
High-Performance Design of HBase with RDMA over InfiniBand

Jian Huang1, Xiangyong Ouyang1, Jithin Jose1, Md. Wasi-ur-Rahman1, Hao Wang1,

Miao Luo1, Hari Subramoni1, Chet Murthy2, and Dhabaleswar K. Panda1

1 Department of Computer Science and Engineering, 2 IBM T.J Watson Research Center

The Ohio State University Yorktown Heights, NY
{huangjia, ouyangx, jose, rahmanmd, wangh, luom, subramon, panda} {chet}

@cse.ohio-state.edu @watson.ibm.com

Abstract—HBase is an open source distributed Key/Value
store based on the idea of BigTable. It is being used in
many data-center applications (e.g. Facebook, Twitter, etc.)
because of its portability and massive scalability. For this
kind of system, low latency and high throughput is expected
when supporting services for large scale concurrent accesses.
However, the existing HBase implementation is built upon Java
Sockets Interface that provides sub-optimal performance due
to the overhead to provide cross-platform portability. The byte-
stream oriented Java sockets semantics confine the possibility to
leverage new generations of network technologies. This makes
it hard to provide high performance services for data-intensive
applications.

The High Performance Computing (HPC) domain has
exploited high performance and low latency networks such
as InfiniBand for many years. These interconnects provide
advanced network features, such as Remote Direct Memory
Access (RDMA), to achieve high throughput and low latency
along with low CPU utilization. RDMA follows memory-block
semantics, which can be adopted efficiently to satisfy the object
transmission primitives used in HBase.

In this paper, we present a novel design of HBase for
RDMA capable networks via Java Native Interface (JNI).
Our design extends the existing open-source HBase software
and makes it RDMA capable. Our performance evaluation
reveals that latency of HBase Get operations of 1KB message
size can be reduced to 43.7μs with the new design on QDR
platform (32 Gbps). This is about a factor of 3.5 improvement
over 10 Gigabit Ethernet (10 GigE) network with TCP Offload.
Throughput evaluations using four HBase region servers and
64 clients indicate that the new design boosts up throughput by
3 X times over 1 GigE and 10 GigE networks. To the best of our
knowledge, this is first HBase design utilizing high performance
RDMA capable interconnects.

Keywords-HBase, InfiniBand, RDMA, Cloud Computing and
Clusters

I. INTRODUCTION

Over the last several years there has been a substantial

increase in the number of cloud data storage services being

deployed to meet the requirements of data intensive web

applications and services. NoSQL systems [1] have shown

that they have enormous scalability to satisfy the immense

data storage and look-up requirements of these applications.

One good example is Google’s BigTable [2], which is a

semi-structured database intended to handle petabytes of

data. It is a sparse, persistent multi-dimensional sorted

distributed storage system that is built on top of Google

File System [3]. Many projects at Google such as web

indexing, Google Earth, and Google Finance use BigTable.

Another example is HBase [4], the Hadoop [5] database.

It is an open source distributed Key/Value store, aiming to

provide BigTable like capabilities. It is written in Java to

achieve platform-independence. HBase uses HDFS (Hadoop

Distributed File System) [6], [7] as its distributed file system.

Usually, HBase and HDFS are deployed in the same cluster

to improve data locality. HBase is used by many Internet

companies (e.g. Facebook and Yahoo!) because of its open

source model and high scalability. At Facebook, a typical

application for HBase is ‘Facebook Messages’ [8], which is

the foundation of a ‘Social Inbox’ [9].

The existing open-source HBase implementation uses tra-

ditional Java (TCP) Sockets. This provides a great degree of

portability, but at the price of performance. It is well known

that the byte-stream socket model has inherent performance

limits (both latency and throughput) [10], [11], due to issues

such as multiple memory copies. The byte-stream model

of Java Sockets requires a Java object be serialized into a

block of bytes before being written to a socket (for additional

rounds of data copy). On the receiver side de-serialization

must be performed to convert an incoming data block into a

Java object. All these aspects result in further performance

loss.

High performance networks, such as InfiniBand [12],

provide high data throughput and low transmission latency.

Open source software APIs, such as OpenFabrics [13], have

made these networks readily available for a wide range of

applications. Over the past decade, scientific and parallel

computing domains, with the Message Passing Interface

(MPI) as the underlying basis for most applications, have

made extensive usage of these advanced networks. Im-

plementations of MPI, such as MVAPICH2 [14] achieves

low one-way latencies in the range of 1-2μs. Even the

best implementation of sockets on InfiniBand achieves 20-

25μs one-way latency. InfiniBand is being embraced even

in Datacenter domain. At ISCA 2010, Google published

their work on high performance network design for data-

center, which uses InfiniBand to achieve high performance

and low power consumption [15]. Oracle’s ‘Exalogic Elastic

Cloud’ uses InfiniBand to integrate storage and compute

resources [16].

With these known problems of TCP sockets, and the

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.74

774

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.74

774

known advantages of InfiniBand, it seems natural to ask

whether HBase could benefit from being able to use In-

finiBand (and other RDMA-capable networks, in general).

There have been some studies [17], [18] to exploit RDMA-

capable networks to improve the performance of Mem-

cached [19] - a popular distributed-memory object-caching

system. In this paper, we want to study exactly this problem

for HBase: the limitations of socket-based communication

inside HBase, and approaches to deliver the advantages

of a high performance network such as InfiniBand and

its RDMA capability to HBase so as to accelerate HBase

network communications. We address several challenges in

this paper:

1) In the existing HBase design, can we characterize the

performance of Java Sockets-based communication?

Does the use of Java Sockets diminish performance

and if so, by how much?

2) Can we improve HBase performance by using high-

performance networks such as InfiniBand? In partic-

ular, can we achieve a hybrid design in which both

the conventional socket interface and the new RDMA-

capable communication channel co-exist in the same

HBase framework?

3) With such a hybrid communication mechanism, will

HBase show improvements in query latency and trans-

action throughput?

We perform detailed profiling to understand the per-

formance penalty caused by Java Sockets in the HBase

query processing cycle. Based on that finding, we extend

the HBase data communication mechanism into a hybrid

hierarchy that incorporates both conventional sockets and

advanced RDMA-capable InfiniBand for efficient network

I/O. We conduct extensive experimental studies evaluating

the performance implications of this new RDMA-capable

communication module in contrast to other conventional

socket based networks including 1 GigE, 10 GigE, and IP-

over-InfiniBand (mentioned in Section II-B1). Our RDMA-

capable design achieves Get latency as low as 43.7μs for

1 KB payload, which is 3.5 X times faster than 10 GigE

network with TCP offloading. Throughput evaluations using

four HBase region servers and 64 clients indicate that the

new design boosts up throughput by 3 X times over 1 GigE

and 10 GigE networks.

The major contributions of this paper are:

1) A detailed profiling to reveal the performance penalty

caused by conventional sockets in end-to-end HBase

data access operations.

2) A hybrid hierarchical design of HBase communication

modules that incorporates both sockets and advanced

RDMA features.

3) An extensive evaluation to study the performance

implications of the new RDMA-capable module, in

contrast to existing socket based solutions.

The rest of the paper is organized as follows. In Section II,

we give a background about the key components involved

in our design. In Section III and Section IV, we propose a

hybrid communication hierarchy to incorporate InfiniBand

and socket interface into existing HBase framework. In

Section V, we present our experiments and evaluation.

Related work is discussed in Section VI, and in Section VII

we present conclusions and future work.

II. BACKGROUND

A. HBase

HBase is an open-source database project based on

Hadoop framework for hosting very large tables [4]. It is

written in Java and provides BigTable [2] like capabilities.

HBase consists of three major components as shown in

Figure 1: HBaseMaster, HRegionServer and HBaseClient.

HBaseMaster keeps track of active HRegionServers and

takes care of assigning data regions to HRegionServer. It also

performs administrative tasks such as resizing of regions,

replication of data among different HRegionServers, etc.

HBaseClients check with HBaseMaster to identify which

server it should request for read/write operations. HRe-

gionServers serve client requests by fetching or updating

data stored in Hadoop Distributed File System (HDFS).

HDFS [5] is a fault tolerant distributed file system. Files are

divided into small blocks before they are stored in HDFS.

The default size of each block is 64MB, and each block is

replicated at multiple DataNodes. HBase calls DFSClient to

load regions from HDFS to memory. In other words, HBase

acts as a client of HDFS. Usually, HBase and HDFS are

deployed in the same cluster to improve the data locality.

HRegionServer

HRegionServer

HRegionServer

HBaseMaster

HDFS

HBaseClient

ZooKeeper

Figure 1. HBase Architecture

B. High Performance Networks

In this section, we present an overview of popular high

performance networking technologies that can be utilized in

data-center domain.
1) InfiniBand: InfiniBand [12] is an industry standard

switched fabric that is designed for interconnecting nodes

in High End Computing clusters. It is a high-speed, general

purpose I/O interconnect that is widely used by scientific

computing centers world-wide. The TOP500 [20] rankings

released in June 2011 indicate that more than 41% of

the computing systems use InfiniBand as their primary

775775

interconnect. One of the main features of InfiniBand is Re-

mote Direct Memory Access (RDMA). This feature allows

software to remotely read or update memory contents of

another remote process without any software involvement

at the remote side. This feature is very powerful and can

be used to implement high-performance communication

protocols [21]. InfiniBand has started making inroads into

the commercial domain with the recent convergence around

RDMA over Converged Enhanced Ethernet (RoCE) [22].

InfiniBand offers various software layers through which it

can be accessed. They are described below:

(a) InfiniBand Verbs Layer: The verbs layer is the lowest

access layer to InfiniBand. There are no intermediate copies

in the OS. The verbs interface follows Queue Pair (QP)

communication model. Each QP has a certain number of

work queue elements. Upper-level software using verbs can

place a work request on a QP. The work request is then

processed by the Host Channel Adapter (HCA). When work

is completed, a completion notification is placed on the com-

pletion queue. Upper level software can detect completion

by polling the completion queue or by asynchronous events

(interrupts). Polling often results in the lowest latency. The

OpenFabrics interface [13] is the most popular verbs access

layer due to its applicability to various InfiniBand vendors.

(b) InfiniBand IP Layer: InfiniBand software stacks, such

as OpenFabrics, provide a driver for implementing the IP

layer. This exposes the InfiniBand device as just another

network interface available from the system with an IP ad-

dress. Typically, Ethernet interfaces are presented as eth0,

eth1, etc. Similarly, IB devices are presented as ib0,

ib1 and so on. It does not provide OS-bypass. This layer

is often called “IP-over-IB” or IPoIB for short. We will use

this terminology in the paper. There are two modes available

for IPoIB. One is the datagram mode, implemented over

Unreliable Datagram (UD), and the other is connected mode,

implemented over Reliable Connection (RC).

2) 10 Gigabit Ethernet: 10 Gigabit Ethernet was stan-

dardized in an effort to improve bandwidth in data center

environments. It was also realized that traditional sockets

interface may not be able to support high communication

rates [23], [24]. Towards that effort, iWARP standard was

introduced for performing RDMA over TCP/IP [25]. iWARP

is very similar to the verbs layer used by InfiniBand, with

the exception of requiring a connection manager. In addition

to iWARP, there are also hardware accelerated versions of

TCP/IP available. These are called TCP Offload Engines

(TOE), which use hardware offload. The benefits of TOE are

to maintain full socket streaming semantics and implement

that efficiently in hardware. We used 10 Gigabit Ethernet

adapters from Chelsio Communications in our experiments.

C. Unified Communication Runtime (UCR)

The low-level InfiniBand Verbs (IB Verbs) can provide

better performance without intermediate copies overhead,

but the programming for IB Verbs is complicated. Therefore,

we developed a light weight, high-performance commu-

nication runtime named Unified Communication Runtime

(UCR). It abstracts the communication APIs of differ-

ent high-performance interconnects like InfiniBand, RoCE,

iWARP, etc. and provides a simple and easy to use interface.

UCR was proposed initially to unify the communication

runtimes of different scientific programming models [26],

such as MPI and Partitioned Global Address Space (PGAS).

In [17], it was used as the middleware for Memcached,

and significant performance improvements were observed

in terms of operation latency and throughput. UCR is

designed as a native library to extract high performance from

advanced network technologies.

D. Yahoo! Cloud Serving Benchmark (YCSB)

Yahoo! Cloud Serving Benchmark (YCSB) [27] is a

framework for evaluating and comparing the performance of

different ”Key/Value” and ”cloud” serving stores. It defines a

core set of benchmarks for four widely used systems: HBase,

Cassandra [28], PNUTS [29] and a simple shared MySQL

implementation. It also provides the flexibility for adding

benchmarks for other data store implementations.

There are six core workloads and each of these represents

different application behaviors. For example, the typical

application example for workload C is user profile cache,

Zipfian and Uniform distribution modes are used in YCSB

for record selection in database. Besides that, we can also

define our own workloads. In addition to these different

workloads, there are three runtime parameters defined in

YCSB to adjust the workload on the client side, like number

of clients, target number of operations per second, status

report modes, etc. In our experiments, we used workload A

(50% Read, 50% Update), workload C (100% Read) and a

modified version of workload A (100% Update).

III. INTEGRATING INFINIBAND NETWORK INTO HBASE

In this section, we briefly describe the design of HBase

with traditional networks and identify the potential perfor-

mance penalties in this design. Then we introduce our design

using UCR and show how these overheads can be avoided

using UCR-based design.

A. Performance Penalty with Socket-based Interface

Existing HBase makes use of Java Socket Interface

for communication. As depicted in the left part of Fig-

ure 3, practical applications call HBaseClient APIs to access

HBase. These APIs internally invoke Java Socket Interface

for transferring data. As discussed in section I, socket-based

data send/receive incurs significant overheads. In order to

understand the performance penalties, we conduct detailed

profiling analysis to measure the time spent in different

stages of a query processing operation. The major steps

involved in an operation are: (1) “Communication” for data

transfer, (2) “Communication Preparation” for putting the

776776

serialized data into socket buffer, (3) “Server Processing”

for HRegionServer to process a request, (4) “Server Serial-

ization”, (5)“Client Serialization” to serialize a Java object

into byte format on HRegionServer and HBaseClient sides,

respectively and (6) “Client Processing” to read reply from

server and de-serialization data. The profiling results are

presented in Figure 2.

In the procedure to perform a HBase Put with 1 GigE net-

work, socket transmission and receipt (“Communication”)

is responsible for 60% of the total latency seen by the

application. As a result, a bulk portion of the latency is

ascribed to the inefficient socket transmission. This ratio is

41% and 34% for IPoIB and 10 GigE, respectively. Due to its

internal driver stack overhead, IPoIB is not able to minimize

the communication cost. Even though 10 GigE has a much

higher raw bandwidth than 1 GigE, it is still not capable

enough to substantially cut down the communication cost.

The “Communication Preparation” stage copies a seri-

alized object into Java Socket buffer which involves Java

software stack overhead. This part consumes 6.1%, 8.3% and

9.6% of total time for 1 GigE, IPoIB and 10 GigE networks,

respectively. The “Communication” and “Communication

Preparation” stages together are responsible for the high

communication cost in existing HBase design. Both stages

can be improved by advanced network technologies and

RDMA capability. The profiling results indicate the potential

performance benefits that are achievable by reducing the

communication time.

 0

 50

 100

 150

 200

 250

 300

1GigE IPoIB(16Gbps) 10GigE

T
im

e
S

pe
nt

(u
s)

Communication
Communication Preparation
Server Processing
Server Serialization
Client Processing
Client Serialization

Figure 2. Breaking Down Put Latency into Different Components. Socket
Transmission is Responsible for a Substantial Part in the Overall Cost.

B. Integrating InfiniBand into HBase: A Hybrid Approach

High performance networks, such as InfiniBand and

iWARP with their RDMA capabilities, have the potential

to substantially reduce the latency. Compared with Sockets

over RDMA and 10Gigabit Ethernet networks, the native

InfiniBand network provides the lowest latency [17]. Thus,

we focus on integrating InfiniBand network into HBase to

achieve better performance.

However, HBase is written in Java for portability, while

the interfaces for RDMA programming over InfiniBand are

implemented in C language. Therefore, Java Native Interface

(JNI) is introduced to work as a bridge between HBaseClient

APIs and UCR as shown in Figure 3.

Applications

HBaseClient APIs

JNI Adaptive Interface

UCR

IB Verbs

Java Socket Interface

1/10 GigE Network

Figure 3. General Design

In particular, our new design aims to accomplish the

following goals: 1) Simple yet efficient - Clear and simple

interfaces shall be provided on different layers to satisfy the

needs from the adjacent upper layer; 2) Open - It shall be

easy to be applied to other similar middlewares used in data

centers. Our design shall support both conventional and new

clusters with advanced network interconnect features.

With all these goals in mind, we propose a hybrid ap-

proach to incorporate both socket interface and InfiniBand

transport into the same framework. Our extended HBase

design supports conventional socket-based networks and also

leverages the advanced features in InfiniBand interconnect

to deliver the best performance. Several challenges must be

addressed for such a design in order to achieve an ideal

performance:

1) How to bridge the portable Java-based HBase design

and the native high performance communication prim-

itives in an efficient manner to reduce the intermediate

overhead?

2) How to extend the multi-threaded HBase into the

native data transmission environment to extract the full

potentials of high performance networks?

3) How to manage the buffer used in the native communi-

cation primitives in order to reduce memory footprint?

IV. DETAILED DESIGN

We present our hybrid design for HBase to incorporate

both socket and advanced networks such as InfiniBand in

this section. First, we briefly walk through the existing

socket-based HBase communication flow. Then we describe

the new hybrid architecture and explain its key components.

Our design extends HBase communication management

policies to provide hybrid communication support. It makes

use of UCR for InfiniBand communication via JNI Adaptive

Interface.

777777

Applications

HBaseClient APIs

Java Socket Interface

1/10 GigE Network

Java Socket Interface

1/10 GigE Network

JNI Adaptive Interface

UCR

IB Verbs

JNI Adaptive Interface

UCR

IB Verbs

Handler

IB Reader

Responder Thread

Network Selector

Call Queue

Response Queue

HBase RegionServerHBaseClient

Thread Pool

Reader

1

12 2

13

14

15

3

4

5

6

7

8

9

10

11

16

17

18

19

20

21
22

23

Thread Pool

Helper

Figure 4. Architecture and Workflow of HBase Design with Hybrid Approach

A. Socket-based HBase Communication Flow

In our hybrid framework, the original components in

HBase software stack are kept intact to support the con-

ventional sockets interface. We briefly outline some key

components in HBase before explaining our design.

On HBaseRegionServer, there is a Listener thread to

monitor Java Sockets. When incoming data is detected, the

Listener picks a thread from the Reader Thread Pool to

process the data. Once a Reader Thread is awaken by the

Listener, it reads data from the socket, de-serializes the

data into a Java Call object defined in HBase, and pushes

it into a queue associated with a Handler Thread Pool

(path 7 in Figure 4). One of the Handler Threads claims

the Call object and performs the actual processing. Once

the processing is completed, the Handler Thread puts the

Call object together with the serialized reply data into

the response queue which is maintained by the Responder

Thread (path 8 in Figure 4). The Responder Thread sends

the reply data back to the client (path 9 in Figure 4).

B. Hybrid Communication Framework to Support High Per-

formance Networks

We adopt a hybrid approach by extending the existing

HBase communication framework to support InfiniBand and

RDMA capability using the UCR library.

As shown in Figure 4, the new design includes two parts:

the HBaseClient side, and the HRegionServer side. We intro-

duce four new components in HBase client side: (1) Network

Selector assists in selecting networks according to operation

types and pre-defined rules; (2) IB Reader, is responsible

for receiving data sent from the HRegionServer and de-

serializing into Java objects; (3) JNI Adaptive Interface,

enables upper-layer Java code to invoke our native UCR

library; and (4) UCR enables RDMA-based data commu-

nication over InfiniBand network. On the HRegionServer

side, Helper Thread Pool co-operates with the UCR for data

communication. Since the connection management is dif-

ferent between HBaseClient and HRegionServer, we chose

to implement the JNI Adaptive Interface separately on both

sides to operate in a more efficient manner. We discuss these

components in detail in the following sections.

C. Communication Flow over InfiniBand via UCR library

Figure 4 highlights the key components involved in data

communication. Network Selector enables the hybrid com-

munication mode. It assigns operations to socket helper

threads or UCR helper threads based on the operation type.

Put and Get operations are assigned to UCR threads, where

as all other operations are assigned to socket threads. For

clarity, we explain the communication work flow of HBase

Get operation here. Application calls the HBaseClient Get

API (path 1 in Figure 4). Network Selector then passes the

Get operation (path 12 in Figure 4) to the JNI Adaptive

Interface. This interface is the glue between HBase and

UCR, it not only enables HBase to access the UCR, but

also manages memory sharing between Java and C. JNI

Adaptive Interface invokes UCR communication API (path

13 in Figure 4) to send the request via InfiniBand.

UCR is an end-point based communication library. End

point is analogous to sockets; client and server use this as

a communication end-point. In HBase, clients create end-

point and connect to the region server using this end-point.

When an operation is issued, it first checks if there is

an end-point already with the respective HRegionServer. If

778778

end-point exists, it is re-used; otherwise, a new end-point

is created. New end-point requests are assigned to Helper

Threads in a round-robin manner. Helper Threads deal only

with InfiniBand communications, just as Reader Threads

deal only with sockets. When a Helper Thread receives

a message on one of its assigned end-points (path 18 in

Figure 4), it de-serializes the request into a Java Call object

and puts it into a call queue (path 19 in Figure 4) for further

processing. This is similar to what the Reader Threads do in

case of sockets. In the original HBase design, after a Handler

thread finishes processing a request, it pushes the Call

object into a response queue, from where a Responder thread

writes it back out to the HBaseClient via sockets. In the IB

module, the Handler Thread just sets the corresponding end-

point’s response status (path 20 in Figure 4).

D. Connection Management

1) Extending HBase Connection Management: HBase

uses Connection object to represent a communication

channel between HBaseClient and HRegionServer. Multiple

threads multiplex a socket in the Connection to talk with

the other side. We extended the HBase connection man-

agement to encapsulate both conventional socket interface

and the end-point based high performance networks at the

same time. The HBase Connection object now encloses a

mapping to keep track of all active end-points as a resource

pool. When communication is needed to the other side

of the Connection, a usable end-point is selected from

the pool to perform the data transfer. This end-point pool

improves the connection resource usage by multiplexing

end-points among many concurrent threads. It also ensures

that a request can be issued without any delay.

2) Multi-threading Support in HBaseClient: Most of

the practical applications deploy multi-threaded design, to

increase concurrency and achieve maximum throughput.

YCSB benchmark used in our experiments launches multiple

clients as multiple threads. threads for its workloads. As we

discussed in previous section IV-D1, a Connection object

is created in HBaseClient when it establishes a connection

with the target HRegionServer. Each Connection object

maintains a hash table to store all the requests (Call ob-

jects) issued by applications. For the single HRegionServer

case, all the threads in the application layer share the same

connection since their target HRegionServer addresses are

the same. Also, in a typical deployment scenario, an HBase-

Client needs to communicate with multiple HRegionServers.

Therefore, HBaseClient needs to build multiple connections

with multiple HRegionServers at the same time. Our HBase

design with RDMA over InfiniBand takes this also into

consideration. In our JNI Adaptive Interface library, a list of

end-points could be created for each connection. Each time,

when a thread in the application issues a request, it can get

a free end-point to send its request to the target HRegion-

Server. If there is no available end-point for that connection,

a new end-point is created and added into the end-point

list. When the request gets reply from HRegionServer, the

end-point will be returned back to the end-point list for

future use. In the unmodified HBase software, when the

Call object is sent out to HRegionServer, call.wait()

is called until client receives data from HRegionServer and

finishes the de-serialization of the returned data. If the

returned data size is too large, the overhead caused by the

de-serialization could be considerable, and this could block

other threads, if there are multiple threads sharing the same

connection. In our design, we removed the de-serialization

part from the critical path. Once the IB Reader thread gets

notified that one end-point’s result is back, it will notify the

corresponding Call object to get the returned data in the

registered buffer.

E. Communication Buffer Management

In HBase, Key/Value pairs are organized as Java objects,

while the underlying RDMA layer provides memory-based

semantics. To bridge the gap between the upper Java object

semantics and underlying memory-based semantics, we used

Java direct byte buffer in our design. This enables our design

to take advantage of zero-copy techniques offered by lower

layer communication library.

As we discussed in Section IV-D, each connection handles

a list of end-points on HBaseClient side, and all these end-

points in the same connection share the same chunk of

registered buffer for keeping low memory footprint. All the

end-points share the same registered buffer chunk and this

avoids memory footprint explosion. To avoid interference

among these end-points, each end-point maintains a dynamic

pointer and size to keep track of the specific region in the

registered buffer currently associated with the end-point.

Buffer management scheme is the same in both client and

server sides.

V. PERFORMANCE EVALUATION

In this section, we present the detailed performance eval-

uation results of our design, as compared to the traditional

socket based design over 1 GigE, IPoIB and 10 GigE net-

works. We conduct micro-benchmark level experiments as

well as YCSB benchmark experiments in our evaluations.

(1) Micro-benchmark Experiments: In this set of exper-

iments, we evaluate the latency of HBase Put and Get

operations. We also present detailed profiling analysis of

HBase Put/Get operations and identify different factors

contributing to the overall latency.

(2) Synthetic Workload using YCSB (Single server -

Multi-clients): In this experiment, we keep one HRegion-

Server and vary the number of HBase clients. We use 1 KB

payload for the multi-client experiments. This is the default

payload in YCSB benchmark.

(3) Synthetic Workload using YCSB (Multi-servers -

Multi-clients): In this experiment, we deploy multiple HRe-

779779

 0

 200

 400

 600

 800

 1000

 1200

16K4K1K 256 64 16 4 1
T

im
e

(u
s)

Message size

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Put Latency

 0

 100

 200

 300

 400

 500

 600

 700

16K4K1K 256 64 16 4 1

T
im

e
(u

s)

Message size

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Get Latency

Figure 5. Single Server, Single Client (Cluster A)

 0

 100

 200

 300

 400

 500

 600

 700

16K4K1K 256 64 16 4 1

T
im

e
(u

s)

Message size

1GigE
IPoIB (32Gbps)

UCR-IB (32Gbps)

(a) Put Latency

 0

 100

 200

 300

 400

 500

 600

 700

16K4K1K 256 64 16 4 1

T
im

e
(u

s)

Message size

1GigE
IPoIB (32Gbps)

UCR-IB (32Gbps)

(b) Get Latency

Figure 6. Single Server, Single Client (Cluster B)

gionServers and vary number of HBase clients. This work-

load is similar to real HBase deployment workloads.

A. Experimental Setup

We use two different clusters in our evaluations.

(1) Intel Clovertown Cluster (Cluster A): This cluster

consists of 64 compute nodes with Intel Xeon Dual quad-

core processor nodes operating at 2.33 GHz with 6 GB

RAM. Each node is equipped with a ConnectX DDR IB

HCA (16 Gbps data rate) as well as a Chelsio T320 10GbE

Dual Port Adapter with TCP Offload capabilities. Each node

runs Red Hat Enterprise Linux Server release 5.5 (Tikanga),

with kernel version 2.6.30.10 and OpenFabrics version 1.5.3.

The IB cards on the nodes are interconnected using a 144

port Silverstorm IB DDR switch, while the 10 GigE cards

are connected using a Fulcrum Focalpoint 10 GigE switch.

(2) Intel Westmere Cluster (Cluster B): This cluster

consists of 144 compute nodes with Intel Westmere series

of processors using Xeon Dual quad-core processor nodes

operating at 2.67 GHz with 12 GB RAM. Each node is

equipped with MT26428 QDR ConnectX HCAs (32 Gbps

data rate) with PCI-Ex Gen2 interfaces. The nodes are

interconnected using 171-port Mellanox QDR switch. Each

node runs Enterprise Linux Server release 6.1 (Santiago) at

kernel version 2.6.32-131 with OpenFabrics version 1.5.3.

This cluster is less than two years old and it represents the

leading edge technologies used in commodity clusters.

We use HBase version 0.90.3 and Hadoop version 0.20.2

in all our experiments. We use the following configuration:

Master node and HDFS name-node run on one compute

node, while HBase clients and HRegionServers run on

different nodes. In this paper we focus on the performance

potentials of high performance network to accelerate HBase

data transmission. So we choose a small data set size in the

experiments such that all data to be accessed is completely

stored in server memory. By doing this we preclude the pos-

sible performance anomalies caused by accessing data from

disks. Nowadays, it is common that a server is equipped with

64 GB or more main memory, and the aggregated memory

size of many HBase servers is big enough to hold majority of

the working set data [30]. Therefore we feel our assumption

to cache data in memory is fair, and it can capture the

essence of a production HBase deployment. In our future

study we will expand our investigations to take disk access

cost also into account.

B. Micro-benchmark Evaluations

We design micro-benchmarks to evaluate the latency of

HBase Put and Get operations. The benchmark issues Put

or Get operations of a specified size and measures the

total time taken for the operation to complete. We run

this micro-benchmark in single region server - single client

configuration. We keep only one record in the region server,

so that all the accesses are serviced from server’s memory

store and no disk accesses are involved. The experiment is

performed on both Cluster A and Cluster B. Due to space

limitations, we report only the results of record sizes from

from 1 byte to 64 KB. It is to be noted that, most of the

Put/Get payload sizes in a typical Cloud application fall

within this range [27]. We also present a detailed profiling

analysis of both HBase client and HRegionServer during a

Put/Get operation. It provides insights to what all factors

780780

contribute to the overall operation latency. We did the

profiling for multiple networks and the results are shown

in Section V-B3.

1) Results on Cluster A: As we can observe from Fig-

ure 5 that, the UCR based design (denoted as UCR-IB)

outperforms the socket based design for all the data sizes.

For 1 KB Put operation, the latencies observed for IPoIB,

1 GigE and 10 GigE are 204.4μs, 269.1μs and 191.4μs,

respectively. Our design achieves a latency of 86.8μs, which

is 2.2 times faster than 10 GigE. The same level of im-

provements is observed for Get operations as well. This

demonstrates the capability of native InfiniBand RDMA to

achieve low latency.

2) Results on Cluster B: The same experiment is repeated

on Cluster B and the results are shown in Figure 6. Cluster

B does not have 10 GigE network cards. For both Get and

Put operations, UCR based design outperforms socket-based

channels by a large margin. For Get operation of 1 KB

message size, latency observed with our design is 43.7μs,

where as the latencies are 185.8μs and 214.4μs for IPoIB

and 1 GigE, respectively. This is a factor of four improve-

ment. For Put operations, the performance improvement

over IPoIB and 1 GigE networks is 2.9 X and 3.2 X times,

respectively. It is to be noted that UCR based design in

Cluster B is faster than in Cluster A, and this is due to

the higher InfiniBand card speed (32 Gbps in Cluster B vs

16 Gbps in Cluster A).

These results, illustrated in Figure 5 and Figure 6, clearly

underline the performance benefits that we can gain through

OS-bypass and memory-oriented communication offered by

RDMA semantics.

3) Detailed Profiling Analysis: We have profiled HBase

client and HRegionServer to measure the cost at different

steps during a Put/Get operation. The profiling results,

shown in Figure 7, indicate the time taken at different steps

for Put/Get operation with 1 KB payload.

During a Put operation, the client first serializes the

request and puts it into a communication buffer. These

are indicated as “Client Serialization” and “Communication

Preparation,” respectively. The serialized object is then sent

to the server, where it is de-serialized and processed. This

step is indicated as “Server Processing.” After handling the

request, the server sends back the response to the client.

The time taken for serializing the response is indicated as

“Server Serialization.” The Client receives the response and

processes it (indicated as “Client Processing”). The overall

communication time (client to server and server to client) is

denoted as “Communication Time.” The actual number of

bytes written on wire for Put operation of 1 KB are 1296

(request) and 85 (response). For 1 KB Get operation, these

are 136 (request) and 1091 (response) bytes. It is to be noted

that the communication time decreases considerably in the

UCR-based HBase design. Communication preparation time

is also reduced in this design. In socket based design, the

serialized object has to be copied into Java socket buffer. But

our design bypasses this, which avoids the copy overhead.

As we can observe from Figure 7, communication cost

is one of the major factors contributing to the overall

operation latency. The total communication time for 1 KB

Put operation over UCR is 8.9μs, where as it is 168.3μs,

78.5μs and 57.1μs for 1 GigE, IPoIB and 10 GigE networks,

respectively. Our design achieves a performance improve-

ment of 6 X times over 10 GigE (fastest among the socket

versions). Similar trend is observed for Get operation, as

indicated in the figure. Overall, UCR-based design decreases

the communication time substantially and reduces the overall

latency perceived by end user.

C. YCSB (Single server and Multiple clients):

In this experiment, we use the YCSB benchmark and mea-

sure the HBase Get operation latency. We use single region

server - multiple clients configuration for this experiment.

All the clients issue Get operation on a same record. We

restrict the server working set to just one record, so that all

the queries are serviced from the server memory, avoiding

hard disk access anomalies.

Figure 8(a) shows the average latency for a Get operation

for varying number of clients. As it can be observed from the

figure, UCR-based design substantially reduces the operation

latencies as compared to socket-based transports. For 8

clients, our design reduces the latency by around 26% as

compared to 10 GigE network. As the number of clients

increase, the operation latency rises due to heavier workload

on the server. The performance improvement using UCR can

be observed even with increased number of clients.

Figure 8(b) denotes the transaction throughput for the

same experiment. The total throughput increases as more

clients are added because of higher level of concurrency in

request handling. It is to be noted that UCR based design

achieves very good throughput scalability with increasing

number of clients. For 16 clients, our design achieves a

throughput of 53.4 K ops/sec, which is 27% higher than

10 GigE network.

D. YCSB: Multi-servers and Multi-clients

In this experiment we use four region server nodes

and vary the number of client nodes from 1 to 16. We

prepare client nodes in two configurations, 1 client thread

per node and 8 client threads per node. For each of these

configurations, we use different workloads: 1) 100% Get

operations (Read Workload), 2) 100% Put operations

(Write Workload), and 3) 50% Get + 50% Put operations

(Read-Write Workload). We disable caching at the client

side by deleting the following statements in YCSB

benchmark - _hTable.setAutoFlush(false);

_hTable.setWriteBufferSize(1024*1024*12);

This models the benchmark behavior to that of real world

workloads. We use four HRegionServers in this experiment,

with 320,000 1 KB records (320 MB data) evenly distributed

781781

 0

 50

 100

 150

 200

 250

 300

1GigE IPoIB(16Gbps) 10GigE UCR−IB(16Gbps)

T
im

e
S

pe
nt

(u
s)

Communication
Communication Preparation
Server Processing
Server Serialization
Client Processing
Client Serialization

(a) Put 1 KB

 0

 50

 100

 150

 200

 250

1GigE IPoIB(16Gbps) 10GigE UCR−IB(16Gbps)

T
im

e
S

pe
nt

(u
s)

Communication
Communication Preparation
Server Processing
Server Serialization
Client Processing
Client Serialization

(b) Get 1 KB

Figure 7. Get/Put Query Processing Time Breakdown (on Cluster A, 1 KB Record Size)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 2 4 8 16

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Latency

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Throughput

Figure 8. Single Server, Multiple Clients, HBase Get on Cluster A, 1 KB Message Size.

among all four servers. Each HRegionServer hosts 80 MB

data which is completely cached in memory. The client

threads perform queries according to either Zipfian

distribution or Uniform distribution. We do not find any

perceivable difference in terms of performance between

these two distributions. Therefore only the results from

Zipfian distribution are reported due to space constraints.

Also, because of limited number of 10 GigE adapters

available, we have only 12 client nodes in the experiments

with 10 GigE networks.

1) Read Workload, One Thread per Client Node: In this

experiment, we vary the number of client nodes from 1 to

16, with each node running one YCSB thread. Each YCSB

client issues Get operations to the HRegionServers. Similar

to previous results, UCR-based design significantly reduces

the query latency as indicated in Figure 9(a). For 8 clients,

the operation latency using our design is 174.6μs. This

is 43% lower than the 10 GigE operation latency. As the

latency is reduced, UCR-based design almost doubles the

aggregated operation throughput as compared to the 10 GigE

network.

2) Write Workload, One Thread per Client Node: This

experiment is similar to the previous experiment. Each client

node runs one YCSB thread that issues Put operations to the

HRegionServers. As shown in Figure 9(c), significant per-

formance improvement is observed for UCR-based design.

For 16 clients, UCR design achieves a throughput of 41.7 K

ops/sec, which is 20% higher than IPoIB network.

3) Read-Write Workload, One Thread per Client Node:

In this workload each YCSB thread issues equal amounts of

Get/Put operations. Among the three socket-based transports

10 GigE performs the best. The results are depicted in

Figure 10. Compared to 10 GigE, UCR reduces the read and

write latency by 24% and 15%, respectively for 8 clients.

Our design also boosts up the overall transaction throughput

by up to 23%.

4) Read Workload, Eight Threads per Client Node: In

this experiment, each client node runs 8 YCSB threads to

perform Get operations. We vary the number of client nodes

from 1 to 16 so that the total number of client threads ranges

from 8 to 128. Figure 11(a) depicts that all the socket-based

transports perform almost analogously, with 10 GigE slightly

better. The operation latency rises with increased workload

from more client threads. More client threads also lead to

higher throughput. Across all the ranges, UCR-based design

always yields the lowest latency and highest throughput. For

64 clients, our design reduces the latency by around 26%

as compared to 10 GigE network. Our design improves the

operation latency by around 25% as compared to IPoIB for

128 clients.

5) Write Workload, Eight Threads per Client Node: In

this workload, each client thread issues Put operations to the

HBase HRegionServers. The total number of client threads

are varied from 8 to 128. The latency and throughput results

are given in Figure 11(c). The write operation latency is

reduced by around 15% as compared to 10 GigE, for 64

clients. For 128 clients, the write throughput is boosted up

by 22% over the throughput obtained using IPoIB network.

6) Read-Write Workload, Eight Threads per Client Node:

In this workload illustrated in Figures 11, each client thread

performs both Put and Get operations. We disable client side

query batching in YCSB to force each client request directly

782782

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 4 8 16

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Read: Latency

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Read: Throughput

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(c) Write: Latency

 0

 10000

 20000

 30000

 40000

 50000

 1 2 4 8 16

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(d) Write: Throughput

Figure 9. Multi-Servers Multi-Clients, Read-only or Write-only Workload on Cluster A (1 thread/node, 1 KB message)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Read Latency

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 4 8 16

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Write Latency

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 4 8 16

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(c) Throughput

Figure 10. Multi-Servers Multi-Clients, Read-Write Workload on Cluster A (1 thread/node, 1 KB message)

go to HBase server without being cached. We observe very

high latency with 10 GigE and 1 GigE. For 64 clients, the

throughput improvement is around 3 X times over 1 GigE

and 10 GigE networks.

VI. RELATED WORK

Distributed file systems and databases are active research

topics. Cooper et al. [27] presented YCSB framework to

compare the performance of new generation cloud database

systems. Patil et al. [31] presented YCSB++ to extend YCSB

to support complex features in cloud database, such as the

ingest-intensive optimizations. Dory et al. [32] presented

the cloud database elasticity to measure the behavior when

adding or removing data nodes. Shi et al. [33] also proposed

benchmarks to evaluate HBase performance and provided

some insights to optimize cloud database system. As illus-

trated in this work, HBase has better scalability and elasticity

compared with other cloud database systems. However,

HBase does not support many advanced features, such as

the server-side filtering and the transactional guarantee for

multi-key accessing. When the researchers extended HBase

to support those advanced features in MD-HBase [34] and

G-Store [35], they found HBase performance became the

bottleneck for the extended cloud database systems. So, it is

very important to improve HBase performance. In this paper,

we focused on HBase performance improvement using high

performance network, InfiniBand. We compared HBase per-

formance over IPoIB, 1 GigE and 10 GigE networks, and

proposed a new communication layer design for HBase

using InfiniBand. To the best of our knowledge, this is the

first work to enhance HBase using InfiniBand.

In recent times, HBase and InfiniBand are gaining attrac-

tion in data-center deployments. Facebook deployed ‘Face-

book Messages’ using HBase. Their engineers indicate that

network I/O plays an important role in the whole system

performance [36]. Oracle designed ‘Oracle Exalogic Elastic

Cloud’ to integrate business applications, middlewares, and

software products [16]. The storage and compute resources

in this cloud are integrated using its high-performance I/O

back-plane on InfiniBand. However, these systems support

protocols such as Sockets Direct Protocol (SDP), IP-over-

InfiniBand (IPoIB), and Ethernet-over-InfiniBand (EoIB),

and these do not make use of native InfiniBand. In our work,

we rely on native InfiniBand using UCR. In our previous

work [37], we evaluated HDFS performance on InfiniBand

and 10 G Ethernet networks using different workloads. In

this paper, we enabled RDMA communication channel in a

Java based system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we took on the challenge to improve HBase

data query performance by improving the communication

time. We performed detailed profiling to reveal the com-

munication overheads caused by Java sockets, and showed

that communication played an important role in the overall

operational latency. We identified this as an opportunity

to take advantage of high performance networks such as

InfiniBand to improve HBase operation performance.

In order to integrate high performance networks into

HBase, we designed a hybrid hierarchical communica-

tion mechanism to incorporate both conventional sockets

and high performance InfiniBand. By leveraging the high-

throughput and low-latency InfiniBand network, we were

783783

 0

 500

 1000

 1500

 2000

 2500

 8 16 32 64 128

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Read: Latency

 0

 20000

 40000

 60000

 80000

 100000

 120000

 8 16 32 64 128

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Read: Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 8 16 32 64 128

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(c) Write: Latency

 0

 20000

 40000

 60000

 80000

 100000

 120000

 8 16 32 64 128

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(d) Write: Throughput

Figure 11. Multi-Servers Multi-Clients, Read-only or Write-only Workload on Cluster A (8 threads/node, 1 KB message)

 0

 2000

 4000

 6000

 8000

 10000

 8 16 32 64 128

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(a) Read Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 8 16 32 64 128

T
im

e
(u

s)

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(b) Write Latency

 0

 10000

 20000

 30000

 40000

 50000

 8 16 32 64 128

O
ps

/s
ec

No. of Clients

1GigE
10GigE

IPoIB (16Gbps)
UCR-IB (16Gbps)

(c) Throughput

Figure 12. Multi-Servers Multi-Clients, Read-Write Workload on Cluster A (8 threads/node, 1 KB message)

able to substantially drive down HBase data query latency

and boost up transaction throughput. We exploited the In-

finiBand RDMA capability and adopted it to match with the

object delivery model used by HBase. Our design achieves

a latency of as low as 43.7μs for a 1KB payload Get

operation, which is around 3.5 X times better than 10 GigE

sockets. Our design also substantially increases the operation

throughput. In YCSB 50%-read-50%-write experiment with

64 clients, our design delivers a throughput 3 X times higher

than 10 GigE.

As part of future work, we plan to run comprehensive

benchmarks to evaluate the performance of HBase and

expose further potential performance bottlenecks. We also

plan to analyze the software overheads of HBase in detail

and come up with a highly optimized and scalable design.

VIII. ACKNOWLEDGMENTS

This research is supported in part by a grant from

IBM OCR Program, U.S. Department of Energy grant

#DE-FC02-06ER25755, National Science Foundation grants

#CCF-0702675, #CCF-0833169, and #CCF-0916302; and

an equipment grant from Wright Center for Innovation

#WCI04-010-OSU-0.

REFERENCES

[1] R. Cattell, “Scalable SQL and NoSQL Data Stores,” SIGMOD
Record, vol. 39, pp. 12–27, May 2011.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A Distributed Storage System for Structured Data,” in The
Proceedings of the Seventh Symposium on Operating System
Desgin and Implementation (OSDI’06), WA, November 2006.

[3] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File
System,” in The Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03), NY, USA, October
19-22 2003.

[4] Apache HBase, http://hbase.apache.org.

[5] Apache Hadoop, http://hadoop.apache.org/.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in The Proceedings of the
26th IEEE International Symposium on Mass Storage Systems
and Technologies (MSST 10), Incline Village, NV, May 3-7
2010.

[7] J. Shafer, S. Rixner, and A. L. Cox, “The Hadoop Distributed
Filesystem: Balancing Portability and Performance,” in The
Proceedings of the Internation Symposium on Performance
Analysis of Systems and Software (ISPASS’10), White Plains,
NY, March 28-30 2010.

[8] J. Seligsein, “Facebook Messages,”
http://www.facebook.com/blog.php?post=452288242130.

[9] N. O’Neil, “Facebook Social Inbox,”
http://www.allfacebook.com/facebook-social-inbox-always-
on-messaging-with-people-you-care-about-2010-11.

[10] H. O. M. Baker and A. Shafi, “A Study of Java Networking
Performance on a Linux Cluster,” Technical Report.

[11] P. W. Frey and G. Alonso, “Minimizing the Hidden Cost of
RDMA,” in The Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems, Montreal,
Quebec, Canada, June 22-26 2009.

[12] Infiniband Trade Association, http://www.infinibandta.org.

784784

[13] OpenFabrics Alliance, http://www.openfabrics.org/.

[14] MVAPICH2: MPI over InfiniBand, 10GigE/iWARP and
RoCE, http://mvapich.cse.ohio-state.edu/.

[15] D. Abts, M. Marty, P. Wells, P. Klausler and H. Liu, “Energy
Proportional Datacenter Networks,” International Symposium
on Computer Architecture (ISCA), 2010.

[16] Oracle, “Oracle Exalogic Elastic Cloud: System Overview,”
White Paper, 2011.

[17] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W.
Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and
D. K. Panda, “Memcached Design on High Performance
RDMA Capable Interconnects,” in International Conference
on Parallel Processing (ICPP), Sept 2011.

[18] J. Appavoo, A. Waterland, D. Da Silva, V. Uhlig,
B. Rosenburg, E. Van Hensbergen, J. Stoess, R. Wisniewski,
and U. Steinberg, “Providing a cloud network infrastructure
on a supercomputer,” in Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York,
NY, USA: ACM, 2010, pp. 385–394. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851534

[19] “Memcached: High-Performance, Distributed Memory Object
Caching System,” http://memcached.org/.

[20] Top500 Supercomputing System, http://www.top500.org.

[21] X. Ouyang, R. Rajachandrasekar, X. Besseron, and D. K.
Panda, “High Performance Pipelined Process Migration with
RDMA,” in The Proceedings of 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CA,
USA, May 23-26 2011.

[22] H. Subramoni, P. Lai, M. Luo, and D. K. Panda, “RDMA over
Ethernet - A Preliminary Study,” in Proceedings of the 2009
Workshop on High Performance Interconnects for Distributed
Computing (HPIDC’09), 2009.

[23] P. Balaji, H. V. Shah, and D. K. Panda, “Sockets vs RDMA
Interface over 10-Gigabit Networks: An In-depth Analysis of
the Memory Traffic Bottleneck,” in Workshop on Remote Di-
rect Memory Access (RDMA): Applications, Implementations,
and Technologies (RAIT), in conjunction with IEEE Cluster,
2004.

[24] G. Liao, X. Zhu, and L. Bhuyan, “A New Server I/O Archi-
tecture for High Speed Networks,” in The Proceedings of 17th
International Symposium on High Performance Computer
Architecture (HPCA’11), San Antonio, Texas, February 12-
16 2011.

[25] RDMA Consortium, “Architectural Specifications for RDMA
over TCP/IP,” http://www.rdmaconsortium.org/.

[26] J. Jose, M. Luo, S. Sur, and D. K. Panda, “Unifying UPC and
MPI Runtimes: Experience with MVAPICH,” in Fourth Con-
ference on Partitioned Global Address Space Programming
Model (PGAS), Oct 2010.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking Cloud Serving Systems with
YCSB,” in The Proceedings of the ACM Symposium on Cloud
Computing (SoCC 2010), Indianapolis, Indiana, June 10-11
2010.

[28] Apache Cassandra, http://cassandra.apache.org/.

[29] B. F. Cooper, R. Ramakrishnan, R. Sears, U. Srivastava,
A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni, “PNUTS: Yahoo!’s Hosted Data Serving
Platform,” in 34th International Conference on Very Large
Data Bases, 2008.

[30] R. Stevens, A. White, P. Beckman, R. Bair, J. Hack, J.
Nichols, A. Geist, H. Simon, K. Yelick, J. Shalf, S. Ashby,
M. Khaleel, M. McCoy, M. Seager, B. Gorda, J. Morrison,
C. Wampler, J. Peery, S. Dosanjh, J. Ang, J. Davenport, T.
Schlagel, F. Johnson, and P. Messina, “A Decadal DOE Plan
for Providing Exascale Applications and Technologies for
DOE Mission Needs,” 2010.

[31] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez,
G. Gibson, A. Fuchs, and B. Rinaldi, “YCSB++: Bench-
marking and Performance Debugging Advanced Features in
Scalable Table Stores,” in The Proceedings of the ACM
Symposium on Cloud Computing (SOCC 2011), Cascais,
Portugal, October 26-28 2011.

[32] T. Dory, B. Mejias, P. V. Roy, and N.-L. V. Tran, “Measur-
ing Elasticity for Cloud Databases,” in The Proceedings of
the Second International Conference on Cloud Computing,
GRIDs, and Virtualization, Rome, Italy, September 25-30
2011.

[33] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang,
“Benchmarking Cloud-based Data Management Systems,” in
The Proceedings of the 2nd International Workshop on Cloud
Data Management, Toronto, Ontario, Canada, October 30
2010.

[34] S. Nishimura, S. Das, D. Agrawal, and A. E.
Abbadi, “MD-HBase: A Scalable Multi-dimensional
Data Infrastructure for Location Aware Services,”
http://www.cs.ucsb.edu/ sudipto/papers/md-hbase.pdf.

[35] S. Das, D. Agrawal, and A. E. Abbadi, “G-Store: A Scalable
Data Store for Transactional Multi Key Access in the Cloud,”
in The Proceedings of the ACM Symposium on Cloud Com-
puting (SOCC 2010), Indianapolis, Indiana, June 10-11 2010.

[36] D. Borthakur, J. S. Sarma, J. Gray, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer, “Apapche
Hadoop Goes Realtime at Facebook,” in The Proceedings
of the International Conference on Management of Data
(SIGMOD’11), Athens, Greece, June 2011.

[37] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. K. Panda, “Can
High Performance Interconnects Benefit Hadoop Distributed
File System?” in Workshop on Micro Architectural Support
for Virtualization, Data Center Computing, and Clouds, in
Conjunction with MICRO 2010, Atlanta, GA, December 5
2010.

785785

