
HADES: Hardware-Assisted Distributed Transactions
in the Age of Fast Networks and SmartNICs

Apostolos Kokolis, Antonis Psistakis, Benjamin Reidys, Jian Huang, Josep Torrellas

University of Illinois Urbana-Champaign

{kokolis2,psistaki,breidys2,jianh,torrella}@illinois.edu

Abstract—Transactional-based distributed storage applications
such as key-value stores and databases are widely used in the
cloud. Recently, the hardware on which these applications run
has been rapidly improving, with faster networks and powerful
network interface cards (NICs). A result of these hardware
advances is that the inefficiencies of distributed software have
become increasingly obvious.

To address this problem, we analyze the sources of software
overhead in these distributed transactional applications and pro-
pose new hardware structures to eliminate them. The proposed
hardware includes Bloom filters for a variety of tasks and
SmartNICs for efficient remote communication. We then develop
HADES, a new distributed transactional protocol that leverages
this hardware to support low-overhead distributed transactions.
We also propose a hybrid hardware-software implementation
of HADES. Our evaluation shows that HADES increases the
throughput of distributed transactional workloads by 2.7× on
average over a state-of-the-art distributed transactional system.

I. INTRODUCTION

Distributed storage systems such as key-value stores and

databases are particularly important to the cloud infrastructure

[11], [14], [18], [45], [51], [67]. These applications ensure

that distributed data is safely stored and accessible to users on

demand. Many of these storage systems use the transactional

model, whereby queries are written as transactions that either

complete or fail without leaving any side effect. Using trans-

actions in storage systems is very popular [1], [2], [21], [22],

[35], as it results in simpler application design.

Recently, the cloud hardware infrastructure has been rapidly

improving. Networking hardware has become steadily faster.

Both commercial [28], [48] and custom-designed network

solutions have substantially reduced the round-trip latency of

node-to-node communication—to under one microsecond in a

data center [76]. Moreover, network interface cards (NICs) are

including progressively more advanced hardware support [24],

[42], [46], [47], [49]. Such support can enable the develop-

ment of efficient RDMA operations, reducing communication

overheads and off-loading work from the processor.

A result of these hardware changes is that the existing

inefficiencies of distributed software protocols are becoming

increasingly obvious. Applications wait for short times that

cannot be effectively hidden using current hardware and

software latency-hiding techniques (i.e., the well-documented

killer microsecond [6], [13]). More importantly for our analy-

sis, protocols have hefty housekeeping software overheads on

the critical path that limit their performance.

Consider distributed transactional storage systems that are

based on Microsoft’s FaRM protocol [12], [21], [22], [71].

They have major software overheads resulting from managing

and checking the read and write sets of transactions—i.e.,

the records that a transaction accesses plus their metadata,

including versions, values, and source nodes. Other overheads

result from the fact that reads and writes are supported at

record granularity—forcing whole-record transfers when only

some fields are needed. Additional software overheads result

from many operations to lock and unlock records, poll for lock

and unlock completion, and re-read records before committing

to check for transaction conflicts. In our analysis, we find that

such overheads are responsible for 60-70% of the execution

time of various workloads in an optimized implementation of

FaRM.

Given the key importance of these workloads for a thriv-

ing cloud, and that these trends are only likely to accel-

erate, in this paper, we introduce new hardware structures

to eliminate high-overhead software operations in distributed

transactional systems. We start by analyzing the sources of

software overhead. Based on the analysis, we propose novel

hardware that includes Bloom filters for a variety of tasks

and smart network interface card (SmartNIC) support for

efficient remote communication. We then develop HADES, a

new optimistic concurrency control (OCC)-based distributed

transactional protocol that leverages this hardware to provide

high-performance distributed transactions. HADES is easy to

use in different transactional systems, as it is agnostic to the

data layout and does not require any extension to the data

records. Finally, we also propose a cheaper, hybrid hardware-

software implementation of HADES called HADES-H.

Using a simulation-based evaluation, we show that, com-

pared to an optimized implementation of FaRM, HADES

and HADES-H increase the average throughput of a set of

distributed transactional workloads by 2.7× and 2.3×, respec-

tively. Further, HADES shows scalability with 200 cores.

Overall, this paper’s contributions are:

• Identifying and analyzing the main sources of software

overhead in a state-of-the-art distributed transactional system.

• New hardware structures to eliminate these overheads and

allow for large distributed transactions.

• Two new distributed transactional protocols, HADES and

HADES-H, that use this hardware to provide fast distributed

transactions.

785

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00062

20
24

 A
C

M
/IE

EE
 5

1s
t A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
C

om
pu

te
r A

rc
hi

te
ct

ur
e

(I
SC

A
) |

 9
79

-8
-3

50
3-

26
58

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

C
A

59
07

7.
20

24
.0

00
62

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

• A performance evaluation of HADES and HADES-H with

up to 200 cores.

II. BACKGROUND

Distributed transactional systems are a key component of

the infrastructure in modern data centers [18], [22], [33],

[40], [60], [72], [74]. They enable multiple clients to concur-

rently access shared data structures across distributed servers.

To attain high concurrency and performance for distributed

transactions, state-of-the-art systems usually leverage RDMA

primitives to enable fast remote data accesses [12], [21],

[22], [71]. To ensure that concurrent transactions execute in

a proper way, these systems use a distributed transactional

protocol [27], [29]. They augment the data records with extra

fields that the software uses to manage the structures. A

typical example is shown in Figure 1. In this case, a record is

augmented with fields that include the record version, a lock,

the incarnation to detect whether the record has been freed,

and a per-cache-line version VCi to support OCC and conflict

detection between concurrent transactions that operate on the

same record.

Version Lock Incarnation VC1 | cacheline VCN | cacheline…

Fig. 1: Augmented record to support transactions in a typical

distributed transactional system.

Typically, a transactional protocol has three main phases:

Execution, Validation, and Commit. Figure 2 shows a phase-

by-phase example of an optimized software protocol. Here, a

coordinator node executes a transaction with a mix of accesses

to the memory of the local and remote nodes. Records A and

C are read, while B and D are written.

EXECUTION PHASE VALIDATION PHASE COMMIT PHASECoordinator
Node

[records: A, B]

Remote Node 1
[record: C]

Remote Node 2
[record: D]

read
local(A)

read
remote(C)

write
local(B)

(includes
read(B))

write
remote(D)

lock (B)

lock(D)

Serialization
Point

read &
validate(A)

read &
validate(C)

apply
updates(B)

apply
updates(D)

unlock(B)

unlock(D)

read
remote(D)

Fig. 2: Typical protocol for distributed transactions.

Execution Phase. Accesses to local records are performed

locally, while accesses to remote ones are executed by sending

RDMA operations to the nodes that have the records. All reads

are recorded in the transaction’s Read Set with the version of

the records. Transactional systems usually operate at record-

level granularity. As a result, before a read can be recorded

in the Read Set, the atomicity of the read must be validated.

This involves checking that all the cache lines of the record

have the same version and, therefore, no write is interfering.

For the writes, even though a write only modifies part of

a record, the system needs to first read the whole record

before the write, and then apply the update. Both local and

remote writes are buffered in the Write Set until the transaction

commits. The transaction’s Write Set includes the version,

address, and data of all the written records.

Validation Phase. The coordinator needs to confirm that

the transaction does not conflict with any other transaction

executing on the local or remote nodes. For this reason,

it first locks the local and remote parts of its Write Set.

This can be done using the Compare-and-Swap (CAS) and

RDMA CAS, respectively. Once locking succeeds, it can be

determined whether the transaction can be serialized. Then,

the coordinator fetches the data versions of all the records

read, re-reads their current version numbers, and compares

them to the versions that were read during Execution. The

goal is to identify conflicts. If the versions have not changed,

the transaction proceeds to Commit. Otherwise, the transaction

is aborted and re-executed.

Commit Phase. The data versions of all the written records

are updated, and the writes are performed for both local and

remote records. After that, the local and remote parts of the

Write Set are unlocked to allow future accesses.

III. EXISTING SOFTWARE OVERHEADS

We implemented an optimized version of distributed trans-

actions based on the Microsoft FaRM protocol [21], [22].

We included optimizations as described in similar papers,

including: (1) batching of messages [12], [71], [72] (i.e.,

sending lock/unlock operations to remote nodes in a batch

during validation), (2) sending writes and unlock messages

without serialization to avoid stalls [71], (3) not stalling while

waiting for unlock operations [12], [71], [72], and (4) avoiding

locking the read set during validation [12]. We designed the

records of the key-value store as shown in Figure 1. We

instrumented the code to capture the software overheads.

The left column of Table I lists the major sources of

software overhead that we have seen in our optimized software

implementation (called SW-Impl). The first source is managing

the read and write sets of transactions. The Read Set of a

transaction is the set of records that the transaction reads plus

their metadata. The Write Set is the set of records that the

transaction writes, the values written, and the metadata. In

SW-Impl, writing a record involves two reads and two writes:

a read of the record and metadata (from either a remote or a

local node), then a write to the write set, and then, at commit,

a read from the write set and a write to the final location.

SW-Impl also adds other software overheads in every write

and read. Specifically, before performing a record write, the

software needs to update the record’s version. Further, on a

record read, the software needs to check that all its cache

lines have the same version. This is a check for atomicity, to

ensure that there is no transaction writing to the record while

the record is being read. This means that one cannot do zero-

copy reads: one reads into a temporary location, checks the

versions, and then copies the record to the destination location.

786

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Reducing the overhead of distributed transactional systems.

Overhead in Current Systems (SW-Impl) Proposed Hardware to Minimize Overhead
Manage the Read and Write sets of a transaction. Bloom filters (BFs) next to the directory/LLC (for local accesses)

and in remote NICs (for remote accesses), similar to HTM [10], [59], [75]

Before performing a write, update the version of the record. No record versions.

On a record read, check for read atomicity. Unable to do zero-copy reads. Use the BFs to partially lock the directory while reading multiple lines.

Operation at record granularity, which causes: (i) On a read/write, bring the Operation at cache line granularity.

whole record, and (ii) Potential increase in number of transaction conflicts.

Perform many RDMA and local operations beyond reads and writes. They Eliminate some RDMA and local operations. Support some new RDMA

include: (i) lock/unlock, (ii) poll for lock/unlock completion, and (iii) re-read messages, including Intend-to-commit, Ack, and Validation. Off-load

record versions at validation time, to check for conflicts. RDMA operations from the core to the NIC. Use the BFs to partially

lock the directory while a transaction is committing.

Other overheads of SW-Impl stem from the fact that reads

and writes are performed at record granularity. On an access,

the whole record is read rather than a few fields. Moreover,

transactions conflict even when they access different fields of

the same record.

SW-Impl performs many RDMA and local operations be-

yond the basic reads and writes. They include operations to

lock and unlock, poll for lock and unlock completion, and

re-read records in the Validation phase before committing, to

check for conflicts (Section II). These operations add overhead.

To quantify these overheads, we execute three workloads

using the Yahoo! Cloud Serving Benchmark (YCSB) [15].

The first one performs only writes (100%WR), the second

one performs the same number of reads as writes (50%WR-
50%RD), and the third one performs only reads (100%RD).

Based on previous work [17], [19], [23], we create transactions

using five requests at a time from a client. The workloads run

on a 4-node cluster, where each node has 48 Xeon E5-2687W

cores, and the nodes are connected with Mellanox ConnectX-4

NICs that perform RDMA over InfiniBand.

Figure 3 shows the execution time of the workloads, with

the contribution of different components. The overheads in

Table I, from top to bottom, are labeled as Manage RD/WR
Sets, Update Version, Read Atomicity, RD before WR, and

Conflict Detection. The rest of the time is labeled Other Time.

In the figure, all execution times are normalized to 100%WR.

From the data, we see that these software overheads are very

significant. Their combined contribution is 59%, 65%, and

71% of the total execution time for the 100%WR, 50%WR-

50%RD, and 100%RD workloads, respectively.

Fig. 3: Execution time with the SW-Impl protocol, with the

contribution of the main software overheads.

In 100%WR, the highest overheads are reading records be-

fore writing them (due to operating at record granularity) and

maintaining the Write Set. In 100%RD, the main overheads

are: (i) re-reading the version of all records in the Read Set

during validation to check for conflicts (Conflict Detection),

(ii) ensuring the atomicity of read operations on a record

read, and (iii) maintaining the Read Set. Finally, for 50%WR-

50%RD, the dominant overheads are a combination of the

main overheads of the other two bars.

IV. HADES DESIGN

To improve distributed transactional systems, in this sec-

tion, we introduce new hardware to eliminate some of the

high-overhead software operations described above. Then, we

develop HADES, a new distributed transactional protocol that

leverages this hardware to provide fast distributed transactions.

A. Hardware to Minimize Software Overheads

The right column of Table I lists our proposed hardware

designs to minimize the software overheads. First, to manage

the Read and Write sets of transactions, HADES uses read

and write hardware Bloom Filters (BF), similar to their use in

Hardware Transactional Memory (HTM) [10], [59], [75]. A

transaction owns a pair (Rd,Wr) of local BFs in the local node

and a pair of remote BFs in each of the remote nodes from

where the transaction accesses data. The pair of local BFs are

next to the local directory/LLC. Transparently to the software,

they record the addresses of the accesses to the local node’s

memory. A pair of remote BFs exist in the NIC of a remote

node, and record accesses by the transaction to that remote

node’s memory. The BFs help transaction conflict detection.

HADES eliminates the software overhead of updating the

versions of records because there are no versions. Instead,

HADES uses hardware to detect conflicts. Further, it also elim-

inates the software overhead of checking for read atomicity.

The reason is that HADES introduces a hardware mechanism

where a transaction can use its BF to partially lock the direc-

tory, preventing other transactions from concurrently writing

the same lines that the transaction is reading.

HADES eliminates the overheads stemming from perform-

ing reads and writes at record granularity because its hardware

nature enables it to operate at cache line granularity.

To further reduce overhead, HADES eliminates some of the

RDMA and local operations performed by the conventional

system. Further, HADES supports some efficient new RDMA

787

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

operations, including Intend-to-commit, Ack, and Validation,

which trigger actions at the receiving NIC. In addition, several

of these operations are off-loaded from the core and executed

in the NIC. Finally, HADES leverages the partial directory-

locking hardware mechanism mentioned above while commit-

ting a transaction, preventing other transactions from issuing

conflicting accesses.

B. Chosen Distributed Transactional System

To showcase the impact of HADES, we use a cluster of

N nodes, each with C cache-coherent cores. Each database

record has its home in one of the nodes. Hence, when a core

accesses a record for the first time in the transaction, it issues

a local or a remote access depending on where the record’s

home is. During the transaction, the record is reused locally.

When the transaction commits, all the remote records that it

has updated are written to their home nodes.

Remote data are accessed via RDMA requests that take as

argument the range of contiguous addresses accessed. We use

one-sided RDMA since it reduces core costs and latency [61].

Local data are accessed with loads and stores. The same is the

case for accesses to local copies of remote data.

Both remote and local accesses from a transaction i can

conflict with accesses from another transaction j running on

the same node (i.e., a local transaction) or on another node

(i.e., a remote transaction). We call a conflict between two

local accesses an L–L conflict, a conflict between a local and

a remote access an L–R conflict, and a conflict between two

remote accesses an R–R conflict.

Figure 4a shows a local (L) and a remote (R) access.

Figure 4b shows an L–R conflict and an L–L conflict. An

R–R conflict occurs in a node that is accessed remotely by

two transactions.

Memory Memory

(a)

Node Node

RL

Memory Memory

(b)

Node Node

RLL LEager Lazy

Core Core CoreCore CoreCore

Fig. 4: Example of transaction conflicts.

We design the HADES transactional protocol as follows.

Conflicts that involve at least one R access are detected lazily
when the first of the two conflicting transactions commits;

the transaction that commits first does squash the other one.

On the other hand, conflicts where both of the accesses are

L are detected eagerly as soon as the second access occurs;

the transaction that issues the second access squashes itself.

When we describe the protocol, it will be apparent that these

decisions are natural given the hardware envisioned.

C. Overview of the HADES Hardware

The top left part of Figure 5 shows a node with multiple

cores. The five circles numbered 1 to 4b denote where the

HADES hardware extensions are. Then, the rest of Figure 5

��

�����	
	
�
���

�

�
��
�����

�����

��������������

����

�����	
	
�
���

�

��

�����

��
���

���

�����

�

�

���������
����
��
�����	

�
����
��
�����	

�������������	
����

�

�

���!"�� ��������

����#��
��
�����
���

� ���$���%���%��!

�!"�� ����%��
��
��%��&��%	
�

�!"�� ����%����	

��%��&��%	
�

������	

����

�!"�� �
&�	
��
���
�%��&��%	
�

�!"�� �
&�	
����	
�
�%��&��%	
�

�	
�� ������	
��
����
��
�

�����
�������
 ��������

��

�!"�� ���	��$��
&�	
����
����

�

�����
&�	
��!� ����%���%��!�

������	

����

�� ��

����

Fig. 5: Node with the HADES hardware modules shaded.

expands each of the five modules, shading the actual HADES

hardware. In the figure, TX means transaction.

Module 2 is a Writing-Transaction ID tag (WrTX ID)

added to each directory/LLC entry. It records the ID of the

in-progress transaction that wrote to that line. Module 1 is

Recorded RD and Recorded WR bits added to the lines of the

private caches that act as filters to avoid accessing WrTX ID

at every access.

Module 3 is the Local Read Bloom Filters and the Local
Write Bloom Filters of all the local transactions. They encode

the local addresses read and written, respectively, by the local

transactions. Executing transactions dynamically pick their

BFs from a set of BFs. Although Figure 5 shows a monolithic

LLC, the LLC and the BFs are sliced.

Module 4a is the Remote Read Bloom Filters and the

Remote Write Bloom Filters of all the in-progress remote

transactions that have accessed data homed in this node. They

encode the local addresses read and written, respectively, by

the remote transactions.

Module 4b records, for each local transaction: (1) upper

structure: the addresses of the remote locations that it wrote,

tagged by the remote node ID—together with a pointer (Data
Location in the figure) to a local buffer that contains the

values written; and (2) lower structure: a list of the IDs of

the remote nodes that home the data read or written by the

local transaction. All this information is used when a local

transaction commits.

Each entry in modules 3 , 4a , and 4b is tagged with the

ID of the owner transaction (TX ID).

D. Data Buffering and Conflict Detection

Consider a HADES transaction running on Core i of Node

x. Data is local if its home is x and remote otherwise. The local

data written by the transaction is buffered in the local cache

hierarchy (including the shared LLC) and cannot be evicted to

memory. The record of local lines read is encoded in a Local

read Bloom filter (BF). The record of local lines written is

encoded in a Local write BF and in Writing-Transaction ID

(WrTX ID) tags in the directory/LLC.

The remote data written by the transaction is buffered in the

local NIC. The record of remote lines read and remote lines

788

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

written by the transaction that are homed in a remote Node

y is encoded in a Remote read BF and a Remote write BF,

respectively, at the NIC of Node y. These BFs detect conflicts.

We now consider how conflicts between transactions are

detected. Recall that L–L conflicts are detected eagerly. On

a local read by transaction i, the address is checked against

the WrTX ID tag in the directory/LLC. On a local write by

transaction i, the address is checked against the WrTX ID tag

in the directory/LLC and against the Local read BFs of all the

other local transactions.

Recall that L–R and R–R conflicts are detected lazily when

the first transaction of the pair commits. Assume, without loss

of generality, that transaction i running on Node x commits

first. At the local node, the local addresses written by i are

checked against the NIC-resident Remote read and Remote

write BFs of all the remote transactions that accessed data

homed in x. In addition, at any remote Node y that homes

remote data written by i, the following is done. The addresses

of the remote data written by i are checked: (i) against the

Remote read and Remote write BFs of all the other remote

transactions in y to detect R–R conflicts, and (ii) against the

Local read and Local write BFs of all the local transactions

in y to detect L–R conflicts at y.

V. HADES TRANSACTIONAL PROTOCOL

We propose two versions of HADES: a hardware-only one

and a hybrid one. The latter replaces the local component

of the hardware-only protocol with software, to simplify the

hardware design. Next, we describe both versions.

A. Hardware-only HADES Protocol

In this discussion, we label transactions (sometimes referred

to as Cores) as {i, j, ...} and nodes as {x, y, ...}. Table II

details the protocol followed by Transaction i running on Core

i of Node x. We now describe each operation in turn.

Remote Read/Write. Assume that i accesses a remote

datum homed in y. In this case, Core i sends an RDMA

request to Node y. If this is a read, the addresses of the

set of cache lines requested are encoded in the Remote read

BF (RemoteReadBF) of i in the NIC of y (Module 4a of

Figure 5). Then, the lines are fetched to Node x. If this was a

write, a similar process is followed, except that we only need

to care about the cache lines that are partially written. Such

lines can be found at the beginning and end of the range of

addresses written. The addresses of such lines are encoded in

the RemoteWriteBF of i in the NIC of Node y (Module 4a)

and the lines are fetched to Node x. The other lines are not

fetched to Node x because they will be overwritten, and do

not need to be inserted in the BF as we will see. From now on,

Node x buffers i’s updates to all the addresses of the datum.

Local Read/Write. Assume that i accesses a datum homed

in Node x. The hardware accesses the WrTX ID tag in the

directory (Module 2 of Figure 5) to check if another local

transaction has written the line. If so, i is squashed. Note

that the filter bits in the private caches (Module 1) are first

checked and, if the Recorded WR bit is set, there is no need to

TABLE II: Operation of a Transaction i running on a Node x.

References in circles correspond to the modules in Figure 5.

Remote Read/Write by i

* Send request to Node y
* If Read

- Add addresses of lines read to RemoteReadBFi in NIC of

Node y 4a

- Fetch the lines to local node

* If Write

- Add the addresses of partially written lines to RemoteWriteBFi

in NIC of Node y 4a

- Fetch the partially written lines to local node

- From now on: buffer the updates to all the datum’s lines

(not just to the partially written lines) in Node x

Local Read/Write by i

* Use WrTX ID tag in the local directory 2 to check if another

local transaction wrote the line. If so, squash yourself

* If Write

- Additionally check the other LocalReadBFj,k,.. 3 to see if

another local transaction read the line. If so, squash yourself

* If Read

- Add address read to LocalReadBFi 3

* If Write

- Add address written to LocalWriteBFi 3

- Update the WrTX ID tag in the local directory 2

Transaction Commit by i. At Local Node x

* i partially locks the local directory or gets squashed

* Detect any conflict on local data between i and a remote trans.

- Find the lines with i’s tags in the local directory 2 and probe

for membership in all RemoteReadBFj,k,.. and

RemoteWriteBFj,k,.. in x’s NIC 4a

- Send squashes to any conflicting remote transactions

* Request the commit of i in remote nodes

- Send Intend-to-commit RDMA message to all remote nodes

involved in the transaction, passing the address ranges written

- Receive Acks from all the remote nodes involved in the trans.

- After this, i cannot be squashed anymore

* Clear i’s local speculative state

- Find the lines with i’s tags in the local dir. 2 & clear their tag

* Send Validation plus updates to all the remote nodes involved

in the transaction to clear i’s remote state and push the updates

* Unlock local dir. & clear LocalReadBFi and LocalWriteBFi 3

Transaction Commit by i. At Remote Node y

* NIC receives i’s Intend-to-commit RDMA message with the

addresses written

* Partially lock y’s directory for i or squash i
* Detect any conflict on y’s local data between i and any

transaction local or remote to y
- Take each address written by i homed in y, and check for

membership in:

= All other RemoteReadBFj,k,.. and RemoteWriteBFj,k,..

in y’s NIC 4a and

= All LocalReadBFl,m,.. and LocalWriteBFl,m,.. in y 3

- Squash all transactions conflicting with i
* Send Ack to i in x
* Receive Validation plus updates from i
* Push the updates to y’s local memory or LLC

* Unlock y’s directory for i and clear RemoteReadBFi and

RemoteWriteBFi 4a

access the directory because it is guaranteed that the WrTX ID

tag in the directory is set to i. For simplicity we do not describe

Module 1 , but note that, on context switch, the Module 1

789

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

bits are cleared.

On a write, we additionally check the LocalReadBFj,k,.. of

all the other local transactions (Module 3) to see if another

local transaction read the line. If so, i is squashed.

If i survives, the hardware performs: on a read, the line

address is encoded in LocalReadBFi (Module 3); on a write,

the line address is encoded in LocalWriteBFi (Module 3)

and the WrTX ID tag in the directory is set (Module 2).

Transaction Commit. To commit i, HADES requires several

steps in x and some steps in each of the remote nodes {y, z...}
from where i accessed remote data.

a) Actions in Node x. There are six steps in Node x (Table II):

Step 1. To ensure that commits have a total order, the commit

of i starts with i partially locking the local directory. This

mechanism will be explained in Section V-B and consists

of using the LocalReadBFi and LocalWriteBFi (Module 3)

to temporarily and selectively block accesses to the lines

in the directory whose addresses are encoded in these BFs.

This operation prevents other transactions from performing

conflicting accesses while i commits. If i fails to lock the di-

rectory because another transaction is already locking common

lines, i gets squashed. After partially locking the directory, i
is guaranteed not to get squashed due to any type of local

conflict.

Step 2. HADES detects any conflict on local data between

i and a remote transaction. For this, the hardware takes

each of the directory lines whose WrTX ID tag (Module

2) matches i, and checks them for membership in all the

RemoteReadBFj,k,.. and RemoteWriteBFj,k,.. in the NIC of

Node x (Module 4a). If a match is detected, a squash is

sent to the conflicting remote transaction. Section V-C shows

the hardware structures proposed to easily obtain the directory

lines whose tag matches a certain WrTX ID, and the structures

proposed to check for BF membership.

Step 3. HADES requests the commit of i in remote nodes. For

this, the local NIC sends an Intend-to-commit RDMA message

to all remote nodes {y, z...} involved in the transaction,

passing the range of addresses homed in the corresponding

node that were written by i. On reception of the message, such

nodes will inititate the commit of i by performing the actions

that will be described below. If the operations are successful,

the nodes will return an Ack to i. When x’s NIC has received

all Acks, i cannot be squashed anymore.

Before i receives all the Acks, however, i can still receive

squash messages, which will result in the squash of i and the

notification of it to all the nodes involved in the transaction.

We explain this case later.

Step 4. Since i is now free of squashes, it clears i’s local

speculative state. Specifically, HADES finds all the lines with

i’s WrTX ID tags in the local directory (Module 2) and

clears their tag.

Step 5. The NIC in x sends a Validation RDMA message to

all the remote nodes involved in the transaction, asking them

to clear i’s remote state. The message includes i’s updates to

the data homed in the corresponding remote node, if any. The

receiving nodes clear RemoteReadBFi and RemoteWriteBFi

in their NIC (Module 4a) and push the updates to their local

memory or LLC.

Step 6. As the Validation messages are sent, i unlocks the

local directory (Section V-B) and clears LocalReadBFi and

LocalWriteBFi (Module 3). All of i’s state has disappeared.

b) Actions in Nodes {y, z...}. Recall that remote nodes {y,

z...} receive the Intend-to-commit message from i, with the

addresses of data homed in those nodes that i wrote, if any.

Each of the nodes, say y, performs five steps (Table II):

Step 1. To ensure correctness, the hardware attempts to

partially lock y’s directory for i. The operation involves using

RemoteReadBFi and RemoteWriteBFi (Module 4a) to tem-

porarily and selectively block access to lines in y’s directory

that are encoded in these Bloom filters. If the hardware fails to

lock the directory, a squash is sent to i. After partially locking

the directory, i is guaranteed not to get squashed due to any

type of conflict in Node y.

Step 2. HADES detects any conflict on y’s local data between

i and any transaction local or remote to y. For this, the

hardware takes each address written by i that is homed in y and

checks for membership in: (i) all other RemoteReadBFj,k,..

and RemoteWriteBFj,k,.. in y’s NIC (Module 4a) and (ii)

all LocalReadBFl,m,.. and LocalWriteBFl,m,.. in y (Module

3). If a match is detected, a squash is sent to the transaction

conflicting with i.
Step 3. y’s NIC sends an Ack to i in x and waits for Validation.

Step 4. On reception of the Validation plus the local updates
from i, HADES pushes the updates to y’s memory or LLC.

Step 5. y unlocks its directory for i and clears

RemoteReadBFi and RemoteWriteBFi (Module 4a).

Figure 6 is the HADES protocol using the Figure 2 layout.

�������	��
���� ����
���	����
��	�����
���������������
����

���������������

�������
������

�����������

�������
�����

���������
�

�
!��
���!�����

"��!�
����!��
�
!����

�
!��
�
���
���

"��!�
��
���
�
�
!����

��
�
�
���!�����
"��!�

����!����
�
�
������
���

!�!
�������!��
�
!�����

��
�
�
�
���
�
��
����
��
���!�
��
���!��

�����������	

�	�
�

�
!����
���
���
�
�!���!���������
�����
��

����
��!����
�����
��
������
���
�

����
���

�����
��������
���!������

�
���

��������������
�
���
�

��!��!������

#
�������������
	�

�������
���
�
���
� �!���!�����
�

!���
��
�����
�
���
�����
�

�����
��������
�
���
�����

�
�������������
������
���
�!���

���!��
��!��!�������!���

�
����
�

"������
���
!�����
!��

�����
!���!��
�
!!!��
#
���

����������
���!���"�
"��!�
�

������"��!�
���
"������
���!���

��
!�����

Fig. 6: HADES protocol for distributed transactions.

Transaction Squash. The previous discussion showed that i
is squashed while trying to commit if it cannot lock the direc-

tories. It may also be squashed when a conflict with another

transaction is detected—either while i is not committing or

while i is committing but before it receives all Acks.

i can conflict with another local or a remote transaction on

local or remote data. A conflict with another local transaction

j on local data is detected eagerly when i attempts to write

to a line that has been read or written by j, or i attempts to

read a line that has been written by j. A conflict with a local

790

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

transaction j on remote data or with a remote transaction k
on local or remote data is detected when the first transaction

of the two commits. Finally, i is also squashed when a line

written by i is evicted from the LLC.

HADES supports context switches in a transaction without

squashing it: on a context switch, the Recorded RD and

Recorded WR bits in the private caches (Module 1 in Fig-

ure 5) are cleared, but the WrTX ID tags in the LLC (Module

2 in Figure 5) remain. A read or write to a private cache line

with a cleared Recorded RD or Recorded WR bit, respectively,

is a cache miss. After the access, the corresponding bit is set.

Fault-Tolerance and Durability. Since this topic requires

extensive discussion that is beyond what we can cover, we

only outline our approach. HADES can attain fault-tolerance

by replicating variables in one or multiple nodes [34]. This

requires extending the protocol so that a write operation now

creates messages that update the replicas in other nodes [38].

The update of these replicas needs to be completed by the

time the transaction commits. Also, to ensure durability, these

updated replicas need to be persisted to SSDs, HDDs, or NVM

by the time the transaction commits.

The process to update or persist one or more of these

replicas can fail—e.g., a message can get lost or a memory

module may fail. These events are detected and handled

correctly by leveraging HADES’ two-phase commits (like

FaRM). Specifically, the node with the committing transaction

first sends the Intend-to-commit to all the nodes with replicas.

Each of these nodes updates the replica and persists it in a

temporary durable storage before responding with an Ack.

When the initiator receives all the Acks, it knows that the

transaction has succeeded and sends a Validation to all replica

nodes (so they can move their replica from the temporary

durable storage to a permanent one). If, instead, at least one

of the replicas does not return an Ack, the initiator sends an

abort message to all replica nodes and the transaction fails.

B. Hardware Primitive to Support Atomicity

For correct operation, while transaction i is committing, no

other transaction should perform accesses to addresses that

conflict with i’s accesses. To ensure this capability, HADES in-

troduces a hardware primitive that allows i to partially lock the
directory, conservatively preventing other transactions from

performing conflicting accesses. As a transaction i proceeds

to commit, it first invokes such primitive.

The idea is to copy the Read and Write BFs of i to a Locking
Buffer next to the directory (Figure 7). Then, every write

that accesses the directory/LLC is checked for membership

in the Read and Write BFs, while every read is checked for

membership in the Write BF. If any of these checks is positive,

the access is denied and needs to retry. Otherwise, the access

proceeds as usual. Note that these checks are performed in

parallel with the directory/LLC tag check.

In the HADES protocol, when transaction i tries to com-

mit, it first locks its local directory with LocalReadBFi and

LocalWriteBFi, and then the directory in each relevant remote

Node y with RemoteReadBFi and RemoteWriteBFi. Note that

WrTX_ID Dir/LLC Tags LLC Data Array

i

WR
BFs

RD
BFs

Address

Bloom
filter check

LLC Access

Hit in LLC? Present in BF?

Hit in LLC && not present
in BFs. Access LLC

Miss in LLC && not present in
BFs. Send to main memory

Present in a
BF. Retry

j

ji

Locking
Buffers

Fig. 7: Partially locking the directory by transactions i and j
using their Bloom filters (BFs).

blocking access to the directory/LLC is enough. There is no

need to block access to the private cache hierarchies because

every first write and first read of a transaction to a line needs

to propagate to the directory/LLC to check and (for writes)

set the WrTX ID tag. The purpose of the Recorded RD and

WR bits in Module 1 of Figure 5 is to filter the subsequent

accesses.

At a given node, multiple transactions can commit at a time

if they do not have conflicts. To support this case, as shown in

Figure 7, our hardware has multiple Locking Buffers to store

the BFs of multiple committing transactions. To see how it

works, consider when transaction i wants to commit in Node

x and finds that j is already partially locking the directory.

i’s first step is to generate the list of cache line addresses it

wrote. Generating such list is easy. If x is a remote node for i,
then the list is available in the just-received Intend-to-commit
message. If x is the local node for i, the list is obtained from

the directory/LLC’s WrTX ID tags with the hardware that will

be described in Section V-C.

Once the list of write addresses is available, the addresses

are checked for membership in the Read and Write BFs of

j. If there is a match, the two transactions conflict and i is

squashed—they cannot both commit concurrently. Otherwise,

i’s BFs are loaded into the second buffer of Figure 7, ef-

fectively adding a second partial lock to the directory. The

BFs loaded are RemoteReadBFi and RemoteWriteBFi, or

LocalReadBFi and LocalWriteBFi, depending on the case. At

the end of commit, the unlock operation clears the Locking

Buffer in the local node and in any relevant remote nodes.

This primitive is also used by HADES to avoid checking

for read atomicity when a transaction performs a read that

covers multiple cache lines (Row 3 of Table I). In this case, the

hardware hashes the addresses of the multiple lines into one of

the read BFs of the Locking Buffers. Any concurrent write that

tries to access one of these lines stalls in the directory/LLC

while the reads are in progress.

The accesses to the Locking Buffers do not impact the

critical-path of LLC accesses. The LLC and each individual

Locking Buffer are accessed in parallel—there is no serializa-

tion of Locking Buffer access. Accessing the LLC involves

791

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

accessing the large tag array, performing tag comparison,

going through the multiplexer, and detecting the hit. In parallel,

we hash the address and access a BF.

C. Other Hardware Primitives

HADES uses two more hardware primitives that operate on

BFs: one detects membership of an address in a BF; the other

quickly finds the lines in the directory/LLC that have been

written by a given transaction ID. Detecting membership of

an address in a BF is a well-known operation that involves

hashing the address and then checking if the resulting set bits

are in the BF [8].

Identifying the set of lines in the LLC that have been written

by a given transaction is needed in three operations. The first

one is a transaction squash: all the LLC lines tagged with

the transaction’s WrTX ID are identified and invalidated. The

second operation occurs at the end of a transaction commit:

all the LLC lines tagged with the transaction’s WrTX ID have

their WrTX ID cleared because they become non-speculative.

The third operation occurs when a local transaction i
commits, and needs to check for conflicts against remote

transactions {j, k, ...} on local data. Transactions {j, k, ...}
have their RemoteReadBFj,k,.. and RemoteWriteBFj,k,.. in the

NIC of the local node (Module 4a). To check for conflicts, one

needs to first collect the set of local cache line addresses tagged

with i’s WrTX ID. Then, these addresses are checked for

membership in RemoteReadBFj,k,.. and RemoteWriteBFj,k,...

Note that the opposite case, where a committing remote

transaction j needs to check for conflicts against a local

transaction i on local data is easier: we already have a list

of local line addresses written by j: they are included in the

Intend-to-commit message received from the node on which j
runs (Table II).

To collect the set of lines written in the LLC by a trans-

action, we organize the write BF in the following way. We

logically divide it into two sections: WrBF1 and WrBF2.

WrBF1 is filled by hashing addresses using a conventional

hash function (e.g., CRC [52], [68]); WrBF2 is filled by taking

the LLC index bits of addresses and applying modulo WrBF2

size. As a result, each bit of WrBF2 corresponds to a few sets

in the LLC (e.g., 4 or 8) and, if the bit is set, it tells that

WrBF2 has an address that maps to such sets. An example is

shown in Figure 8. In the figure, the WrBF2 has 4 bits, and

the LLC has 8 sets. Hence, if bit 2 of WrBF2 is set, it means

that WrBF2 has at least a line that maps to sets 2 or 6.

With this BF design, address insertion in the BF and

membership detection work as usual. However, this design

allows fast, parallel detection of the LLC lines tagged with

a given WrTX ID. As shown in Figure 8, each set bit in

WrBF2 enables a group of LLC sets. The enabled sets compare

an input thread ID (TID) with all the WrTX ID tags of

all their ways. (The figure uses TID rather than WrTX ID).

Once the matches are found in parallel, retrieving the address

tags does not consume excessive time, since the number of

matches is typically modest—around 5 for our workloads.

These addresses are the ones written by the TID transaction.

Address
LLC
Tag

LLC
Index

Block
Offset

1

1

0

0

0

1

0

1

Wr BF2

Way 1

Hash

% WrBF2
size

TID

=

=

=

=

=

=

=

enable

enable

=
Wr BF1

set 1

set 8

Way 2

TID LLC Tag LLC TagTID

.

.

.

.

.

Fig. 8: New write BF design to quickly identify the lines in

the LLC written by a given transaction. The figure uses TID

next to the tag rather than WrTX ID for simplicity.

D. HADES-H: A Hybrid Protocol

To help integrate HADES more easily into current hardware,

we also propose a simplified design called HADES-Hybrid

(HADES-H). It minimizes the hardware changes to the pro-

cessor and uses software for some of the protocol operations.

The idea is to support the local operations in software,

like in SW-Impl (Section III), and the remote operations in

hardware, like in HADES. To support remote operations,

the NIC has the same hardware as in HADES. Since the

local operations are in software, the processor does not have

local Bloom filters or special tags in caches or directories.

Of the hardware structures in Figure 5, HADES-H only has

Modules 4a and 4b ; the rest of the modules are eliminated.

However, for efficiency, HADES-H retains the hardware prim-

itive that partially locks the directory/LLC (Section V-B). With

this design, nearly all the changes are concentrated in the NIC.

During transaction execution, remote reads and writes are

tracked in the NIC hardware at cache line granularity like

in HADES. However, local reads and writes are tracked and

recorded in software at record granularity in Read and Write

sets like in SW-Impl (Section III). For this reason, data records

are augmented as in Figure 1. Moreover, conflicts on local

data are not detected eagerly by comparing directory tags.

Instead, they are detected in software as in SW-Impl, during the

validation phase before the commit: the software re-reads from

local memory all the local records that exist in the transaction’s

Read and Write sets and checks that the versions have not

changed due to an intervening write. Note that the Write set

is also checked because local operations are executed at record

granularity. We call this process the Local Validation.

At commit time, the operations of Table II are followed

with some modifications. When a local transaction i attempts

to commit, the software passes the addresses of all the local

records read or written by i to the local NIC. The NIC

uses them to build the equivalent of a LocalReadBFi and

LocalWriteBFi for i. Then, these BFs are placed in one of the

Locking Buffers of the node to partially lock the directory.

792

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

If locking is unsuccessful, i is squashed. Otherwise, the com-

mit proceeds as in HADES: the NIC checks LocalWriteBFi

against the NIC’s BFs to identify L–R conflicts, and then

initiates the remote commit process in all other nodes involved

in the transaction.

The remote commit process in a remote Node y starts like

in HADES. However, after the hardware succeeds in partially

locking y’s directory for i, and has checked for conflicts

between i and other remote transactions in y, it cannot check

for conflicts between i and local transactions in y. The reason

is that local transactions do not have BFs. Hence, y will

return an Ack to i without checking for conflicts with local

transactions. When Core i receives all the Acks, it invokes

software to perform the Local Validation of transaction i. If

the local validation fails, i is squashed; otherwise, i merges

its local updates to local memory or LLC, and terminates the

commit transaction as in HADES.

When local transactions in nodes such as y attempt to

commit, they will perform their Local Validation. If they had

a conflict with transaction i, they will discover it at that time

and will squash themselves.

Overall, HADES-H eliminates most of the processor hard-

ware at the cost of adding software overhead.

VI. ADDITIONAL CONSIDERATIONS

Protocol Deadlock and Livelock Issues. The HADES proto-

col does not deadlock or livelock. On data conflicts, transac-

tions are squashed and restarted. When two local transactions

conflict on local data, the second conflicting access eagerly

triggers a squash of the transaction that issued it. When at

least one of the conflicting accesses is remote, the conflict

is resolved lazily at commit time. The first transaction to

commit detects the conflict and squashes the other. When two

transactions conflict in multiple nodes on remote data, it is

possible that both transactions get squashed. Also, recall that

a transaction also gets squashed when it attempts to partially

lock a directory and fails because there is already a partial

lock that conflicts with it.

A transaction may be repeatedly squashed. To avoid live-

lock, HADES uses the same strategy as FaRM. Specifically,

when a transaction is squashed more than a certain number of

times, it stops using an OCC protocol. Instead, it first locks

all data that it will need (i.e., it gets all permissions) and then

executes the transactional code.

Filter Bits in the Private Caches. Recall that the private

caches (L1 and L2) have filter bits (Module 1 in Figure 5)

to avoid the extra traffic to the LLC on read or write requests

to addresses that were previously read or written by the

transaction. On a context switch, these bits are cleared, to

guarantee that accesses to these cache lines by the incoming

thread will first go to the LLC for conflict detection. This will

correctly identify conflicts between transactions executing on

the same core. If the core supports SMT, then the filter bits

are augmented with a TX ID so that accesses from different

transactions can be disambiguated.

Supporting Context Switches. We envision that, on a context

switch, the running transaction is not typically squashed. The

filter bits in the private caches are cleared, but the WrTX ID

tags in the LLC and the BFs of the outgoing thread are kept in

place, without saving them. The OS gives the incoming thread

the BFs that it was using when it was preempted during a

transaction. When threads start a transaction, they get a new

pair of BFs. If a core runs out of BFs, no new transaction can

start until another transaction completes or gets squashed.

Hardware Modifications and Scalability. Transactional-

based key-value stores and databases are key workloads. To

obtain performance beyond FaRM-like software protocols,

hardware changes such as those of HADES and HADES-H

are needed. As shown in Figure 5, HADES requires hardware

changes in the processor (Modules 1 , 2 , and 3) and in

the NIC (Modules 4a and 4b). HADES-H eliminates all the

processor hardware except the mechanism to partially lock the

directory. However, it has software overheads.

HADES relies heavily on BFs, which are area- and energy-

efficient structures to quickly check for membership. They

are ideal for conflict detection in transactions. The BFs and

the cache tags are automatically set in hardware when the

processor issues reads/writes inside a transaction.

To compute the hardware needed by HADES, assume N
nodes, C cores per node, m multiplexed transactions per

core, and an average number of remote nodes accessed per

transaction equal to D. Then, each node needs m×C pairs of

BFs (read and write), each LLC line needs log2(m× C) bits

for WrTX ID, and each NIC needs m×C ×D pairs of BFs

in Module 4a plus m× C entries in the structures in 4b .

Based on the parameters of Section VII, a pair of core BFs

take 0.7KB, a pair of NIC BFs in Module 4a take 0.25KB,

and the entries for a single TX ID in Module 4b take less

than 100B. One cluster evaluated in Section VIII has N=5,

C=5, and m=2. In this case, the storage needed per node is:

7.0KB for 10 pairs of core BFs, 4 bits in the LLC tags, and

11.0KB in the NIC (for 40 pairs of BFs and 10 TX IDs in

Module 4b).

The HADES hardware is scalable. A larger system can be

the one considered in a FaRM paper [61], where N=90, C=16,

and m=2. In this case, if we assume that D = 5, the storage

needed per node is: 22.4KB for 32 pairs of core BFs, 5 bits in

the LLC tags, and 43.1KB in the NIC (for 160 pairs of BFs

and 32 TX IDs in Module 4b). Note that an NVIDIA NIC

currently has up to 4MB of memory and can incorporate even

more [55].

If the transaction concurrency exhausts the local BFs, we

can gracefully degrade to HADES-H during intervals, since

HADES-H needs no local BFs.

VII. EVALUATION METHODOLOGY

Modeled Architecture. We model a default cluster architec-

ture of N=5 nodes, C=5 cores per node, and m=2 multiplexed

transactions per core. Later, in a section on scalability, we

model larger machines of up to 200 cores. Each node has

64 GBs of memory and a NIC that supports RDMA. The

793

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

architecture parameters are shown in Table III. Each core is

out-of-order, has private L1 and L2 caches, and has a shared

LLC. In the table, Find LLC Tags refers to finding all the

lines in the LLC that are tagged with a given WrTX ID

(Section V-C). The area and power of the structures are

computed with CACTI 7.0 [5] at 22nm.

TABLE III: Architectural parameters used for evaluation.

Cluster Architecture Parameters

Nodes (N) & Default: N=5 nodes, C=5 cores per node, and
cores/node (C) m=2 multiplexed transactions per core.

For scalability analysis, we try: N=10 and C=5;
N=5 and C=10; N=8 and C=25.

Core out of order, 6 issue, 2GHz
Ld-St queue; ROB 92 entries; 192 entries
L1 cache 64KB, 8-way, 2 cycles round trip latency (RT)
L2 cache 512KB, 8-way, 12 cycles RT
LLC cache 4MB/core, 16-way, 40 cycles RT
Core Bloom filters Read: 1024 bits; Write: 512 bits with CRC hashing

plus 4096 bits with cache indexing hashing.
Each pair of Rd+Wr BF: 0.7KB of storage.
Rd BF: 12.8/12.7pJ per rd/wr; 1.7mW leakage.
Wr BF: 12.8/13.1pJ per rd/wr; 1.9mW leakage.

Find LLC Tags 80 - 120 cycles typical
CRC hash function 2-cycle latency; Area: 1.9 ∗ 10−3mm2;

Dyn. energy: 0.98pJ ; Leak. power: 0.1mW

Network Parameters

Network latency 2μs RT NIC-to-NIC RDMA latency
Network Bandwidth 200Gb/s
NIC Bloom filters Read: 1024 bits; Write: 1024 bits.

Each pair of Rd+Wr BF: 0.25KB of storage.
BF: 12.8/12.7pJ per rd/wr; 1.7mW leakage.

Other NIC hardware Structures per TX ID: 90B of storage

Per-Node Main-Memory Parameters

DRAM 64GB, 4 Channels, 8 Banks, 100ns read/write RT
Freq; Bus width 1GHz DDR; 64 bits per channel

We use RDMA for low-latency data transfers between

nodes without involving the remote processor, and augment

it with the operations required by HADES. These operations

include support for: (1) remote read and write operations that

need to update the NIC hardware structures, (2) Intend-to-

commit, Ack, and Validation messages of our protocol, and

(3) squashing transactions on a conflict. We model a high-end

NIC with a bandwidth of 200Gb/s [46], and up to 400 Queue

Pairs [69] for scheduling messages. The round-trip latency of

a message between two NICs is 2μs [3], [33], [46], [58]. We

model the latency of adding elements to the BFs, checking for

conflicts, and using BFs to partially lock the directory.

Modeling Approach. We use the SST simulator [56], Pin

[44], and the DRAMSim2 memory simulator [57]. With Pin,

we collect instruction traces for a given number of cores pro-

cessing read and write client requests. Traces have no timing

information. Then, we take these traces and feed them to the

same number of cores of our distributed architecture. Timing

is dynamically determined by the simulator. The simulator

models all the protocol messages required for the execution,

validation, and commit phases of transactions. In the case of

transaction conflicts, when a transaction is squashed, we restart

the transaction from its first instruction and follow the same

instruction path. Records are statically distributed across all

the nodes in a uniform manner.

Configurations and Applications. We compare three con-

figurations: Baseline (the optimized implementation of the

software-only approach for distributed transactions [12], [21],

[71] that we called SW-Impl in Section III), HADES, and

HADES-H (which uses software for local operations and hard-

ware for remote operations). We use three distributed transac-

tional applications and four key-value stores. The transactional

applications are TPC-C [66], TATP [62], and Smallbank [4],

[63]. TPC-C is an OLTP benchmark that simulates an order-

processing application. We fill the TPC-C warehouses with

10M items. TPC-C is write intensive and has many record

accesses per transaction at a fine granularity. TATP is an OLTP

benchmark that simulates a telecommunication database with

1M subscribers. It has 80% read and 20% write requests, and a

small number of requests per transaction. Smallbank [4], [63]

is a write-intensive OLTP benchmark (46% write requests) that

simulates bank account transactions on 5M accounts.

The key-value stores are HashTable (HT), Map, B-Tree [26]

and B+Tree [7]. We evaluate them with Yahoo! Cloud Serving

Benchmark (YCSB) [15] running write-intensive workload-A

(wA) (50% writes, 50% reads) and read-intensive workload-B

(wB) (5% writes, 95% reads), using a zipfian distribution. We

fill the key-value stores with 4M keys. Like prior work [17],

[19], [23], we select transactions to be 5 client requests.

In our experiments, we warm up the architectural state by

running 1B instructions before simulating 25B instructions.

VIII. EVALUATION

We first assess HADES’ gains in throughput and latency re-

duction, and then characterize the HADES structures, perform

a sensitivity analysis, and consider HADES’ scalability.

A. Improving Transaction Throughput

Figure 9 shows the transaction throughput in committed

transactions per second of our applications with Baseline,

HADES-H, and HADES, normalized to Baseline. We see

that both HADES and HADES-H substantially boost the

throughput over the state-of-the-art software-based Baseline.

On average, HADES-H and HADES attain 2.3× and 2.7×
higher throughput, respectively.

Fig. 9: Transaction throughput normalized to Baseline.

HADES delivers very high throughput for TPC-C. The

reason is that a typical TPC-C transaction issues many small

requests (about 13.5), while executing relatively few instruc-

tions. As a result, the software overheads of these transactions

794

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

in Baseline are high. In particular, managing the Read and

Write sets, ensuring read atomicity, and reading the whole

record in an access adds significant performance overheads.

For the key-value stores running with YCSB, HADES

achieves higher gains for the write-intensive wA than for

the read-intensive wB. This is because, in Baseline, writes

have the overheads of fetching the record before writing

and of updating the record version. In constrast, read-only

transactions in Baseline do not need to lock any records. Such

transactions validate the read set for conflicts by re-reading

the version during Validation; if no conflict is detected, the

transaction commits. This saves a network round-trip to lock

remote records, and the execution time to lock local records.

We observe the same behavior for the read-intensive TATP

and write-intensive Smallbank workloads.

B. Reducing Transaction Latency

Figure 10 shows the mean latency of the transactions for the

different applications in each of the configurations, normalized

to Baseline. We break down the transaction latency into

the Execution, Validation, and Commit phases. HADES-H

and HADES only have Execution and Validation categories.

Compared to Baseline, HADES-H and HADES reduce the

mean transaction latency by 54% and 60%, respectively.

Fig. 10: Mean transaction latency normalized to Baseline.

In Baseline, Execution accounts for most of the latency.

HADES mitigates much of the overheads during this phase.

HADES does not manage Read/Write sets, check the atomicity

of read operations, or operate at record granularity. As a result,

HADES avoids many redundant reads and writes in Baseline,

and all the checking and bookkeeping overheads shown in the

first, third, and fourth rows of Table I.

Validation is the second highest contributor to the Baseline

latency. The processor performs conflict detection by re-

reading the record versions. Moreover, the processor serializes

the locking of the written records with the re-reading of the

record versions for reads. In contrast, HADES spends less

time in these operations because the BFs perform fast conflict

detection. In addition, after a node receives the “Intend-to-

commit” message, the node processes both writes and reads

at the same time.

Baseline spends time in Commit to update record versions,

apply the updates, and unlock records. In contrast HADES

spends little time in these operations. Indeed, HADES lacks

record versions. Also, HADES offloads multiple operations

to the NIC and other hardware: (i) sending the updates to

the remote nodes at commit, (ii) making the local updates in

the LLC non-speculative, and (iii) unlocking the directory and

clearing the BFs.

Figure 11 shows the 95th percentile tail latency of the

transactions for the different applications in each of the

configurations, normalized to Baseline. We see that the tail

latency follows the same relative trends as the mean latency.

Fig. 11: Tail (95th %) latency normalized to Baseline.

C. Characterizing HADES

We characterize two aspects of the HADES hardware. The

first one is how frequently do transactions get squashed due

to evictions of their modified lines from the LLC. Recall that,

because HADES uses Bloom filters, evicting a non-modified

line does not cause a squash. For this experiment, we run

the applications forcing every request in the transactions to

target data in the local node. This setting maximizes the

pressure we put on the LLC. In addition, we modify the

cache replacement policy to avoid evicting from the cache

a line modified by an active transaction if there are lines in

the same set that are not speculatively modified. With this

setup, we find that, on average, only 0.1% of the executed

transactions need to be squashed because of LLC evictions.

The percentage of these squashes is the highest in TPC-

C, where 0.7% of the transactions are squashed. Note that

this is a small percentage, and the impact is negligible when

transactions are also accessing remote nodes. Consequently,

we conclude that squashes due to cache line evictions are

insignificant for our workloads.

The second experiment characterizes false positive conflicts

in HADES’ Bloom filters. We find that, of all the conflict

detection operations in HADES-H and HADES, 0.02% and

0.04% of them, respectively, result in false positive conflicts.

These rates are small in part because individual transactions

read and write from different nodes and, as a result, use multi-

ple Bloom filters—each of which is lightly used. Specifically,

a transaction at most reads 76 cache lines and writes 40 cache

lines in our applications, and these lines are spread across the

nodes of the system.

To further assess the effectiveness of the Bloom filters, we

consider the worst-case scenario where all the requests of a

transaction target a single node. This leads to an average false

795

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

positive rate of about 2% for a 1-Kbit Bloom filter. We also

perform a sensitivity analysis of the false-positive rate of the

Bloom filters we used for our evaluation as a function of

the number of cache line addresses inserted in the filter. The

results are shown in Table IV.

TABLE IV: Sensitivity of the false positive rate of the filter

(%) to the number of cache lines inserted in the filter.

Bloom Filter Size 10 lines 20 lines 50 lines 100 lines

1Kbit 0.04% 0.138% 0.877% 3.26%

512bit+4Kbit 0.003% 0.022% 0.093% 0.439%

From the data in this section, we conclude that our Bloom

filter designs are an efficient solution for conflict detection.

Their false positive rate is very small.

D. Sensitivity Analysis

We perform two sensitivity analyses. First, we examine the

sensitivity of HADES and HADES-H to different network

latencies. Figure 12a presents the throughput of the different

configurations for different round-trip network latencies (1μs,

2μs, and 3μs). The figure shows the throughput averaged

across all the applications and normalized to Baseline with

a 2μs network. We see that HADES increases its relative

speedup as the network latency decreases. This is because

the software overheads of Baseline become a more serious

bottleneck as the network latency decreases. Our design elim-

inates these software overheads. Hence, faster networks favor

HADES and HADES-H over Baseline even more.

(a) (b)

Fig. 12: Throughput for: (a) different network latencies nor-

malized to the 2μs Baseline and (b) different fraction of local

requests normalized to 20% local Baseline.

Next, we perform a sensitivity analysis on the fraction of

requests in a transaction that target the local node. Figure

12b shows the throughput of the different configurations for

different fractions of local requests (80%, 50%, and 20%).

The throughput is averaged across all the applications and

normalized to Baseline with 20% local requests—which is

close to the configuration we used in all the previous experi-

ments. We see that, as the fraction of local requests increases,

HADES achieves relatively higher speedups. However, the

relative speedups of HADES-H decrease rapidly as we in-

crease the fraction of local requests. This is because HADES-

H uses a software-based approach for local operations, which

introduces sizable software overheads.

Overall, we conclude that HADES is the best solution across

various scenarios, and HADES-H performs relatively better

when remote accesses are frequent.

E. Scalability Analysis

To quantitatively assess HADES’ scalability, we consider

three larger machines (Table III): 10 nodes with 5 cores per

node; 5 nodes with 10 cores per node; and 8 nodes with 25

cores per node. In the last two machines, we run multiple

applications at a time, to model a space-shared environment.

For the machine with N=10 nodes with C=5 cores per

node, Figure 13 shows the throughput for different workloads.

Comparing Figure 13 to Figure 9, we see that HADES’ speed-

ups over Baseline are similar.

Fig. 13: Throughput normalized to Baseline for N=10, C=5.

In a second experiment, we model N=5 nodes with C=10

cores each. In each node, one workload uses 5 cores and

another the other 5 cores. Figure 14 shows the throughput

for different mixes of two workloads. Comparing Figure 14

to Figure 9, it can be seen that the resulting mix obtains

a throughput that is approximately the average of the two

separate workloads. The workloads have relatively small in-

terference because the LLC is fairly large and even same-

application threads do not share many lines.

Fig. 14: Throughput of mixes of two workloads normalized to

Baseline for N=5 nodes with C=10 cores each.

Finally, we model a cluster with N=8 nodes of C=25

cores each, for a total of 200 cores. We run experiments

with different mixes of four workloads from the usual set.

Table V shows the mixes used. Figure 15 shows the resulting

throughput for each of the mixes and each of the configurations

normalized to Baseline. While there is variations across the

mixes, we see that HADES delivers the highest throughput.

On average across mixes, HADES and HADES-H deliver

796

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

2.9× and 2.1× higher throughput, respectively, than Baseline.

Overall, we conclude that HADES scales to large machines.

TABLE V: Mixes of workloads used in Figure 15.

mix1 HT-wA, BTree-wA, Map-wA, TATP
mix2 Map-wA, TATP, B+Tree-wB, Map-wB
mix3 B+Tree-wA, Map-wB, Smallbank, BTree-wB
mix4 Smallbank, BTree-wB, TPC-C, TATP
mix5 TPC-C, HT-wB, Smallbank, BTree-wA
mix6 B+Tree-wB, Smallbank, TPC-C, TATP
mix7 TPC-C, TATP, BTree-wB, Map-wA
mix8 BTree-wB, Map-wA, HT-wA, BTree-wA

Fig. 15: Throughput of mixes of four workloads normalized

to Baseline for N=8 nodes with C=25 cores each.

IX. RELATED WORK

Hardware Transactional Memory (HTM). HADES builds

on and uses ideas from the abundant HTM literature [30], [31].

Specifically, HADES uses Bloom filters for conflict detection,

which have been used in HTM designs (e.g., [10], [59], [75]).

Garzaran et al. [25] provided a taxonomy of the different orga-

nizations of speculative buffers, which has inspired HADES’

buffering of speculative state. HADES buffers the speculative

state in the LLC rather than in the L1; past HTM work has also

stored the speculative state in the LLC (e.g., the work by Joshi

et al. [32]) or even allowed the speculative state to overflow

into main memory (e.g., Kiln [78] or DudeTM [43]). Many of

these works extend the cache tags with additional state, like

HADES—e.g., Kiln [78] extends the tags for the use of NVM.

The main novelty of HADES over past HTM work is that

HADES is the first design for hardware-only transactions in a

distributed system. HADES is also the first to utilize the NIC

for remote conflict detection. Further, HADES allows RDMA

operations within a hardware transaction without aborting,

with the use of Bloom filters in the cores and NIC. Two related

designs are DrTM [72] and DrTM+R [12]. DrTM first locks

all the remote records that a transaction will use and fetches

them locally. Then, it uses HTM locally to execute the trans-

action atomically. Instead, HADES uses OCC to execute the

transaction with remote data and needs no a-priori knowledge

of the records accessed in the transaction. DrTM+R extends

DrTM to use OCC in software. Its mechanism for conflict

detection is like FaRM. In addition, inside the distributed

software transaction, it uses HTM to guarantee the atomicity

of local reads and writes. Instead, HADES executes both local

and remote operations in a hardware transaction.

Software Optimizations for Distributed Transactions. To

optimize the performance of distributed transactions, the sys-

tems community has developed many software-based sys-

tems [18], [21], [22], [33], [73], [74]. An influential design

is FaRM [21] and its extension [22], which utilize RDMA

primitives to accelerate remote data accesses. Later, Opac-

ity [61] advanced the FaRM implementation by enabling strict

serializability for all transactions using global timestamps.

However, all these schemes are software-based and are limited

by the data access protocols provided by the existing network

and memory devices. They can suffer significant overheads.

Distributed Transactional Protocols. Researchers have re-

examined distributed transactional protocols by exploring

advanced features [12], [33], [35], [50], [64], [70], [71],

[77]. DrTM [72] and DrTM+R [12] are discussed above.

DrTM+H [71] uses both one-sided and two-sided RDMA

operations. FaSST [33] replaces one-sided RDMA with fast

RPCs using two-sided unreliable datagrams, based on the

observation that packet drops happen extremely rarely in

modern RDMA networks. PRISM [9] proposes four new

RDMA primitives for distributed systems without modifying

the underlying hardware. Different from these works, HADES

offloads many of the transactional operations to hardware,

minimizing software overhead. HADES also develops three

new RDMA operations for efficient distributed transaction ex-

ecution. Also, unlike these works, HADES focuses on acceler-

ating the protocol of distributed transactions with SmartNICs.

Network Support for Distributed Systems. Some pro-

posed designs exploit the compute capability of network

devices to accelerate conventional host-based distributed sys-

tems and services [20], [54], such as key-value stores [40],

RPC [39], remote storage accesses [36], [41], network func-

tions [53], [65], and distributed file systems [37]. Xenic [60]

takes advantage of the SmartNIC to reduce the data lookup

overhead for distributed software transactions. Finally, al-

though not related to transactions, SABRes [16] proposes

a hardware engine that monitors local coherence traffic to

guarantee that remote read operations are atomic.

X. CONCLUSION

This paper presented HADES, a new distributed transac-

tional protocol that uses new Bloom filter-based hardware and

SmartNIC support to provide fast distributed transactions. We

also proposed a cheaper, hybrid hardware-software implemen-

tation of HADES called HADES-H. Compared to a state-of-

the-art software-only distributed transactional system, HADES

and HADES-H increase the average throughput of distributed

transactional workloads by 2.7× and 2.3×, respectively.

ACKNOWLEDGMENTS

This work was supported in part by NSF under grants

CNS 1956007 and CCF 2107470; by ACE, one of the seven

centers in JUMP 2.0, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA; and by the IBM-Illinois

Discovery Accelerator Institute.

797

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Apache Cassandra.” https://cassandra.apache.org, 2015, (last accessed
on 11/20/2021).

[2] “MySQL.” https://mysql.com, 2015, (last accessed on 11/20/2021).
[3] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,

S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, and T. Inoue, “The
Tofu Interconnect D,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 646–654.

[4] M. Alomari, M. Cahill, A. Fekete, and U. Rohm, “The Cost of
Serializability on Platforms That Use Snapshot Isolation,” in 2008 IEEE
24th International Conference on Data Engineering, 2008, pp. 576–585.

[5] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Trans. Archit. Code
Optim., vol. 14, no. 2, Jun. 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3085572

[6] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack
of the killer microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54,
2017. [Online]. Available: https://doi.org/10.1145/3015146

[7] T. Bingmann, “TLX: Collection of Sophisticated C++ Data Structures,
Algorithms, and Miscellaneous Helpers,” 2018, https://panthema.net/tlx,
retrieved Oct. 7, 2020.

[8] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[9] M. Burke, S. Dharanipragada, S. Joyner, A. Szekeres, J. Nelson,
I. Zhang, and D. R. K. Ports, “PRISM: Rethinking the RDMA
Interface for Distributed Systems,” in SOSP ’21: ACM SIGOPS
28th Symposium on Operating Systems Principles, Virtual Event
/ Koblenz, Germany, October 26-29, 2021, R. van Renesse and
N. Zeldovich, Eds. ACM, 2021, pp. 228–242. [Online]. Available:
https://doi.org/10.1145/3477132.3483587

[10] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in 33rd International Sym-
posium on Computer Architecture (ISCA’06), 2006, pp. 227–238.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A Distributed Storage System for Structured Data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, Jun. 2008. [Online]. Available:
https://doi.org/10.1145/1365815.1365816

[12] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using RDMA and HTM,” in Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys 2016,
London, United Kingdom, April 18-21, 2016, C. Cadar, P. R. Pietzuch,
K. Keeton, and R. Rodrigues, Eds. ACM, 2016, pp. 26:1–26:17.
[Online]. Available: https://doi.org/10.1145/2901318.2901349

[13] S. Cho, A. Suresh, T. Palit, M. Ferdman, and N. Honarmand,
“Taming the Killer Microsecond,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE Press,
2018, p. 627–640. [Online]. Available: https://doi.org/10.1109/MICRO.
2018.00057

[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s Hosted Data Serving Platform,” Proc. VLDB
Endow., vol. 1, no. 2, p. 1277–1288, Aug. 2008. [Online]. Available:
https://doi.org/10.14778/1454159.1454167

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[16] A. Daglis, D. Ustiugov, S. Novaković, E. Bugnion, B. Falsafi, and
B. Grot, “SABRes: Atomic Object Reads for in-Memory Rack-Scale
Computing,” in The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-49. IEEE Press, 2016.

[17] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
Lightweight Elasticity in Shared Storage Databases for the Cloud
Using Live Data Migration,” Proc. VLDB Endow., vol. 4, no. 8,
p. 494–505, May 2011. [Online]. Available: https://doi.org/10.14778/
2002974.2002977

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store,” SIGOPS Oper. Syst.

Rev., vol. 41, no. 6, p. 205–220, Oct. 2007. [Online]. Available:
https://doi.org/10.1145/1323293.1294281

[19] A. Dey, A. Fekete, R. Nambiar, and U. Röhm, “YCSB+T: Benchmarking
web-scale transactional databases,” in 2014 IEEE 30th International
Conference on Data Engineering Workshops, 2014, pp. 223–230.

[20] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider,
J. Beránek, L. Benini, and T. Hoefler, “A RISC-V in-network accel-
erator for flexible high-performance low-power packet processing,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA’21), 2021.

[21] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM:
Fast Remote Memory,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 401–414.

[22] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No Compromises: Distributed
Transactions with Consistency, Availability, and Performance,” in
Proceedings of the 25th Symposium on Operating Systems Principles,
ser. SOSP ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 54–70. [Online]. Available: https://doi.org/10.1145/
2815400.2815425

[23] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: Live
Migration in Shared Nothing Databases for Elastic Cloud Platforms,”
in Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 301–312. [Online].
Available: https://doi.org/10.1145/1989323.1989356

[24] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. M. Caulfield, E. S.
Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. G. Greenberg, “Azure Accelerated Networking:
SmartNICs in the Public Cloud,” in 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2018,
Renton, WA, USA, April 9-11, 2018, S. Banerjee and S. Seshan,
Eds. USENIX Association, 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[25] M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals, L. Rauchwerger,
and J. Torrellas, “Tradeoffs in buffering memory state for thread-level
speculation in multiprocessors,” in The Ninth International Symposium
on High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings., 2003, pp. 191–202.

[26] Google Code, cpp-btree, https://code.google.com/archive/p/cpp-btree/,
December 2007.

[27] J. Gray, “The Transaction Concept: Virtues and Limitations (Invited
Paper),” in Very Large Data Bases, 7th International Conference,
September 9-11, 1981, Cannes, France, Proceedings. IEEE Computer
Society, 1981, pp. 144–154.

[28] P. Grun, “Introduction to infiniband for end users,” White Paper,
InfiniBand Trade Association, 2010. [Online]. Available: http://www.
mellanox.com/pdf/whitepapers/Intro to IB for End Users.pdf

[29] T. Härder and A. Reuter, “Principles of Transaction-Oriented Database
Recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, 1983.
[Online]. Available: https://doi.org/10.1145/289.291

[30] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd Edition.
Morgan & Claypool, 2010.

[31] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in International Symposium on
Computer Architecture (ISCA), May 1993.

[32] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “DHTM:
durable hardware transactional memory,” in 45th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2018, Los
Angeles, CA, USA, June 1-6, 2018. IEEE Computer Society, 2018, pp.
452–465. [Online]. Available: https://doi.org/10.1109/ISCA.2018.00045

[33] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). Savannah, GA: USENIX Association,
Nov. 2016, pp. 185–201. [Online]. Available: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/kalia

[34] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi,
A. Dragojevic, B. Grot, and V. Nagarajan, “Hermes: A Fast,

798

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

Fault-Tolerant and Linearizable Replication Protocol,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
201–217. [Online]. Available: https://doi.org/10.1145/3373376.3378496

[35] A. Katsarakis, Y. Ma, Z. Tan, A. Bainbridge, M. Balkwill, A. Dragojevic,
B. Grot, B. Radunovic, and Y. Zhang, “Zeus: Locality-Aware Distributed
Transactions,” in Proceedings of the Sixteenth European Conference on
Computer Systems (EuroSys’21), ser. EuroSys ’21, Online Event, United
Kingdom, 2021.

[36] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan, “Hyperloop: Group-
Based NIC-Offloading to Accelerate Replicated Transactions in Multi-
Tenant Storage Systems,” in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM’18),
Budapest, Hungary, 2018.

[37] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “LineFS: Efficient SmartNIC Offload of a Distributed
File System with Pipeline Parallelism,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP’21),
Virtual Event, Germany, 2021.

[38] A. Kokolis, A. Psistakis, B. Reidys, J. Huang, and J. Torrellas,
“Distributed Data Persistency.” in MICRO ’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event, Greece,
October 18-22, 2021. ACM, 2021, pp. 71–85. [Online]. Available:
https://doi.org/10.1145/3466752.3480060

[39] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
Efficient and Fast RPCs in Cloud Microservices with near-Memory
Reconfigurable NICs,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21), Virtual, USA, 2021.

[40] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-Direct: High-Performance In-Memory Key-Value Store
with Programmable NIC,” in Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP’17), Shanghai, China, 2017.

[41] H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan, D. R. K. Ports,
I. Zhang, R. Bianchini, H. S. Gunawi, and A. Badam, “LeapIO: Efficient
and Portable Virtual NVMe Storage on ARM SoCs,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’20),
Lausanne, Switzerland, 2020.

[42] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella,
“PANIC: A High-Performance Programmable NIC for Multi-tenant
Networks,” in 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020. USENIX Association, 2020, pp. 243–259. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/lin

[43] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and
J. Ren, “DudeTM: Building Durable Transactions with Decoupling for
Persistent Memory,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017,
Y. Chen, O. Temam, and J. Carter, Eds. ACM, 2017, pp. 329–343.
[Online]. Available: https://doi.org/10.1145/3037697.3037714

[44] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York, NY, USA:
ACM, 2005, pp. 190–200.

[45] Y. Matsunobu, “MyRocks: A space- and write-optimized MySQL
database,” https://engineering.fb.com/2016/08/31/core-data/myrocks-a-
space-and-write-optimized-mysql-database/, 2016.

[46] Mellanox Technologies, “White paper: Introducing 200G HDR
InfiniBand Solutions,” Tech. Rep., 2019. [Online]. Avail-
able: https://www.mellanox.com/files/doc-2020/wp-introducing-200g-
hdr-infiniband-solutions.pdf

[47] Mellanox Technologies, “ConnectX-6 VPI Card: 200Gb/s InfiniBand
& Ethernet Adapter Card,” 2020. [Online]. Available: https://www.
mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf

[48] Mellanox Technologies, “InfiniBand EDR 100Gb/s Routers,” Tech.
Rep., 2020. [Online]. Available: https://www.mellanox.com/files/doc-
2020/pb-edr-ib-router.pdf

[49] Mellanox Technologies, “NVIDIA Mellanox BlueField SmartNIC
for Ethernet High Performance Ethernet Network Adapter Cards,”
2020. [Online]. Available: https://www.mellanox.com/files/doc-2020/pb-
bluefield-smart-nic.pdf

[50] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li, “Extracting More
Concurrency from Distributed Transactions,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’14), Broomfield, CO, 2014.

[51] Oracle, “Oracle NoSQL Database: Fast, Reliable, Predictable. An Ora-
cle white paper,” https://www.oracle.com/technetwork/database/nosqldb/
learnmore/nosql-database-498041.pdf, June 2018.

[52] W. W. Peterson and D. T. Brown, “Cyclic Codes for Error Detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[53] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson, “Floem: A Programming System for NIC-Accelerated
Network Applications,” in Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation (OSDI’18), Carlsbad,
CA, USA, 2018.

[54] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and D. Tsafrir,
“Autonomous NIC Offloads,” in Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’21), Virtual, USA, 2021.

[55] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The Benefits of
General-Purpose on-NIC Memory,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1130–1147. [Online]. Available:
https://doi.org/10.1145/3503222.3507711

[56] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and
B. Jacob, “The Structural Simulation Toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, no. 4, Mar. 2011.

[57] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters, Jan 2011.

[58] A. Ruhela, S. Xu, K. V. Manian, H. Subramoni, and D. K. Panda,
“Analyzing and Understanding the Impact of Interconnect Performance
on HPC, Big Data, and Deep Learning Applications: A Case Study
with InfiniBand EDR and HDR,” in 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2020, pp.
869–878.

[59] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing
Signatures for Transactional Memory,” in 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007,
pp. 123–133.

[60] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: SmartNIC-Accelerated Distributed Transactions,” in Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP’21), Virtual Event, Germany, 2021.

[61] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos,
A. Dragojević, D. Narayanan, and M. Castro, “Fast General Distributed
Transactions with Opacity,” in Proceedings of the 2019 International
Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 433–448.
[Online]. Available: https://doi.org/10.1145/3299869.3300069

[62] Simon Neuvonen and Antoni Wolski and Markku Manner and Viho
Raatikka, “Telecom Application Transaction Processing Benchmark,”
http://tatpbenchmark.sourceforge.net/, 2011.

[63] The H-STORE Team. Smallbank Benchmark., https://hstore.cs.brown.
edu/documentation/deployment/benchmarks/smallbank/, 2013.

[64] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.
Abadi, “Calvin: Fast Distributed Transactions for Partitioned Database
Systems,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’12, Scottsdale,
Arizona, USA, 2012.

[65] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A SmartNIC-Driven
Accelerator-Centric Architecture for Network Servers,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’20),
Lausanne, Switzerland, 2020.

[66] TPC-C. TPC benchmark C., http://www.tpc.org/tpcc/, 2018.

[67] W. Vogels, “All Things Distributed,” https://www.allthingsdistributed.
com/2010/02/strong consistency simpledb.html, 2010.

799

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

[68] M. Walma, “Pipelined Cyclic Redundancy Check (CRC) Calculation,”
in Proceedings of the 16th International Conference on Computer
Communications and Networks, IEEE ICCCN 2007, Turtle Bay Resort,
Honolulu, Hawaii, USA, August 13-16, 2007. IEEE, 2007, pp. 365–370.
[Online]. Available: https://doi.org/10.1109/ICCCN.2007.4317846

[69] Z. Wang, X. Wang, Z. Qian, B. Ye, and S. Lu, “RDMAvisor:
Toward Deploying Scalable and Simple RDMA as a Service in
Datacenters,” CoRR, vol. abs/1802.01870, 2018. [Online]. Available:
http://arxiv.org/abs/1802.01870

[70] X. Wei, R. Chen, H. Chen, Z. Wang, Z. Gong, and B. Zang, “Unifying
Timestamp with Transaction Ordering for MVCC with Decentralized
Scalar Timestamp,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’21). USENIX Association, Apr.
2021.

[71] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!” in 13th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, A. C.
Arpaci-Dusseau and G. Voelker, Eds. USENIX Association, 2018,
pp. 233–251. [Online]. Available: https://www.usenix.org/conference/
osdi18/presentation/wei

[72] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast In-Memory
Transaction Processing Using RDMA and HTM,” in Proceedings of the
25th Symposium on Operating Systems Principles (SOSP’15), Monterey,
California, 2015.

[73] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan, “Salt: Combining ACID and BASE in a Distributed
Database,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14), Broomfield, CO, 2014.

[74] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang, “High-
Performance ACID via Modular Concurrency Control,” in Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP’15),
Monterey, California, 2015.

[75] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling Hardware
Transactional Memory from Caches,” in 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, 2007, pp. 261–
272.

[76] R. Zambre, M. Grodowitz, A. Chandramowlishwaran, and P. Shamis,
“Breaking Band: A Breakdown of High-Performance Communication,”
in Proceedings of the International Conference on Parallel Processing
(ICPP’19), Kyoto, Japan, 2019.

[77] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports, “Building Consistent Transactions with Inconsistent Replication,”
in Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP’15), ser. SOSP ’15, Monterey, California, 2015.

[78] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the Performance Gap between Systems with and without
Persistence Support,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: Association for Computing Machinery, 2013, p.
421–432. [Online]. Available: https://doi.org/10.1145/2540708.2540744

800

Authorized licensed use limited to: University of Illinois. Downloaded on March 07,2025 at 16:11:17 UTC from IEEE Xplore. Restrictions apply.

