isolation by up to 1.58× (1.47× on average).
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Figure 10. Tradeoff between overall storage utilization and
P99 tail latency of latency-sensitive workloads.
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Figure 11. FleetIO’s benefit for storage utilization.

No other approach achieves this tradeoff. Hardware Isola-
tion and SSDKeeper achieve high performance isolation, but
deliver at most 1.08× storage utilization improvement. Soft-
ware Isolation and Adaptive achieve high storage utilization
improvement as they allow collocated vSSDs to share flash
channels from each other, but they increase the P99 latency
by 1.76× and 2.03×, respectively, due to the I/O interference.
Hardware Isolation and SSDKeeper cannot achieve both

high storage utilization and strong performance isolation,
because they statically allocate hardware-isolated channels.
This can guarantee low tail latency but neglect the dynami-
cally changing bandwidth of the collocated vSSDs. FleetIO
improves the storage utilization over both policies up to
1.39× (see the detailed results in Figure 11), which is 93% of
the best storage utilization. This is because FleetIO enables
the bandwidth-intensive workload to dynamically harvest
resources as the bandwidth demand fluctuates.
Software Isolation and Adaptive cannot achieve both ob-

jectives either. Even though they enable a more flexible chan-
nel allocation to the vSSDs, they do not emphasize the per-
formance interference suffered by collocated vSSDs. FleetIO
incorporates both the average bandwidth and the SLO viola-
tions into the reward function, so RL agents consider both
metrics in their decisions. Therefore, FleetIO achieves 1.29-
1.89× lower P99 tail latency (see detailed results in Figure 12),
and is within 1.2× of the strongest performance isolation.
Compared to Hardware Isolation, FleetIO increases the P95
and P99.9 tail latency by only 3% and 8%, respectively. This
is expected, as the bandwidth-intensive workload harvests
storage bandwidth to meet its needs, the collocated vSSD
hosting the latency-critical workload will dynamically take
Set_Priority action to enforce higher priority to meet its SLO.
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To further understand the storage utilization improve-
ment, Figure 13 shows the I/O bandwidth of the bandwidth-
intensive vSSD normalized to the bandwidth of Hardware
Isolation. FleetIO improves the bandwidth over Hardware
Isolation by 1.27-1.61× (1.46× on average) and over SSD-
Keeper by 1.37× on average. FleetIO achieves up to 93% of
Software Isolation’s bandwidth (89% on average) and 91% of
Adapative’s bandwidth on average. This shows that the RL
agent effectively learns the workload patterns and harvests
spare storage resources from the collocated vSSDs. Since the
bandwidth-intensive workload dominates the bandwidth uti-
lization of the SSD, its bandwidth improvement is reflected
in the storage utilization improvement of FleetIO. Note that
we do not expect FleetIO to reach the ideal performance iso-
lation or storage utilization. FleetIO employs a best-effort
approach to achieve improved performance isolation and
storage utilization via fine-grained storage harvesting.

4.3 Scalability of FleetIO
FleetIO improves resource utilization while ensuring perfor-
mance isolation, as we scale the number of vSSDs. We run
mixes of 4-8 workloads shown in Table 5.
As shown in Figure 14 (a), FleetIO consistently improves

the overall bandwidth utilization as we increase the num-
ber of vSSDs, achieving 1.33× and 1.18× improvement over
Hardware Isolation for 4-vSSD and 8-vSSD mixes, respec-
tively. These improvements are up to 94% and 99% of the
best storage utilization (i.e., Software Isolation), indicating
that FleetIO obtains more benefit as we scale the number of
vSSDs. This is because FleetIO can match the diverse har-
vestable resources from the latency-sensitive vSSDs with
the diverse harvest storage demand from the bandwidth-
intensive vSSDs.
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Table 5.Workload combinations for scalability experiments.
#vSSDs Label Workload Combinations

2 mix1 VDI-Web, TeraSort
mix2 YCSB, PageRank

4 mix3 2 VDI-Web, 2 TeraSort
mix4 VDI-Web, YCSB, TeraSort, PageRank

8 mix5 4 VDI-Web, 2 TeraSort, PageRank, MLPrep

mix1
2 vSSDs

mix2
2 vSSDs

mix3
4 vSSDs

mix4
4 vSSDs
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8 vSSDs
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Figure 14. Scalability of FleetIO on the number of vSSDs.

FleetIO ensures high performance for each vSSD as we
scale the number of vSSDs. Figure 14 (b) shows that Flee-
tIO ensures performance isolation–it keeps the P99 latency
increase over Hardware Isolation to less than 10%. FleetIO
ensures performance isolation because of the greater avail-
ability of harvestable resources. Figure 14 (c) shows that
FleetIO improves the bandwidth-intensive vSSDs’ perfor-
mance by 1.45× on average. FleetIO improves the bandwidth
of each vSSD by at least 1.25×. Meanwhile, other policies
even decrease the bandwidth. FleetIO achieves uniform ben-
efit, because its multi-agent reward function can effectively
balance the improvement for each vSSD while considering
the overall storage utilization.

4.4 Benefits of an Optimized Reward Function
FleetIO benefits from a customized reward function for each
workload type and balancing the reward of each agent with
its collocated agents. We analyze the performance benefit of
FleetIO’s reward function by selectively disabling each op-
timization: FleetIO-Unified-Global selects a unified 𝛼 = 0.01
optimized for all agents instead of the customized reward
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Figure 15. Effectiveness of optimized reward function.
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Figure 16. Storage utilization and performance isolation of
FleetIO with mixed software- and hardware-isolated vSSDs.

(see §3.4). FleetIO-Customized-Local uses the custom 𝛼 but
each agent only optimizes for its reward (𝛽 = 1). FleetIO uses
both optimizations.
Figure 15 shows the bandwidth utilization and P99 la-

tency against Hardware and Software Isolation. FleetIO-
Customized-Local shows that despite using customized re-
ward functions, without using a 𝛽 to balance the reward of
collocated agents, there is little incentive for RL agents to
make resources harvestable and FleetIO has similar perfor-
mance to Hardware Isolation. Alternatively, FleetIO-Unified-
Global using a unified reward function for all workloads can
be effective but inconsistent. In particular, workload com-
binations with VDI-Web improve bandwidth, while those
with YCSB show little improvement. Instead, FleetIO uses
both and can improve the storage utilization while ensuring
performance isolation.

4.5 Mixed Hardware and Software Isolation
FleetIO can benefit both software- and hardware-isolated
vSSDs. To demonstrate this, we evaluate FleetIO with mix3
(see Table 5) on a mix of hardware- and software-isolated
vSSDs. The VDI-Web workloads each run in a 4-channel
hardware-isolated vSSD, and TeraSort each run in an 8-
channel software-isolated vSSD. Mixed Isolation represents
the strongest performance isolation in this experiment.
Figure 16 shows that FleetIO achieves 1.27× improved

storage utilization compared to Mixed Isolation and 1.42×
bandwidth improvement for bandwidth-intensive workloads.
FleetIO also achieves more than 94% of Software Isolation’s
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Figure 17. Storage performance of FleetIO after changing the
collocated workload. T=Terasort, V=VDI-Web, P=PageRank,
Y=YCSB, and M=ML Prep. T + (V→Y) indicates the model is
tuned with T+V and evaluated on T+Y.

storage utilization and more than 90% of its I/O bandwidth
for TeraSort. Furthermore, FleetIO only increases the tail
latency over Mixed Isolation by 1.19×. It shows that FleetIO
can improve the storage performance across different vSSD
isolation approaches.

4.6 Robustness of FleetIO
FleetIO is resilient to changes in the collocated vSSDs. We
evaluate FleetIO by changing the collocatedworkload halfway
through the experiment, shown in Figure 17. FleetIO-Transfer
reports the storage performance measured after switching
the collocated workload (e.g., V+T) to the evaluated work-
load combination (e.g., V+Y). FleetIO-PreTrained reports the
storage performance of only tuning FleetIO on the evaluated
workload combination. Across all workload combinations,
the performance of FleetIO-Transfer is within 5% of the per-
formance of FleetIO-PreTrained. It shows that FleetIO does
not overfit to the workload patterns of the specific collocated
vSSDs and it can benefit storage utilization in the dynamic
settings of a real deployment.

4.7 Overhead Sources in FleetIO
FleetIO is lightweight and introduces minimum overhead
to cloud platforms. FleetIO takes 2 hours to pre-train the
model offline on a server with 24 Intel Xeon CPU processors.
During deployment, as we run each RL agent on a single
CPU core, each model incurs a 51.2 millisecond fine-tuning
overhead every 10 timewindows (2 seconds per window) and
a 1.1 millisecond inference overhead in each time window.
Both fine-tuning and inference are off the critical path of
I/O requests. To store the model and model inputs, FleetIO
incurs only 2.2 MB storage cost per vSSD.

FleetIO’s gSB management and admission control are also
lightweight. Since gSB creation only involves metadata oper-
ations, it takes <1 𝜇s. Similarly, admission control takes only
0.8 milliseconds to process a batch of 1,000 actions. Both
gSB creation and admission control are performed in the
background, off the critical path of I/O requests.

5 Discussion
Benefit Sources. It is challenging to tune heuristic-based
policies and manually identify their optimal thresholds. This

is because, to identify an optimal threshold, we need to con-
sider the correlation of the storage states, the SSD perfor-
mance, and the workload characteristics. FleetIO performs
this tuning implicitly through RL by enabling fine-grained
storage harvesting from collocated vSSDs at runtime, while
having the SLO violations as a strict condition for its actions.
Furthermore, its benefits for storage utilization improve-
ment depend on the opportunities available for harvesting.
As cloud platform today has placed diverse workloads on
the shared storage, we expect that FleetIO will deliver more
benefits (similar to our scalability evaluation in §4.3). In con-
trast, if the collocated workloads have conflicting goals and
offer few opportunities for storage harvesting, the capability
of FleetIO will be limited. However, FleetIO will not perform
worse than state-of-the-art approaches.
Mispredictions of FleetIO. We do not need to manually
correct mispredictions for FleetIO. This is because RL will
inherently minimize the impact of mispredictions. It will
identify the optimized actions for maximizing the rewards
by default, a higher reward value indicates better resource
utilization and performance isolation.
Generalizability of FleetIO. FleetIO supports both public
and private cloud. For public cloud, since FleetIO signifi-
cantly improves storage utilization, it can introduce con-
siderable savings for cloud providers that can be passed to
the users as a discounted VM price [4]. For private cloud,
FleetIO could provide even more benefits using workload
insights from tenants. Furthermore, FleetIO can be applied
to different cloud storage platforms, because we employ a
device-agnostic approach in our design. We can map the gSB
abstraction to different types of SSD devices, such as Zoned
Namespace (ZNS) SSDs.
Bandwidth and Capacity Harvesting. As for the storage
utilization improvement, FleetIO currently focuses on the
storage bandwidth rather than the capacity. This is because
storage bandwidth is the most critical factor that determines
the performance of data-intensive applications. And cloud
applications usually have sufficient storage capacity, as the
storage capacity cost is much lower than the bandwidth cost.
Security Implications. As we share physical flash chan-
nels and blocks across collocated vSSDs, security concerns
may arise, for example, data leakage may happen as vSSDs
reclaim blocks. This is less of a concern in FleetIO, as all
the harvested and reclaimed blocks will be physically erased
before returning them to their owners, and the storage har-
vesting and reclamation procedure is transparent to end
users. An adversarial workload may intentionally trigger re-
source harvesting. For this case, the RL agents will not make
their resource harvestable if they realize that such actions
constantly hurt the performance of corresponding vSSDs.
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6 Related Work
Storage Virtualization. Recent studies have shown the
software-defined storage that makes software manage un-
derlying hardware resources can improve storage perfor-
mance and efficiency [17, 34, 41]. They can be virtualized as
system-wide shared resources to provide storage services.
Virtualized SSDs make efficient use of storage capacity and
performance by slicing resources among multi-tenant ap-
plications [20, 27, 42, 43, 54]. However, it has traditionally
been a challenge due to the fundamental tussle between the
performance isolation and resource utilization (§2). FleetIO
exactly tackles this challenge and demonstrates its capability.
Cloud Storage Efficiency. Recent studies [2, 3, 19, 24, 27,
33, 38, 46] reported that the cloud storage utilization is low,
although storage virtualization has been employed. Prior
studies proposed heuristic-based approaches to allow low-
priority VMs to harvest unused resources [2, 38, 49, 50]. How-
ever, due to their limitations of capturing real-time changes
of workloads and storage states, there is still much space for
improvement. Moreover, due to the lack of system support
for fine-grained storage harvesting, it is still challenging
to maximize the storage utilization. FleetIO tackles these
problems with the first RL-based virtualized SSD framework.
Machine Learning for Systems.Most recently, researchers
started to leverage learning techniques to improve the task
scheduling [37, 49, 56], cluster resource management [2, 7,
10, 29, 53], and performance optimizations [13, 21, 28, 57].
They have demonstrated the capability of ML techniques.
Our work shares a similar purpose, but with a focus on the
multi-tenant cloud storage. We carefully study our targeted
problem and realize that RL is a natural fit for multi-tenant
cloud storage management. We develop FleetIO and show
its efficiency. We wish FleetIO would inspire future studies
on devleoping RL-based computing systems.

7 Conclusion
We present FleetIO, an RL-based storage virtualization frame-
work, which utilizes RL techniques to automate the storage
I/O scheduling and harvesting for virtualized SSDs. Our ex-
periments with various cloud applications show that FleetIO
can achieve both improved performance isolation and stor-
age utilization for virtualized SSDs, which is impossible with
state-of-the-art storage sharing approaches.
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