Luyi Kang*[†], **Yuqi Xue***, Weiwei Jia*, Xiaohao Wang, Jongryool Kim[‡], Changhwan Youn[‡], Myeong Joon Kang[‡], Hyung Jin Lim[‡], Bruce Jacob[†], Jian Huang

*Co-primary authors.

Host-based Computing

Host-based Computing

Host-based Computing

In-Storage Computing

Host-based Computing

In-Storage Computing

Host-based Computing

In-Storage Computing

In-storage computing offers an effective solution to alleviate the I/O bottleneck

MapReduce-based Framework

Most of the existing frameworks focus on performance and programmability

Most of the existing frameworks focus on performance and programmability

Few of them consider security as the first-class citizen

In-Storage App 1 In-Storage App 2 In-Storage App 3

It is desirable to build a secure in-storage computing environment!

Existing TEEs Do Not Work For In-Storage Computing

Intel SGX is not available in storage processors

Existing TEEs Do Not Work For In-Storage Computing

Intel SGX is not available in storage processors

Unclear how to apply ARM TrustZone to in-storage computing

IceClave Design Challenges

Bare-metal Environment

IceClave Design Challenges

Bare-metal Environment

Efficient Flash Access

IceClave Design Challenges

Bare-metal Environment

Efficient Flash Access

Limited Resources in SSD Device

Protecting FTL from malicious in-storage apps

Security isolation between in-storage apps

Protecting FTL from malicious in-storage apps

Naively applying TrustZone partitioning incurs significant performance penalty!

Naively applying TrustZone partitioning incurs significant performance penalty!

Naively applying TrustZone partitioning incurs significant performance penalty!

Security isolation between in-storage apps

Security isolation between in-storage apps

Protecting FTL from malicious in-storage apps

Security isolation between in-storage apps

Split Counter Mode (ISCA'06)

Split Counter Mode (ISCA'06)

In-storage programs are read-intensive

In-storage programs are read-intensive

In-storage programs are read-intensive

State-of-the-art Split Counter Mode is not optimal for in-storage computing

IceClave Hybrid Counter

Protecting Data Access To Flash Chips

IceClave Library

Secure **IceClave** Flash Translation Runtime Layer

Protected Mapping Table

TEE

Stream Cipher Engine

Controller Flash

Flash

TEE

Stream Cipher Engine

Flash Controller Flash

IceClave Implementation

Experimental Setup

Simulator

gem5 + USIMM + SimpleSSD

Prototype

OpenSSD Cosmos+ FPGA

Synthetic Workloads

Arithmetic, Aggregate, Filter, Wordcount

Real-world Workloads

TPC-H, TPC-B, TPC-C

IceClave Overall Performance

IceClave Overall Performance

IceClave introduces minimal overhead while providing strong security

IceClave Overall Performance

IceClave Summary

First Trusted Execution Environment for In-Storage Computing

2.3× Faster Than Host-based Computing

Thank you!

Luyi Kang, **Yuqi Xue**[†], Weiwei Jia, Xiaohao Wang, Jongryool Kim, Changhwan Youn, Myeong Joon Kang, Hyung Jin Lim, Bruce Jacob, Jian Huang

† yuqixue2@illinois.edu

Systems Platform Research Group

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.