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ABSTRACT
Reinforcement learning (RL) has attracted much attention recently,
as new and emerging AI-based applications are demanding the ca-
pabilities to intelligently react to environment changes. Unlike dis-
tributed deep neural network (DNN) training, the distributed RL
training has its unique workload characteristics – it generates or-
ders of magnitudemore iterations withmuch smaller sized but more
frequentgradient aggregations.More specifically, our studywith typ-
icalRLalgorithms shows that their distributed training is latency crit-
ical and that the network communication for gradient aggregation
occupies up to 83.2% of the execution time of each training iteration.

In this paper, we present iSwitch, an in-switch acceleration so-
lution that moves the gradient aggregation from server nodes into
the network switches, thus we can reduce the number of network
hops for gradient aggregation. This not only reduces the end-to-end
network latency for synchronous training, but also improves the
convergence with faster weight updates for asynchronous training.
Upon the in-switch accelerator, we further reduce the synchroniza-
tion overhead by conducting on-the-fly gradient aggregation at the
granularity of network packets rather than gradient vectors. More-
over, we rethink the distributed RL training algorithms and also pro-
pose a hierarchical aggregation mechanism to further increase the
parallelism and scalability of the distributed RL training at rack scale.

We implement iSwitch using a real-world programmable switch
NetFPGA board. We extend the control and data plane of the pro-
grammable switch to support iSwitch without affecting its regular
network functions. Comparedwith state-of-the-art distributed train-
ing approaches, iSwitch offers a system-level speedup of up to 3.66×
for synchronous distributed training and 3.71× for asynchronous
distributed training, while achieving better scalability.

CCS CONCEPTS
• Networks→ In-network processing; • Computing method-
ologies→ Distributed artificial intelligence; Reinforcement
learning; •Hardware→Networking hardware.
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1 INTRODUCTION
Wehave been seeing a disruptive trend that new and emergingAI ap-
plications are increasingly operating in dynamic environments and
are taking actions to react to environment changes [11, 32, 37, 57].
These requirements of the emerging AI applications are naturally
satisfied by reinforcement learning (RL). Similar to other popular
machine learning techniques such as deep neural networks (DNN),
RL also demands distributed training to improve their performance
and training results based on the ever-growing need of analyzing
larger amounts of data and training more sophisticated models.

Unlike distributed DNN training, the distributed RL training gen-
erates orders of magnitude more iterations with much smaller sized
gradient aggregations. According to our study on popular RL algo-
rithms (seeTable 1), a typicalRLalgorithm[30]will generatemillions
of iterations, while its model size is much smaller than the size of a
typical DNNmodel. Therefore, the latency of gradient communica-
tion in each iteration is a critical factor that significantly affects the
performance of the distributed RL training.

To support distributed RL training, the state-of-the-art systems
typically use one of two approaches. They either adopt the central-
ized parameter servers, inwhich the local gradient on eachworker is
aggregated to the central servers to performweight update [7, 23, 46],
or use the AllReduce based training, in which the gradient aggrega-
tion is conducted in a decentralized manner [10, 24].

In the former approach (see Figure 1a), it is well known that the
centralized parameter server is the bottleneck that limits the scal-
ability of distributed training [24, 26], as all training workers have
to interact with the central server to transmit gradient or receive
updated weight in each iteration. Considering that millions of iter-
ations are involved in RL training, this bottleneck will significantly
affect the training performance.

The latter approach (see Figure 1b) is proposed to address the
scalability issue via performing gradient aggregation in a circular
manner. However, it requires more network hops through switches
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(a) Centralized parameter server (PS). (b) AllReduce-based training (AR). (c) In-swit! acceleration (iSwit!).

Figure 1: Different approaches for (synchronous) distributed RL training.

Table 1: A study of popular RL algorithms.

RL Algorithm DQN [31] A2C [41] PPO [48] DDPG [27]
Environment Atari [8] Atari [8] MuJoCo [52] MuJoCo [52]
Model Size 6.41 MB 3.31 MB 40.02 KB 157.52 KB

Training Iteration 200.00M 2.00M 0.15M 2.50M

to complete aggregation on gradients of all the workers [10, 24, 51]
in a cluster. As we scale the training with more computing nodes,
the number of network hops required for gradient aggregations will
be linearly increased.

To further understand the performance characteristics of these
approaches, we quantify the overheads of the critical components in
thedistributed trainingwithvariousRLalgorithmssuchasDQN[30],
A2C [41], PPO [48] and DDPG [27]. Our study results show that the
network communication for gradient aggregation takes 49.9%–83.2%
of the execution time of each iteration (see details in Figure 4).

To this end, we propose iSwitch, an in-switch acceleration ap-
proach for distributed RL training (see Figure 1c). iSwitch devel-
ops hardware accelerators for gradient aggregations within pro-
grammable switches. It is proposed as a practical and effective so-
lution based on three observations. First, as discussed, the gradient
aggregation is the major bottleneck in distributed RL training and
it incurs significant network communication overhead. Moving the
gradient aggregation from server nodes into network switches can
significantly reduce the number of network hops required. Second,
programmable switches have been widely deployed in data centers
today. They provide the flexibility and basic computational capac-
ity for developers to program the hardware, which simplifies the
iSwitch implementation. Third, the switching techniques have been
developed for decadeswith the purpose of scaling clusters. In-switch
computing can scale the distributed RL training by leveraging the
existing hierarchical rack-scale network architecture.

iSwitch is a generic approach that benefits both the synchronous
and asynchronous distributed RL training. In synchronous training,
all workers are blocked during gradient aggregation in each iter-
ation. With in-switch accelerator, iSwitch reduces the end-to-end
network communication overhead, and thus alleviates the blocking
time. Moreover, since iSwitch conducts the in-switch aggregation at
the granularity of network packets rather than the entire gradient
vectors (consisting of numerous network packets), iSwitch further
reduces the synchronization overhead caused by the aggregation.

For asynchronous distributed RL training, each worker runs inde-
pendently without being blocked. However, due to the asynchrony,
the removed blocking overhead is traded with staleness of local
weight and gradient in training workers, which hurts the training
convergence and increases the number of training iterations. iSwitch
improves the convergence as the faster network communication en-
ables workers to commit fresher gradients. Therefore, the training
can converge in less number of iterations. To further increase the
parallelism of the asynchronous distributed RL training, we rethink
the RL training algorithms and fully pipelines the execution of local
gradient computing, aggregation, and weight update.

Furthermore, iSwitch scales the distributed RL training at rack
scale. It utilizes the existing rack-scale network hierarchy and inte-
grates the in-switch accelerators into different layers of switches to
conduct the hierarchical aggregation. iSwitch requiresminimal hard-
ware cost by extending the network protocols and control/data plane
of programmable switches. As an extension to the programmable
switch, iSwitch does not affect its regular network functions. To the
best of our knowledge, this is the first work on the in-switch accel-
eration for distributed RL training. Overall, we make the following
contributions in the paper:

• We quantify the performance characteristics of the distributed RL
training with a variety of typical RL algorithms, and show that
network communication for gradient aggregation is the major
bottleneck in distributed RL training.
• We propose the in-switch computing paradigm, and develop the
in-switch aggregation accelerator which significantly reduces the
number of network hops required by gradient aggregation for
each training iteration.
• We apply the in-switch acceleration to both synchronous and
asynchronous distributed RL training. Upon the new distributed
computing paradigm, we rethink the RL training algorithms to
further improve their parallelism.
• Wepropose ahierarchical aggregationmechanismwith exploiting
the existing network architecture in rack-scale clusters to scale
the distributed RL training.

We implement iSwitch with a real-world NetFPGA board. To
demonstrate the efficacy of iSwitch, we train a variety of popular RL
algorithms including DQN [30], A2C [41], PPO [48], and DDPG [27].
Our experimental results demonstrate that compared with state-of-
the-art distributed training approaches, iSwitch offers a system-level
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Figure 2: An example of reinforcement learning.

speedupof1.72–3.66× for synchronousdistributed trainingand1.56–
3.71× for asynchronous distributed training. Our evaluation also
shows that iSwitch achieves better scalability for both synchronous
and asynchronous distributed training in a rack-scale cluster.

2 BACKGROUNDANDMOTIVATION
2.1 Distributed RL Training
The standard RL setting assumes an aдent interacting with a given
environment repeatedly over a large number of steps, as shown in
Figure 2. At the beginning, the agent receives an initial state from
the environment and then takes an action based on its policy (pa-
rameterized by amodel ) which maps current state to an action from
a possible action set (i.e., action← policy(state)). After the selected
action takes effect in the environment, the next state will be gen-
erated and returned back to the agent along with a reward . This
agent-environment interaction continues until the agent encounters
a terminal state and the sequence of interactions between initial
and terminal state forms an episode . Afterwards, the interaction
restarts to generate a new episode. During the generation of numer-
ous episodes, those states/actions/rewards are collected to form a
trajectory which is then used to improve the policy by updating its
model based on the computedдradient . The goal of the agent is to
learn a policy thatmaximizes the reward objective – episode reward ,
i.e., the rewards accumulated over an episode.

It is well known that DNN training is time-consuming. This is
also true for RL training. Different from DNN training, RL training
requires a huge number of iterations, e.g., 200 million iterations to
learn Atari games with DQN algorithm (see Table 1), as compared to
the popular DNN, ResNet, which requires only 600K iterations [14],
and thus demanding a significant amount of training time, e.g., eight
days on a single GPU for DQN training [29].

To overcome this challenge, distributed RL training gains popular-
ity recently [32, 33, 53]. Its key idea relies onmultiple agents, namely
workers , to explore the environments in parallel to earn local trajec-
tories formodel improvements, i.e., gradients. Those computed local
gradients fromworkers can be “aggregated” (i.e., gradient aggrega-
tion) by a central node or decentralized workers to obtain a fully
summed gradients for updating the model of the policy. Once the
policy is improved, workers get ready for the next training iteration.

2.2 Synchronous and Asynchronous Training
The workers in distributed training can run either synchronously
or asynchronously. In synchronous setting, all workers are blocked
during gradient aggregation (as well as weight update and transfer)

Worker 1

Worker 2

Worker 3

W1PS

Push
Gradient

Pull
Weight

W2 W3 W4

Local Computing

Local Computing

Local Computing

Switch

Figure 3: The asynchronous distributed RL trainingwith the
centralized parameter server.

in each iteration. In asynchronous setting, all workers are allowed
to run independently without blocking.

Wedemonstrate an example of asynchronous trainingwith thepa-
rameter server approach in Figure 3, where the server maintains the
up-to-dateweights andworkers independently pull the latestweight
for local computation. Once gradient is computed locally (although
staled already), it is pushed to the parameter server to update current
weight. Through the centralized server, all workers, although runs
asynchronously, always keep up to the up-to-dateweight in a certain
extent. Note that the asynchronous training does not apply to the
AllReduce approach (see Figure 1b), since the circular aggregation
in AllReduce is a globally synchronized process [10, 25, 51].

As synchronous and asynchronous approaches offer different
trade-offs, they co-exist as the two mainstream methods for dis-
tributed training. Synchronous distributed training demands syn-
chronization among workers for gradient aggregation, and global
barrier is placed for each training iteration [7, 10, 23, 56]. Such block-
ing aggregation stays in the critical path of the synchronous training
systems and significantly affects the execution time of each iteration,
especially in large-scale distributed systems [12, 15, 26].

Asynchronous training [15, 21, 46] breaks the synchronous bar-
rier among workers for minimal blocking overhead. However, the
asynchrony suffers from the drawback of using stale gradient for
model update, which slows down training convergence [15, 25], i.e.,
requiring more training iterations. By contrast, the synchronous
training has no staleness issue, and thus enjoys a faster convergence,
i.e., requiring minimal iterations.

Ideally, we want to have fast gradient aggregation for both syn-
chronous and asynchronous training, such that synchronous train-
ing will pay less blocking overhead for aggregation, and asynchro-
nous training will obtain fresher gradient for faster convergence. In
this paper, we propose iSwitch that can benefit both synchronous
and asynchronous RL training.

2.3 Gradient Aggregation Approaches
As discussed, there are two mainstream approaches for gradient
aggregation in distributed RL training: centralized parameter server
based approach (PS) [7, 23] and decentralized AllReduce based ap-
proach (AR) [10, 24].

We compare both approaches in Figure 1. We show the PS ap-
proach in Figure 1a, in which the local gradients in each worker are
sent to the central server to perform summation, followed by the
weight update. The updatedweights are then sent back to allworkers
to overwrite their local copies, such that the next iteration can start.
Figure 1b illustrates the Ring-AllReduce approach, in which each
worker sends its local gradients to the next neighbor to perform
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Figure 4: Performance breakdown of each iteration in dis-
tributedRL trainingusingPS andAllReduce based approach,
respectively. Gradient aggregation is the bottleneck.

partial summation in a circular manner until the gradients are fully
aggregated. Afterwards, each work uses the aggregated gradients
to perform update on local weights.

To facilitate our discussion, we assume that there are multiple
workers and a central parameter server connected with a network
switch. For the PS approach, each worker has to go through four
network hops to complete the gradient aggregation. And the central
server is the bottleneck. The AR approach avoids this central bot-
tleneck but requires much more network hops. For the case where
N workers connected to a switch, the number of network hops for
the aggregation is (4N −4) as discussed in [24, 51], which is linear
to the number of workers.

To further understand their performance characteristics, we run
the synchronous distributed RL training with both PS and AR ap-
proaches in a GPU cluster connected with 10Gb Ethernet (see the
detailed experimental setup in § 5.3). We break down the training
procedure of each iteration intomultiple components: local gradient
computing (including agent action, environment reaction, trajec-
tory buffer sampling, memory allocation, forward pass, backward
pass, and GPUmemory copy), gradient aggregation, weight update,
and others. We quantify their performance overheads in Figure 4.
As can be seen, the gradient aggregation occupies a large portion
(49.9%– 83.2%) of the execution time of each iteration for both PS and
AR approaches. As the gradient aggregation involves only simple
arithmetic operation (e.g., sum), its overheadmainly comes from the
network communication.

2.4 Why In-Switch Computing
To this end, we propose iSwitch, an in-switch computing approach
that exploits the computational capacity of programmable switches
to reduce the gradient aggregation overhead. As shown in Figure 1c,
iSwitch requires only two network hops (i.e., fromworker node to
switch, and from switch to worker node) to complete the gradient
aggregation. iSwitch cuts the number of network hops by at least
half, and thus offers much lower end-to-end communication time
for each iteration of distributed RL training.

We utilize programmable switches to pursue the in-switch com-
puting approach for accelerating distributed RL training for three
reasons. First, programmable switches are pervasive today. In mod-
ern data centers or rack-scale clusters, programmable switches have
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Figure 1: Primary-backup and chain replication.

and updates. The throughput is determined by how fast
the nodes can process messages. Switches are specifi-
cally designed and deeply optimized for packet process-
ing and switching. They provide orders of magnitude
higher throughput than highly-optimized servers (Ta-
ble 1). Alternative designs like offloading to NICs and
leveraging specialized chips (FPGAs, NPUs or ASICs)
either do not provide comparable performance to switch
ASICs or are not immediately deployable due to cost and
deployment complexities.

2.2 Why Chain Replication?
Given the benefits, the next question is how to build a
replicated key-value store with programmable switches.
NetCache [18] has shown how to leverage the switch on-
chip memory to build a key-value store on one switch.
Conceivably, we can use the key-value component of
NetCache and replicate the key-value store on multiple
switches. But the challenge in doing so would be how to
ensure strong consistency and fault-tolerance.

Vertical Paxos. We choose to realize Vertical Paxos [21]
in the network to address this challenge. Vertical Paxos is
a variant of the Paxos algorithm family. It divides a con-
sensus protocol into two parts, i.e., a steady state proto-
col and a reconfiguration protocol. The division of labor
makes it a perfect fit for a network implementation, be-
cause the two parts can be naturally mapped to the net-
work data and control planes. (i) The steady state pro-
tocol is typically a primary-backup (PB) protocol, which
handles read and write queries and ensures strong consis-
tency. It is simple enough to be implemented in the net-
work data plane. In addition, it only requires f +1 nodes
to tolerate f node failures, which is lower than 2 f +1
nodes required by the ordinary Paxos, due to the exis-
tence of the reconfiguration protocol. This is important
as switches have limited on-chip memory for key-value
storage. Hence, given the same number of switches, the
system can store more items with Vertical Paxos. (ii)
The heavy lifting for fault-tolerance is offloaded to the
reconfiguration protocol, which uses an auxiliary mas-
ter to handle reconfiguration operations like joining (for
new nodes) and leaving (for failed nodes). The auxil-
iary master can be mapped to the network control plane,
as modern datacenter networks already have a logically
centralized controller replicated on multiple servers.

NetChain (Vertical Paxos)

Auxiliary Master
(Reconfiguration Protocol)

Chain Replication
(Steady State Protocol)

Network
Controller

Host
Racks

S2 S3 S4 S5

S0 S1

(a) NetChain architecture.

ETH IP UDP OP KEY VALUES0 SEQS1 … Sk

NetChain routingL2/L3 routing inserted by head switch

read, write, delete, etc.reserved port #

SC

(b) NetChain packet format.

Figure 2: NetChain overview.

While it seems to move the fault-tolerance problem
from the consensus protocol to the auxiliary master, Ver-
tical Paxos is well-suited to NetChain because reconfig-
urations such as failures (on the order of minutes) are or-
ders of magnitude less frequent than queries (on the order
of microseconds). So handling queries and reconfigura-
tions are mapped to data and control planes, respectively.
Chain Replication. We design a variant of chain repli-
cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
confirming with all backup nodes are costly to imple-
ment with the limited resources and operations provided
by switch ASICs. In CR (Figure 1(b)), nodes are orga-
nized in a chain structure. Read queries are handled by
the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
NetChain data plane (§4). We design a replicated key-
value store with programmable switches. Both read and
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ders of magnitude less frequent than queries (on the order
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tions are mapped to data and control planes, respectively.
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cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
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the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
NetChain data plane (§4). We design a replicated key-
value store with programmable switches. Both read and

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation    37

ETH IP UDP Seq Data
Reserved ToS 1

Seg Payload
(a) Control pa!et. 

(b) Data pa!et. 

Figure 5: Format of the control/data packet in iSwitch.

become the backbone technology that allows developers to define
their own functions for network packet processing. Second, they
offer the flexibility for developers to program the hardware, which
simplifies the iSwitch implementation. The programmable switch
has control plane and data plane. The control plane is in charge
of network management, while the data plane is responsible for
data transferring (i.e., packet forwarding). We develop iSwitch by
extending both the control plane and data plane without affecting
the regular network functions. Third, the switch inherently enables
the scalability. For instance, the switches have been widely used
to scale the cluster size in data centers. In this project, we exploit
the existing network architecture of a typical data center to scale
distributed RL training in rack-scale clusters.

3 DESIGNAND IMPLEMENTATION
The goal of iSwitch is to reduce the end-to-end execution time of
distributed RL training by alleviating its network communication
overhead and increasing its parallelism and scalability.

3.1 Challenges
As discussed, exploiting programmable switches to conduct gradient
aggregation brings benefits for distributed RL training. However,
we have to overcome three challenges.

• First, the programmable switchwas originally designed for packet
forwarding. Our in-switch computing needs to enable the point-
to-point communication between the switches and worker nodes
for gradient aggregation, without affecting the regular network
functions (§ 3.2).
• Second, the programmable switch has limited computation logic
and on-chip memory for our acceleration purpose. Therefore, our
design should be simple and efficient to meet the performance
requirement (§ 3.3).
• Third, as we increase the number of worker nodes and switches
in a rack-scale cluster, our proposed in-switch computing should
be able to scale for distributed RL training (§ 3.4).

In the following, we will address the aforementioned challenges
respectively by extending the programmable switches.

3.2 Network Protocol Extension
To support in-switch computing for distributed RL training, we pro-
pose to build our own protocol and packet format based on regular
network protocols. Figure 5 demonstrates the format of the control
and data packets in iSwitch. We use Type of Service (ToS) field [13]
in the IP header to identify packets with our specialized protocol.
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and updates. The throughput is determined by how fast
the nodes can process messages. Switches are specifi-
cally designed and deeply optimized for packet process-
ing and switching. They provide orders of magnitude
higher throughput than highly-optimized servers (Ta-
ble 1). Alternative designs like offloading to NICs and
leveraging specialized chips (FPGAs, NPUs or ASICs)
either do not provide comparable performance to switch
ASICs or are not immediately deployable due to cost and
deployment complexities.

2.2 Why Chain Replication?
Given the benefits, the next question is how to build a
replicated key-value store with programmable switches.
NetCache [18] has shown how to leverage the switch on-
chip memory to build a key-value store on one switch.
Conceivably, we can use the key-value component of
NetCache and replicate the key-value store on multiple
switches. But the challenge in doing so would be how to
ensure strong consistency and fault-tolerance.

Vertical Paxos. We choose to realize Vertical Paxos [21]
in the network to address this challenge. Vertical Paxos is
a variant of the Paxos algorithm family. It divides a con-
sensus protocol into two parts, i.e., a steady state proto-
col and a reconfiguration protocol. The division of labor
makes it a perfect fit for a network implementation, be-
cause the two parts can be naturally mapped to the net-
work data and control planes. (i) The steady state pro-
tocol is typically a primary-backup (PB) protocol, which
handles read and write queries and ensures strong consis-
tency. It is simple enough to be implemented in the net-
work data plane. In addition, it only requires f +1 nodes
to tolerate f node failures, which is lower than 2 f +1
nodes required by the ordinary Paxos, due to the exis-
tence of the reconfiguration protocol. This is important
as switches have limited on-chip memory for key-value
storage. Hence, given the same number of switches, the
system can store more items with Vertical Paxos. (ii)
The heavy lifting for fault-tolerance is offloaded to the
reconfiguration protocol, which uses an auxiliary mas-
ter to handle reconfiguration operations like joining (for
new nodes) and leaving (for failed nodes). The auxil-
iary master can be mapped to the network control plane,
as modern datacenter networks already have a logically
centralized controller replicated on multiple servers.
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Figure 2: NetChain overview.

While it seems to move the fault-tolerance problem
from the consensus protocol to the auxiliary master, Ver-
tical Paxos is well-suited to NetChain because reconfig-
urations such as failures (on the order of minutes) are or-
ders of magnitude less frequent than queries (on the order
of microseconds). So handling queries and reconfigura-
tions are mapped to data and control planes, respectively.
Chain Replication. We design a variant of chain repli-
cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
confirming with all backup nodes are costly to imple-
ment with the limited resources and operations provided
by switch ASICs. In CR (Figure 1(b)), nodes are orga-
nized in a chain structure. Read queries are handled by
the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
NetChain data plane (§4). We design a replicated key-
value store with programmable switches. Both read and
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tical Paxos is well-suited to NetChain because reconfig-
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ders of magnitude less frequent than queries (on the order
of microseconds). So handling queries and reconfigura-
tions are mapped to data and control planes, respectively.
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cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
confirming with all backup nodes are costly to imple-
ment with the limited resources and operations provided
by switch ASICs. In CR (Figure 1(b)), nodes are orga-
nized in a chain structure. Read queries are handled by
the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
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Table 2: Control messages in iSwitch protocol.

Name Description
Join Join the training job

Leave Leave the training job
Reset Clear accelerator buffers/counters on the switch
SetH Set the aggregation thresholdH on the switch

FBcast Force broadcasting a partially aggregated segment on the switch
Help Request a lost data packet for a worker
Halt Suspend the training job on all workers
Ack Confirm the success/failure of actions

ToS is a 1-byte field in the IP protocol header and is used to prioritize
different IP flows. We tag packets that belong to the in-switch RL
training with reserved ToS values. To differentiate between control
and data packets in iSwitch, we use different ToS values.
Control message. As shown in Figure 5a, tagged by a reserved
ToS value, the packet of control message has one 1-byte mandatory
Action and one optional Value payload after the UDP header. In the
Action field, we define multiple unique action codes for the basic
operations for distributed RL training (see Table 2).

For some actions, we will use the Value field. To be specific, for
Joinmessage, the Value field can be used for the meta-data regard-
ing the training model. Also, for SetH message, the Value field is
used to specify howmany gradient vectors (i.e., aggregation thresh-
old H ) need to be aggregated before broadcasting the results. By
default,H is equal to the number of workers.
Datamessage. Figure 5b depicts the format of the data packet. Sim-
ilar to the control packet, data packet is also tagged with a reserved
ToS value. Its UDP payload begins with a 8-byte Seg field to indicate
the indices of the transferred data packets. Each Seg number cor-
responds to a spacial offset in the gradient vector and the gradient
data from the packets with the same Seg number will be aggregated.
Besides the Seg field, the rest payload space (limited by the Ethernet
frame size, i.e., typically 1,522 bytes) is filled with the gradient data.
Furthermore, for the efficiency of data processing, all gradient data
are transmitted and computed in a raw float-point format in iSwitch.

3.3 Data and Control Plane Extension
In iSwitch, we design and integrate an in-switch accelerator into the
data plane as a “bump-in-the-wire” component.
Data plane extension.We present the extended data plane of an
Ethernet switch in Figure 6. The incoming network packets are re-
ceived by PHYTransceiver (PHY) and EthernetMedia Access Control (ETH
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MAC), and then stored in RxQueues for further processing. The Input
Arbiter always selects one non-empty RxQueue to fetch a packet in a
prioritized order, and feeds the chosen packet into the Packet Process
module. After that, the header information of the packet is extracted,
parsed, and compared with different forwarding rules in the Lookup
Tables for destination identification. And then, the packetswill be dis-
patched to their corresponding egress TxQueues, where the packets
will be finally transmitted through Ethernet MAC and PHY Transceiver.

To enable our in-switch acceleration, we enhance the functional-
ity of the Input Arbiter, such that it can detect and feed tagged packets
to the accelerator instead of the original Packet Processmodule, ac-
cording to their ToS fields. And, the Input Arbiter treats the output
of the in-switch accelerator as the output from an ingress RxQueue,
so that the result of gradient aggregation can be sent out to worker
nodes as a regular traffic.
In-switch accelerator design. To maximize the data-level paral-
lelism, our in-switch accelerator processes each packet at the gran-
ularity of “burst” which refers to the data that the internal bus can
deliver in a single clock cycle (e.g., 256 bits). Thus, each data packet
is divided into multiple bursts to be processed and computed.

We describe the architecture of the in-switch accelerator in Fig-
ure 7. When a packet feeds in, a Separator will separate the bursts
of the header from those of the payload. The header bursts, which
include the Ethernet, IP, UDP, and iSwitch protocol fields, will be fed
into a Seg Decoder. The payload bursts, which include a segment of
the gradient vector, will be fed into the accumulation loops. The Seg
Decoderwill extract the Seg number, and pass it to both a Seg Counter
and a Addr Generator. The Seg Counter keeps track of the aggregation
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status of the gradient segments by assigning each segment an aggre-
gation counter. The counter increments for each aggregated gradient
segment until reaching the specified “aggregation threshold”H .

During the aggregation, each payload burst will be sliced by a
Slicer into individual 32-bit floating-point elements, and fed into
the adders. The adders compute in parallel, and keep summing the
incoming payload bursts with accumulated segment data offered by
the Bufferswhich store the immediate aggregated gradient data. To
align the summation data for the same Seg number and burst offset,
an Addr Generator is adopted to generate the Buffer addresses on the
fly. This process continues until the full aggregation of a segment.
And then, (1) the counter resets; (2) the Buffer is written back with
zeros using the multiplexers; and (3) the Output Module is triggered
for output by concatenating the results, prepending the header, and
sending out a data packet containing the aggregated segment.

Beyond the fine-grained processing of each packet within the ac-
celerator, iSwitch also conducts the gradient aggregation at the gran-
ularity of network packets. Different from conventional approaches
(see Figure 8a) where they have to wait for the arrival of the entire
gradient vectors before the summation operations, iSwitch starts
the computation immediately as soon as the packets with the same
Seg number are received. Such an on-the-fly aggregation approach
hides the overhead of summation operations and data transmission,
which further reduces the latency of gradient aggregation.
Control plane extension. To support distributed training with in-
switch acceleration, we extend the control plane to maintain a light-
weight membership table for the workers and switches involved in
the current training job. As shown in Figure 9, the membership table
records the ID number (an unique number for each membership
entry), IP address, UDP port number, type, and the corresponding
parent ID in the network typology for every involvedworker/switch.
The entries in membership table can be updated with the control
messages, such as Join and Leave in Table 2. These information can
be used by data plane for data collection, computation, forwarding,
and broadcast. Besides maintaining a membership table, the control
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plane also manages the in-switch accelerator for its initialization,
configuration, as well as resetting. This can be fulfilled through the
control messages such as Reset and SetH in Table 2.

The control plane also helps handling packet lost, although it
is uncommon in the cluster environment, with minimal overhead.
Specifically, we offload themajority of tasks of handling lossy packet
toworkers, and leaveonly simple tasks suchas accepting/forwarding
control message (e.g., FBcast and Help) in the switch.

3.4 Scaling In-Switch Computing
Wehave discussed the in-switch acceleration for distributedRL train-
ing within a rack of worker nodes. We now discuss how to scale
out the in-switch computing in a rack-scale cluster or data center.
Figure 10 shows the network architecture of a typical cluster or data
center [4, 47]. All the servers in the same rack are connected by a
Top-of-Rack switch (ToR) with 10Gb Ethernet [1, 50]. In the higher
level, there are Aggregate switches (AGG) and Core switches (Core)
connected with higher network bandwidth (e.g., 40Gb to 100Gb).

To scale out distributed RL training with iSwitch in the rack-scale
cluster, we develop an “hierarchical aggregation” approach. Specifi-
cally, if a switch finishes its local aggregation for a certain segment in
the gradient vector stored in theBuffer, it will forward the aggregated
segment to the switches in the higher level for global aggregation.
If there are more than one switch in the higher level, the switch will
select the one with the smallest value of IP addresses, so that all gra-
dient data could be finally aggregated in the Core switch. Then the
globally aggregated gradient will be broadcasted to the lower-level
switches for further distribution. Such adesign leverages the existing
rack-scale network architecture and does not introduce additional
hardware or network topology changes.

3.5 Implementation
We implement iSwitchwith a real-worldNetFPGA-SUMEboard [34].
NetFPGA-SUME has an ×8 Gen3 PCIe adapter card incorporating
Xilinx Virtex-7 FPGA and four 10Gbp Ethernet ports. We use the
reference switch design provided by NetFPGA community [35] for
further development. To fully utilize the bit-width of its internal
AXI4-Streambus (i.e., 256 bits/cycle),we employeight 32-bit floating-
point adders for parallel gradient aggregation. Our in-switch acceler-
ator is integrated into this reference switch design and interactswith
other components using standard 256-bit AXI4-Stream bus at the
frequency of 200MHz. In terms of the on-chip resource utilization,
iSwitch accelerator consumes extra 18.6% of Lookup Table (LUT),
17.3% of Flip-Flop (FF), 44.5% of Block RAM (BRAM), and 17 DSP
slices, compared with the unmodified reference design. Note that
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the implementation of iSwitch hardware and network protocols are
generic to both synchronous and asynchronous distributed training.

4 IMPLICATIONS ONRL TRAINING
In the section, we discuss howwe exploit the in-switch computing
paradigmto facilitate ourhardware/algorithmco-design, and further
improve the performance of both synchronous and asynchronous
distributed RL training.

As discussed in § 2.2, for synchronous training, we can directly
apply iSwitch to reduce the end-to-end execution time of gradient
aggregation by replacing the aggregation operation, such as the
AllReduce operation, with our in-switch aggregation. We will not
discuss the details (see § 6.1 for performance benefits). For asynchro-
nous training, iSwitch offers new optimization space to improve the
training parallelism with the in-switch computing paradigm, which
demonstrates an useful case of iSwitch’s implications on distributed
RL training. We will discuss it in details in this section.

4.1 Rethink Asynchronous RL Training
Conventionalapproachforasynchronousdistributed training (seeFig-
ure 3) relies on a central parameter server tomaintain the up-to-date
weights,where eachworker interactswith the server to keep upwith
the latest weights such that the training can converge. To gain the
benefits from iSwitch, a straightforward approach is to shift the func-
tions of parameter server to the network switch. However, this will
significantly increase the hardware cost, because the tasks running
on parameter servers demand not only intensive computation re-
source,butalso largememoryspace for storingweightsandhistorical
updates. With the in-switch aggregation, we rethink the asynchro-
nous distributed training, and propose two optimization techniques
to further decentralize the training and increase its parallelism.
Decentralized weight storage. Instead of pushing gradient to the
central server, we aggregate gradients from asynchronous workers
via switch and then broadcast the summed gradients to each worker
for weight update in every iteration. Since we initialize the same
model weights among all workers, and also broadcast the same ag-
gregated gradients, the decentralized storage of weights are always
agreed over iterations in spite of asynchronous training.
Three-stage pipeline.We decouple the three key stages within a
training iteration: (1) Local Gradient Computing (LGC), (2) Gradient
Aggregation (GA), and (3)LocalWeightUpdate (LWU).Thefirst stage
is on the workers, which performs environment interactions, trajec-
tory collection, and gradient generation with uploading. The second
is in the switch, which conducts the gradient gathering, summing,
and broadcasting. The third is on the workers for weight updates.

Algorithm 1 Asynchronous distributed training algorithm with
in-switch acceleration (logical view)
In the switch
1: Initialize gradient buffer дsum, the number of gradient vectors to

aggregateH (= the number of child nodes, by default).
2: while true do
3: wait untilH gradient vectors received
4: sum-reduce theH gradient vectors into дsum
5: broadcast back summed gradients дsum
6: endwhile

On “Local Weight Update (LWU)” thread of each worker

1: Initialize iteration index ts , total number of iterationsT , the same
initial weightws over workers, and learning rate γ .

2: for ts =0 ... T do
3: wait until дsum received
4: update weight:ws←ws −γ ·дsum/H
5: end for

On “Local Gradient Computing (LGC)” thread of each worker

1: Initialize copy of iteration index tw , copy of weight ww , and
staleness bound S . (ts ,T ,ws are in shared/global memory.)

2: while ts <T do
3: copy iteration index: tw←ts
4: copy updated weight:ww←ws
5: interact environment and collect trajectory based onww
6: compute gradient дw based on collected trajectory andww
7: // check staleness of local gradient before commit
8: if (ts −tw ≤S ) then
9: nonblocking send дw to switch
10: else
11: continue
12: end if
13: endwhile

For the three stages in a training iteration,we can pipeline them to
increase the parallelism of distributed training, as illustrated in Fig-
ure 11. At the LGC stage, each worker runs independently without
synchronizing with other workers or the switch, and keeps upload-
ing computed gradients to the switch. At the GA stage, the switch
aggregates gradients in an asynchronous manner, and keeps aggre-
gating the incoming gradients. Once sufficient gradient vectors are
received, the aggregated gradients are broadcasted back to workers,
so that the LWU stage can start. Such an approach encourages faster
workers to contributemore to the aggregation,while slowerworkers
commit less without blocking the training.

Inevitably, due to the asynchrony, staleness of weights and gradi-
ents could occur, which would slow down the training convergence.
In this work, we propose to bound the staleness of gradient explic-
itly. Specifically, we check the staleness of local gradient on each
worker and commit only lightly staled gradients within a bound to
the switch.We show thedetailed procedure inAlgorithm1.Weprove
the convergence of our proposed asynchronous training with both
empirical evaluations (see § 6.2) and theoretical derivations as below.

4.2 Proof of Convergence
Toprove theconvergenceofasynchronous iSwitch,weconvert it into
the classical parameter-server based asynchronous training [15, 21].
By showing that the former ismathematically equivalent to the latter,
we reach the same conclusion as in [15, 21] but constants change.
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To be specific,we assume there is a virtual parameter server in our
asynchronous iSwitch (seeAlgorithm1),which stores the up-to-date
weights and also performs weight updates as in the classical design.
Such a parameter server is equivalent to the LWU thread on each
worker node. As discussed, all workers perform identical weight
updates over iterations, and thus the decentralized agreed weights
can be regarded as being stored on a single centralized server. Con-
sequently, gradient pushing, aggregation, and broadcasting can be
reduced to the upstream communication to the parameter server,
while weight copying in the LGC thread on each worker node can
be reduced to the downstream communication from the parameter
server. All workers run in parallel asynchronously to push gradients
(through the switch) to the parameter server to performupdates, and
then the updated weights will be used in a new iteration. The minor
difference between our approach and [15, 21] lies in the aggregation
of gradient vectors. This can be reduced to the usage of a larger
batch-size for training, which does not change the convergence rate.
Therefore, ourproposedasynchronous training canbe reduced to the
the conventional approaches [15, 21], and offers a convergence rate
ofO (T−0.5) for convex objectives via stochastic gradient descent,
whereT is the number of training iterations.

5 EVALUATIONMETHODOLOGY
5.1 Benchmarks for Distributed RL Training
To evaluate the training performance of iSwitch, we use four pop-
ular RL algorithms [27, 31, 41, 48] as our benchmarks. Based on
their single-node training code [9, 16, 17], we develop three refer-
ence designs for each benchmark by following the state-of-the-art
distributed training approaches: synchronous and asynchronous
parameter-server based training (Sync/Async PS) [7, 15, 23, 46], and
AllReduce based training (AR) [10, 24]. Our reference designs are
highly optimized, and show around 10% better performance with
higher training rewards than the OpenAI-Baseline [8] with MPI (a
popular baseline used in the community [17, 32, 41]). We list these
RL algorithms as follows:
• DQN [31] is one of the most popular RL algorithms for arcade
game playing. Its model size is 6.4MB [9] when applied to the task
of playing Atari game set [3], fromwhich we choose the classical
game, “Pong”, as used in [9, 29, 31].
• A2C [41] is another popular RL algorithm for game playing. Its
model size is 3.3 MB [17] when applied to the Atari game set [3],
fromwhich we choose a different yet classical game “Qbert”.
• PPO [48] is a more recent algorithmmainly for simulated robotic
locomotion. Itsmodel size is 40KB [17]whenapplied to the robotic
control in simulation environment set MuJoCo [52], fromwhich
we choose a classical environment, “Hopper”, as used in [17, 48].
• DDPG [27] is yet another algorithm for continuous control. The
dual model size of DDPG is 157.5 KB in total [16] when applied to
the task of robotic control in MuJoCo [52], from which we choose
another classical environment, “HalfCheetah”.

We implement all reference designs using the state-of-the-art li-
braries:PyTorch1.0 [45],CUDA9.2 [38],CuDNN7.2.1 [39],GYM[42],
and OpenMPI 3.1.4 [43]. For iSwitch design, we use the same code
and libraries from the reference design but with a different gradi-
ent aggregation method, i.e., in-switch aggregation, as well as a
dual-thread training in asynchronous iSwitch (see Algorithm 1).

5.2 Metrics and Their Definitions
We use multiple training approaches for each benchmark: synchro-
nous parameter server (PS), AllReduce (AR), iSwitch (iSW), as well
as asynchronous parameter server (Async PS), iSwitch (Async iSW).
We evaluate all approaches using the following metrics:

• Final Average Reward: the episode reward averaged over the
last 10 episodes (see § 2.1), which is a standard metric used in the
RL training evaluation.
• NumberofIterations: thenumberof training iterations required
to complete the end-to-end training. For synchronous training
approaches, it can be measured at any of worker nodes. For asyn-
chronous training approaches, it can be measured precisely at the
parameter server of PS or the LWU thread of iSW by counting the
number of weight updates.
• Per-Iteration Time: the average time interval between two con-
secutive iterations. For synchronous approaches, it is the latency
of one training iteration. For asynchronous approaches, it can be
measured precisely by the time interval between two consecutive
weight-update operations at the parameter server of PS or the
LWU thread of iSW.
• End-to-End Training Time: the total training time required to
achieve the same level of “Final Average Reward” for each bench-
mark with different approaches.

5.3 Experimental Setup
Main cluster setup.Tomeasure the training performance in actual
wall-clock time, we setup a main cluster consisting of four nodes.
Each node has aNVIDIATitan RTXGPU [40] and an Intel XeonCPU
E5-2687W@3GHz [19]. We use this four-node cluster for evaluating
AR and iSW approaches. To also support the PS approach, we use an
additional node as the parameter server. All nodes are connected to
a Netgear 10Gb Ethernet switch [36] via Intel X540T2 10Gb Ethernet
NICs [18]. Consider the small size of transferred gradients of RL
models, e.g., 40KB for PPO, we do not consider supporting larger net-
work connections (i.e., 40∼100Gbps) in our experiments. As for iSW
approach, we replace the network switch with a NetFPGA-SUME
board [34], and fully use the four Ethernet ports on the NetFPGA-
SUME board to connect the worker nodes.
Scalability experiment setup. For the scalability experiments, we
emulate the training performance of all the approaches with more
worker nodes in a cluster consisting of two-layer regular switches
as in Figure 10. Specifically, the cluster has a root switch connect-
ing to multiple “racks” and each rack contains three worker nodes
(due to the port limitation of NetFPGA boards). We emulate the
hierarchical aggregation of iSwitch in the cluster. We develop the
emulation with three goals: the emulated aggregation must have (1)
the exact number of network hops, (2) the same amount of traffic in
the network links as possible, and (3) accurate accelerator overhead.
We achieve these goals by transferring synthetic gradient data from
each worker node to its third next neighbor worker node, such that
each gradient message always traverses through the hierarchy of
switches. After that, a barrier is set among workers to capture the
slowest gradient transfer such that the aggregation can be deemed as
completed. This emulation approach matches the real aggregation



Accelerating Distributed Reinforcement Learning
with In-Switch Computing ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 3: Summary of performance speedups in “End-to-End
Training Time” for different training approaches. Speedups
are based on the baseline PS for each benchmark.

System-Level Speedup in
End-to-End Training Time DQN A2C PPO DDPG

Sync
PS 1.00× 1.00× 1.00× 1.00×
AR 1.97× 1.62× 0.91× 0.90×
iSW 3.66× 2.55× 1.72× 1.83×

Async PS 1.00× 1.00× 1.00× 1.00×
iSW 3.71× 3.14× 1.92× 1.56×

for (1) and (2), although with minor amplification on the network
traffic between switches. To achieve the goal (3), we measure the
hardware accelerator overhead and add it to the aggregation time.
For emulation of the local computation, we use the same trace from
the PS/AR approaches, and apply it to the iSwitch for fair compar-
ison. Besides, we also obtain the “Number of Iterations” required for
iSwitch. For synchronous training, iSwitch shares the same number
of iterations as PS/AR, due to their mathematical equivalence in
distributed training (see Table 4). For asynchronous training, the
iterations required by iSwitch can be emulated by controlling the
usage of staled gradient in synchronous training approach, where
the staleness of iSwitch can be calculated by themeasured time ratio
of the three stages (see Figure 11) in each training iteration. Thus,
we believe the emulation platform can reflect the scalability of a
real-world rack-scale cluster with in-switching computing enabled.

6 EVALUATION
Weevaluate the trainingperformanceof the fourbenchmarks (see§5.1)
using themain cluster.Wemeasure the “End-to-End Training Time”,
and summarize the performance speedups in Table 3. In synchro-
nous training setting, iSwitch approach (iSW) prevails with a great
margin compared to other approaches, and offers a performance
speedup of 1.72–3.66×, compared with the baseline design (PS). Al-
though AR approach also provides improvement on DQN and A2C,
the performances on PPO andDDPGare actually slightlyworse than
the PS. As for the asynchronous training setting, the advantage of
iSwitch still holds, and offers a performance speedup of 1.56–3.71×,
compared to the baseline PS. Note that we evaluate the performance
of synchronous (§ 6.1) and asynchronous (§ 6.2) distributed training
approaches separately, as the main objective of this work is to accel-
erate and to support both types of approaches, instead of comparing
them, as discussed in § 2.2.

6.1 Benefits with Synchronous iSwitch
Tounderstand the performance improvement resulting from iSwitch
under synchronous training setting, we compare the “Per-Iteration
Time” of iSwitch with the PS and AR over four benchmarks in Fig-
ure 12. We also provide detailed timing breakdown of the “Per-
Iteration Time” for different approaches. This result shows that
comparedwith the PS, iSWoffers 41.9%–72.7% shorter “Per-Iteration
Time” because of the 81.6%–85.8% reduction in gradient aggregation
time for the four benchmarks.

iSwitch provides substantial acceleration in gradient aggregation
for three reasons. First, the aggregation process in iSwitch requires
only half number of network hops (two hops) compared with the
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Figure 12: Comparison of “Per-IterationTime” amongdiffer-
ent synchronous distributed training approaches alongwith
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their baseline approach PS for each benchmark.
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Figure 13: Comparison of training curves of DQN using dif-
ferent synchronous approaches. The curves aremeasured in
training rewards vs. wall-clock time. iSW achieves the same
level of rewards as other approaches in amuch shorter time.

PS design (four hops), which achieves halved end-to-end commu-
nication latency. Second, iSwitch possesses the unique feature of
aggregation on-the-fly (as shown in Figure 8), which reduces the
aggregation granularity from the gradient vector size, i.e., the model
size in baseline design, to the network packet size. Instead of waiting
for the arrival of all gradient vectors before starting computation,
iSwitch conducts aggregation immediately once packets of the same
index arrive (see Figure 8), which reduces the synchronization over-
head caused by gradient aggregation. Third, iSwitch offers balanced
communication by assigning a dedicated network link to each of
worker node, which removes the bottleneck caused by the central
link in PS design.

Inaddition to thecomparisonwith thebaselinedesign (PS),wealso
compare iSwitch with another mainstream approach – AllReduce
based training (AR) [10, 24] which offers balanced communication.
The result in Figure 12 shows that iSwitch still outperforms AR over
all four benchmarks, i.e., 36.7%–48.9% reduction in “Per-Iteration
Time.” These improvements are still attributed to the accelerated gra-
dient aggregation of iSwitch, i.e., 63.4%–87.9% reduction in aggrega-
tion time for iSW, in comparisonwithAR. As discussed in § 2.3, there
is a performance trade-off between PS and AR. The AR approach
suffers frommore network hops than PS, but it removes the bottle-
neck caused by the central parameter server. On the meanwhile, the
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Table 4: Performance comparison of different synchronous distributed training approaches.
DQN A2C PPO DDPG

PS AR iSW PS AR iSW PS AR iSW PS AR iSW
Number of Iterations 1.40E+06 2.00E+05 8.00E+04 7.50E+05

End-to-End Training Time (hrs) 31.72 16.08 8.66 2.87 1.78 1.12 0.39 0.42 0.22 8.07 9.01 4.40
Final Average Reward 20.00 19.94 20.00 13491.73 13478.39 13489.22 3090.24 3093.18 3091.61 2476.75 2487.43 2479.62

Table 5: Performance comparison of different asynchronous distributed training approaches.
DQN A2C PPO DDPG

Async PS Async iSW Async PS Async iSW Async PS Async iSW Async PS Async iSW
Number of Iterations 6.30E+06 3.50E+06 1.20E+06 4.00E+05 5.40E+05 1.20E+05 3.00E+06 1.50E+06

Per-Iteration Time (milli-secs) 24.88 12.07 13.13 12.53 3.40 7.99 11.58 14.89
End-to-End Training Time (hrs) 43.54 11.74 4.38 1.39 0.51 0.27 9.65 6.20

Final Average Reward 19.10 19.82 13402.83 13505.46 3083.67 3084.23 2421.89 2485.35

benchmarks demand different communication/computation loads
due to their model sizes (see § 5.1). As a result, compared with PS,
AR performs better for DQN and A2C but worse for PPO and DDPG.
iSwitch runs faster than both PS and AR because of the reduced
end-to-end network latency as well as the on-the-fly aggregation.

Furthermore, we show the detailed results including the number
of iterations, absolute training time, and achieved training rewards,
in Table 4. We observe that all synchronous approaches train the
same “Number of Iterations” to reach the same level "Final Average
Rewards” for each benchmark.

To demonstrate the synergy of acceleration and training rewards
of all synchronousapproaches,weevaluate theactual trainingcurves
in wall-clock time for all benchmarks, and demonstrate a case study
of DQN in Figure 13.

6.2 Benefits with Asynchronous iSwitch
Wenowcompare iSwitchwith the asynchronous baseline (Async PS)
for all benchmarks.To showa fair comparison,wegives the samestal-
eness bound (S =3) for both approaches, although the conventional
Async PS approach does not involve staleness control mechanisms,
such that the staleness of gradient ranges from 0 to 3 iterations.

We summarize the training performance of the two approaches
in Table 5. We observe that iSwitch (Async iSW) offers faster con-
vergence, i.e., 44.4%–77.8% reduction in the “Number of Iterations”,
compared with the baseline (Async PS). This is due to the smaller
staleness of gradient on average [15, 25] in iSwitch, although both ap-
proaches are bounded by the samemaximal staleness. The alleviated
staleness of gradients can be attributed to the advantage of accel-
erated gradient aggregation in iSwitch, because the faster gradient
aggregation results in earlier/in-time weight update, and thus offers
fresher weight and gradient for next iteration. On the other hand,
Async PS suffers from doubled end-to-end communication latency
(as discussed in § 6.1), as well as the burdened central network link,
and thus increases the gradient/weight communication time. As a
result, the staleness of gradient becomes larger, causing an increased
number of training iterations [15, 25, 26].

From Table 5, we also observe that iSwitch demonstrates 4.6%–
51.5% shorter “Per-Iteration Time” for DQN and A2C, compared
with the baseline. This is because asynchronous iSwitch not only
enjoys the benefit of acceleration on gradient aggregation, but also
employs the pipelined training to hide part of the execution time
(see Figure 11), especially the accelerated gradient aggregation and
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Figure 14: Comparison of training curves of DQN using dif-
ferent asynchronous approaches. The curves are measured
in training rewards vs. wall-clock time. Our solution Async
iSWachieves the same level of rewards as the other approach
in amuch shorter time.

weight update. By contrast, the Async PS still pays for the long com-
munication latency, thus increasing the time interval between two
consecutive weight updates, i.e., larger “Per-Iteration Time”.

Note that forPPOandDDPG, iSwitchdoesnot show improvement
in “Per-Iteration Time”. This is mainly due to the relatively smaller
ratios of gradient aggregation time in PPO and DDPG. Therefore,
even with pipeline, the hidden time of gradient aggregation only
offers a slight reduction in “Per-Iteration Time”, the limited benefit
of which cannot outperform the Async PS. However, the accelerated
gradient aggregation of iSwitch reduces the staleness of gradients,
and reduces the number of training iterations.

To combine the effectiveness of iSwitch approach in both reduced
“Number of Iterations” and improved “Per-iteration Time”, we show
the “End-to-End Training Time” in Table 5. Asynchronous iSwitch
offers 35.7%–73.0% reduction in “End-to-End Training Time”, com-
pared with the baseline Async PS.

Moreover, todemonstrate the synergyof accelerationand training
rewards of both asynchronous approaches, we evaluate the actual
training curves in wall-clock time for all benchmarks, and demon-
strate the an example of DQN in Figure 14.

6.3 Scalability of iSwitch
To evaluate the scalability, we measure and compare the speedups
of the end-to-end training for all the training approaches, following
the scalability experiment setup in § 5.3. We show the case study on
the scalability of training PPO and DDPGwith 4, 6, 9 and 12 worker
nodes in Figure 15. For synchronous distributed training, as shown in
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Figure 15: Scalability comparison of all training approaches.
The speedups are based on the “End-to-End Training Time”
and normalized against the 4-node case of each approach.

Figure 15a and 15c, we observe that theAR approach offers theworst
speedups as the cluster scales. This is because its number of network
hops for gradient aggregation is linear in cluster size, as discussed
in § 2.3. The PS approach shows the second best scalability. However,
it suffers from the central bottleneck in both communication and
computation , and this drawbackworsens aswe increase the number
of worker nodes. iSwitch outperforms both AR and PS with a great
margin because of three major reasons: (1) the minimal number
of network hops required, (2) balanced and reduced traffic load in
hierarchical aggregation, and (3) the in-switch accelerator of iSwitch.

For asynchronous distributed training (see Figure 15b and 15d),
we observe that asynchronous PS approach cannot outperform asyn-
chronous iSwitch approach, since Async PS still requires more net-
work hops, although the asynchronous mechanism alleviates the
central bottleneck to some extent. By contrast, Async iSwitch holds
the best scalability (i.e., almost linear speedups), since it enjoys
not only the aforementioned advantages enabled by in-switch com-
puting, but also the benefit of three-stage pipeline as well as the
alleviated staleness from the accelerated aggregation.

7 RELATEDWORK
Distributed RL training. Recent research in the machine learn-
ing community proposes several distributed RL algorithms, such as
A2C [41] and A3C [29]. These works, however, mainly focus on the
single-node solution. In this paper, we target distributed RL training
that involves multiple nodes at rack scale. The system community
also shows interests in developing distributed RL systems, such as
Gorila [33], Ray [32], and Horizon [11]. Our contributions on the in-
switch acceleration are orthogonal to these works. iSwitch could be
integrated into these systems to further improve their performance.

More recently, researchers propose to reduce the communication
overhead of distributed training system by adopting the AllReduce
technique [10, 24, 56], becauseAllReduce, especiallyRing-AllReduce,
is a bandwidth-optimal communicationmethodwhich suits for band-
width demanding workloads, such as distributed DNN training. Dis-
tributed RL training, however, ismore sensitive to latency.Moreover,

due to the global synchronization nature of AllReduce, it only sup-
ports synchronous training. iSwitch supports both synchronous and
asynchronous training.
In-network computing. Researchers have proposed several solu-
tions related to in-network computing in the high-performance com-
puting (HPC) community, such as BlueGene Network [6], PERCS
Interconnect [2], and CM-5 [22]. However, these works were de-
veloped using customized interconnect architecture for HPC ap-
plications. By contrast, iSwitch is designed with commodity pro-
grammable switches that have been widely adopted in data centers
today [1, 4, 47, 50].

Recent research innetworkedsystemshasworkedonthesoftware-
defined networking (SDN) with programmable switches, such as
P4 [5] and PISCES [49]. SDN enables platform operators to imple-
ment their own networking policies in programmable switches to
facilitate network management. However, none of previous works
investigates the in-switch accelerator techniques for distributed ma-
chine learning workloads. iSwitch leverages the programmability
of programmable switches to build an accelerator inside the switch,
which conducts computation on packet payloads to facilitate the
gradient aggregation for distributed RL training.
Hardware accelerators formachine learning. Recent advances
in both academia and industry offer various specialized hardware ac-
celerators formachine learning [20, 28, 44, 54, 55, 58, 59]. For instance,
TABLA [28] uses FPGA accelerators to improve the performance
of training workloads. Google presented the TPU [20] which is an
ASIC acceleratorwith a systolic array architecture. CosMIC [44] pro-
poses a distributed machine learning training system using multiple
FPGA and ASIC accelerators. Most of these works, however, focus
only on training or inference of DNNs without considering the RL.
Importantly, these works accelerate only the local computation of
machine learning algorithms, while leaving the network bottleneck
in distributed training systems untouched. iSwitch sets out to reduce
the network overhead with the proposed in-switch computing.

8 CONCLUSION
In this paper, we take an initial effort in quantifying the perfor-
mance overhead in distributed RL training, and propose an in-switch
computing paradigm, iSwitch, to remove the network bottleneck
by providing a full set of solutions: (1) an in-switch aggregation
accelerator to reduce the end-to-end communication overhead; (2)
an acceleration support for both synchronous and asynchronous
distributed RL training with improved parallelism; and (3) a hier-
archical design for rack-scale clusters to scale the distributed RL
training. The experiments with various RL workloads demonstrate
that iSwitch offers a system-level speedup of up to 3.66× for synchro-
nous distributed training, and 3.71× for asynchronous distributed
training, compared with state-of-the-art approaches.
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