
System Virtualization for Neural Processing Units
Yuqi Xue

yuqixue2@illinois.edu
University of Illinois
Urbana-Champaign

Yiqi Liu
yiqiliu2@illinois.edu
University of Illinois
Urbana-Champaign

Jian Huang
jianh@illinois.edu
University of Illinois
Urbana-Champaign

ABSTRACT
Modern cloud platforms have been employing hardware ac-
celerators such as neural processing units (NPUs) to meet
the increasing demand for computing resources for AI-based
application services. However, due to the lack of system vir-
tualization support, the current way of using NPUs in cloud
platforms suffers from either low resource utilization or poor
isolation between multi-tenant application services. In this
paper, we investigate the system virtualization techniques
for NPUs across the entire software and hardware stack, and
present our NPU virtualization solution named NeuCloud.
We propose a flexible NPU abstraction named vNPU that
allows fine-grained NPU virtualization and resource man-
agement. We leverage this abstraction and design the vNPU
allocation, mapping, and scheduling policies to maximize
the resource utilization, while achieving both performance
and security isolation for vNPU instances at runtime.

CCS CONCEPTS
• Computer systems organization → Systolic arrays;
Neural networks; • Software and its engineering →
Virtual machines; Operating systems.

KEYWORDS
Neural Processing Unit, Accelerator Virtualization, Hard-
ware Accelerator, Cloud Computing

ACM Reference Format:
Yuqi Xue, Yiqi Liu, and Jian Huang. 2023. System Virtualization for
Neural Processing Units. InWorkshop on Hot Topics in Operating Sys-
tems (HotOS ’23), June 22–24, 2023, Providence, RI, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3593856.3595912

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00
https://doi.org/10.1145/3593856.3595912

1 INTRODUCTION
Machine learning (ML) workloads have been widely de-
ployed in modern data centers [1, 3, 25, 29, 30]. They have
become the foundation of many popular applications, in-
cluding online recommendations, video analysis, language
translations, and AI assistants. To improve the performance
of these AI-based applications, cloud platforms have em-
ployed hardware accelerators like neural processing units
(NPUs) for deep neural networks (DNNs) [4, 7, 9, 12, 14, 16].

A typical NPU design like Google Cloud TPU [12] aims
to accelerate common operations in DNN models, such as
matrix multiplication and convolution. An NPU device is a
peripheral board with multiple NPU chips, and each chip
containsmultiple NPU cores. Each NPU core usually includes
systolic arrays (SAs) that exploit data reuse patterns of matrix
multiplication, and vector units (VUs) for generic vector
operations like activations and reductions. As NPUs are the
most efficient accelerators for DNN computations, they are
becoming the most popular accelerators for ML workloads
in the cloud platforms [4, 10, 12, 15, 33].
To use NPUs on cloud platforms, the most common way

is to assign an entire NPU board exclusively to a single vir-
tual machine (VM) or container via PCIe pass-through tech-
niques [29]. However, it completely disallows resource shar-
ing and causes severe resource underutilization. For instance,
our prior study [34] of running a variety of DNN workloads
from MLPerf AI Benchmarks [28] and the official TPU ref-
erence models [13] disclosed that a majority of these DNN
inference workloads significantly underutilize the compute
resources on the TPU core. This is because many of them
have imbalanced demands on SAs and VUs. They are either
SA-intensive or VU-intensive, as a result, SA-intensive work-
loads will underutilize VUs, and VU-intensive workloads
will underutilize SAs in a TPU core.

To improve the compute utilization of NPUs, modern
cloud platforms implement limited virtualization supports
for NPUs. They enable the time-sharing of an NPU device at
task level, and support the task preemption for prioritized
users [5, 6]. However, this coarse-grained time-multiplexing
on a single NPU board still suffers from significant resource
underutilization, because it does not support concurrent exe-
cution of multi-tenant DNN workloads, and the fine-grained
resource allocation on NPU cores. Therefore, they cannot

80

https://doi.org/10.1145/3593856.3595912
https://doi.org/10.1145/3593856.3595912
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595912&domain=pdf&date_stamp=2023-06-22

HotOS ’23, June 22–24, 2023, Providence, RI, USA Yuqi Xue, Yiqi Liu, and Jian Huang

leverage multiple DNN workloads to improve the NPU uti-
lization. Furthermore, none of the sharing mechanisms pro-
vided sufficient security and performance isolation in a multi-
tenant cloud environment. They either sacrifice isolation for
fine-grained time-multiplexing or suffer from high preemp-
tion overhead (e.g., swapping out the entire 128GB NPU
memory is expensive when switching workloads).
To this end, we propose NeuCloud, a system virtualiza-

tion solution for NPUs using a hardware-software co-design
approach. In NeuCloud, we present the necessary architec-
tural supports for enabling NPU virtualization for achieving
improved end-to-end performance for DNN inference work-
loads (§3.1). We propose an abstraction named vNPU to sup-
port fine-grained SA/VU allocation (§3.2). We also propose
an algorithm to identify an optimized vNPU configuration
for workloads with different SA and VU demands (§3.3). To
maximize the NPU utilization at scale, we enable fine-grained
spatial sharing by designing an efficient mapping policy that
can dynamically assign different vNPU instances to multiple
physical NPU cores (§3.4). When a vNPU instance is idle, we
enable NPU core oversubscription by temporally sharing the
SAs and VUs among multiple vNPUs, therefore, the idle com-
pute units can be used by other workloads (§3.5). NeuCloud
also provides security and performance isolation of vNPUs
via the partitioning of compute units and memory address
space (§3.6). In order to facilitate the NeuCloud deployment
in practice, we also discuss the possible ways of integrating
NeuCloud into state-of-the-art cloud infrastructures (§3.7).

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the generic NPU system
architecture. After that, we present our study on the resource
utilization of NPUs in the cloud, which serves as the motiva-
tion of NeuCloud design.

2.1 NPU System Architecture
Without loss of generality, we use an NPU system derived
from the state-of-the-art NPUs in production, such as Google
Cloud TPUs [19]. An NPU core consists of a command pro-
cessor that fetches commands from the host memory, a direct
memory access (DMA) engine for copying data between host
and NPU, and a compute engine that includes an on-chip
scratchpad memory (SRAM), systolic arrays (SAs), and vec-
tor units (VUs). The on-chip SRAM exchanges data with
off-chip high-bandwidth memory (HBM) via DMA opera-
tions executing in parallel with the computations. The VU
uses multiple SIMD units to perform vector operations. The
SA uses a set of processing elements (e.g., 128 × 128 PEs) to
exploit data reuse and parallelism in matrix multiplication
and convolution operations.

Table 1: DNN models used in our experiments.
DNN Model Names Category
BERT, Transformer Natural Language Processing

DLRM, NCF Recommendation
Mask-RCNN, RetinaNet, ShapeMask Object Detection & Segmentation

MNIST, ResNet, ResNet-RS, EfficientNet Image Classification

Figure 1: Overall FLOPS utilization for DNN inference
workloads (deeper color represents a larger batch size).
Note that some workloads with large batch sizes fail
due to insufficient memory.

To execute a DNN model on the NPU, the model is first
compiled by ML frameworks into a stream of tensor opera-
tors [8, 26, 31] representing the DNN execution graph. The
operators are then translated by vendor-specific libraries and
compilers into machine instructions for the NPU core.

2.2 NPU Resource Underutilization
The de facto standard for the cloud to offer users NPUs is ex-
clusively assigning one NPU device to one VM or container
via PCIe pass-through, preventing other users to share the
same NPU. This inevitably leads to underutilized hardware,
if the single ML workload cannot fully utilize the NPU. To
investigate the NPU utilization on the cloud, we run vari-
ous DNN inference tasks from MLPerf benchmarks [28] and
official TPU reference models [13] (see Table 1) on a real
Google TPUv2 board with 8 cores. Each core has one SA
and one VU. We profile the resource utilization with perfor-
mance counters on the TPU. We vary the inference batch
size to demonstrate the impact of different computational
intensities on resource utilization. We report the utilization
of the core components in a TPU core: the matrix multiplica-
tion unit (i.e., SA), the vector processing unit (i.e., VU), and
the HBM memory. We present the profiling results of one
representative TPU core, as all the cores perform identical
computations with data parallelism.
LowNPUutilization for a singleMLworkload.As shown
in Figure 1, we present the compute resource utilization (mea-
sured in FLoating Point OPerations per Second) when run-
ning one ML workload on a TPU. Most ML workloads utilize
less than half of the total FLOPS of a TPU core. Increasing
batch sizes has limited impact on the compute utilization.
For example, the most compute-intensive model BERT still
wastes 25% of the maximum FLOPS.

81

System Virtualization for Neural Processing Units HotOS ’23, June 22–24, 2023, Providence, RI, USA

Figure 2: Ratio of SA active time vs. VU active time.

The major reason for the low NPU utilization is that the
SA, which provides the most FLOPS on TPUs, is temporally
underutilized. As many DNN operators, such as pooling
and activation, can only be executed on the VU, SA usually
becomes idle when there are no matrix multiplications (MM)
or convolutions. We show the ratio between SA and VU
computation time in Figure 2. For many DNN workloads,
the time spent on the VU is 10× more than that on the SA,
causing significant SA idleness. In contrast, for some DNN
workloads, the time spent on the SA is 10× more than that
on the VU. These patterns are determined by the DNNmodel
structure. For example, BERT and ResNet models are MM
or convolution-intensive, they involve more SA operators,
while DLRM and ShapeMask models are bottlenecked by
vector operations that execute on VUs.

The FLOPS utilization is not further increased as the batch
size increases beyond 128. Although larger batch sizes can
reduce SA padding overhead, it also increases the burden
on the VU. Therefore, it will take a longer time to process
the larger batch. As a result, the utilization of SA and VU
remains imbalanced regardless of larger batch sizes.
Imbalanced demands on SAs and VUs. To scale up the
performance of an ML workload, a common way is to in-
crease the number of SAs and VUs in an NPU core. For
example, Google TPUv3 doubles the number of SAs, com-
pared to TPUv2. However, not all ML workloads are able to
exploit the full benefit of having more SAs, which inevitably
leads to a waste of resources. This is an expected outcome
based on the analysis with Amdahl’s Law: since increas-
ing the number of SAs only accelerates the SA portion of
a workload, if the workload is VU-intensive, adding more
SAs will have limited improvement and waste even more
hardware resources. Similarly, an SA-intensive workload will
not benefit significantly from having more VUs, which will
be mostly idle anyway. Therefore, the numbers of SAs and
VUs assigned to a workload should be flexible according to
its demands. Adding more SAs or VUs without considering
workload patterns will cause suboptimal resource utilization.

3 TOWARDS NPU VIRTUALIZATION
We present the system overview of NeuCloud in Figure 3. In
this section, we first discuss the hardware support for NPU
virtualization. And then, we introduce the major components
of NeuCloud respectively.

vNPU
Manager

Physical
NPU

vNPU
Instance

NPU Driver

DMA
Memcpy

Command
Buffer DMA BufferControl

Registers

IOMMU
PCIe
MMIO

Request/Free vNPU
instance (hypercall) User App

Runtime

Fetch
Commands

Guest VM

Compiler

ML Framework

MMIO
Create
vNPU

Manage
Hardware

H
yp

er
vi

so
r

Figure 3: System overview of NPU virtualization.

3.1 Architectural Support for Virtualization
The most essential hardware support for virtualizing NPU
cores is the ability to partition the core at the execution unit
(EU) granularity. This allows the EUs, including SAs and
VUs, to execute independently in different vNPU instances.
The hypervisor partitions a physical NPU core, and allows
different EUs to execute instructions from different vNPUs.
To facilitate this executionmode, the EUsmust follow amulti-
instruction multi-data (MIMD) computing paradigm. This
feature is the foundation for fine-grained resource allocation
and isolation between vNPUs.
In fact, MIMD across EUs is already supported by many

NPU designs. For example, Graphcore IPU has 1472 EUs on
each chip, each EU has its own instruction space and exe-
cution pipeline [14]. Tenstorrent GraySkull has one vector
engine (VU) and one matrix engine (SA) in each of its 120
Tensix Cores [16], both engines can execute independently.

A handful of other hardware features are not necessary
for virtualization, but they enable a more efficient imple-
mentation compared to the software-based approaches. For
example, the hardware-based memory address translation
enables memory isolation for vNPUs with near-zero over-
head [17]. Many existing hardware designs physically parti-
tion their entire on-chip memory into multiple slices, each of
which serves one or two EU(s) [14, 16]. Alternatively, with-
out hardware support, memory isolation is still possible via
hypervisor with a higher overhead (see §3.6).

3.2 vNPU Abstraction
For improved resource efficiency, we can allocate different
numbers of SAs and VUs to a DNN workload based on its
demands. Thus, the vNPU abstraction must provide the flex-
ibility for a workload to customize its vNPU. Also, a vNPU
instance maintains the same structure as a physical NPU
board to minimize the changes to the guest software stack.
Fined-grained resource abstractionwith vNPU.As shown
in Figure 4(a), a vNPU can encapsulate different compute

82

HotOS ’23, June 22–24, 2023, Providence, RI, USA Yuqi Xue, Yiqi Liu, and Jian Huang

vNPU_3 vNPU_4 vNPU_5

NPU Board

NPU
Chip

NPU Core

vNPU_0

SA

vNPU_1 vNPU_2

VU

NPU
Chip

NPU
Chip

NPU
Chip

SA VU

SA VU

SA VU

vNPU_3

vNPU_4

HBM
(8x2GB slices)

SRAM
(8x2MB slices)

vNPU_5

4MB 6MB 6MB

vNPU_4 vNPU_5 vNPU_3
4GB 4GB 8GB

(a) Abstraction of NPU compute resources.

(b) Abstraction of memory resources of a single NPU core.

Figure 4: vNPU abstraction.

configurations, and a physical NPU board can host multiple
vNPU instances with different configurations. The smallest
vNPU (vNPU_3) contains one SA and one VU, and it can be
collocated with other vNPUs (vNPU_4 and vNPU_5) on the
same NPU core, if the total number of SAs and VUs does
not exceed the hardware limitation. If the DNN workload
requires more resources than available on one NPU core,
vNPUs occupying an entire chip with two cores (vNPU_1) or
more chips (vNPU_0) can be created.
A vNPU can also customize its in-core SRAM size and

HBM size. As shown in Figure 4(b), the SRAM is evenly
divided into 8 slices and allocated at 2MB granularity. By
default, a 2MB slice will be allocated to each compute unit
of the vNPU, since the SRAM is used as a buffer to hide the
HBM access latency, and should be large enough to match
the compute throughput of EUs. In addition, the off-chip
HBM is also allocated at the slice granularity.
vNPU hierarchy. A vNPU instance reflects the hierarchy
of a physical NPU board to minimize the changes to exist-
ing compiler/driver stacks. Listing 1 shows all customizable
parameters of a vNPU. Each vNPU is exposed to the VM as
a PCIe device that resembles a small NPU board. The guest
NPU driver can query the hierarchy of the emulated vNPU,
such as the number of chips, cores per chip, HBM size, and
others. The guest ML framework can handle the data distri-
bution across multiple vNPU cores in the same way as that
on physical NPUs. As the TPU compiler already supports
TPUv2 (1 SA, 1 VU) and TPUv3 (2 SAs, 1 VU), and the Tensor-
Flow framework can handle data parallelism across physical
NPU devices, a vNPU instance with different configurations
can smoothly work with the guest ML framework.

The maximum resource that can be allocated to one vNPU
is capped by the actual physical hardware. If a guest VM
requires more resources than is available on a physical NPU
board, NeuCloud can allocate multiple vNPU instances to it.
vNPU lifecycle. Before creating a vNPU instance, (1) a user
specifies the number of NPU cores it needs as well as the

Listing 1: vNPU parameters.
s t ruc t vNPU_Board {

s i z e _ t num_chips ;
s i z e _ t num_cores_per_ch ip ;
s i z e _ t num_SAs_per_core
s i z e _ t num_VUs_per_core ;
s i z e _ t s r am_ s i z e _p e r _ c o r e ;
s i z e _ t mem_s ize_per_core ;

}

core size. The cloud service provider can define, for example,
small, medium, and large NPU cores as having a total of
1, 4, and 8 SAs/VUs for simplicity. (2) Optionally, the user
can enable the provided compiler and profiling toolchain
to learn an optimized combination of SAs and VUs for any
specific DNN workload (§3.3). (3) Upon vNPU initialization,
the guest driver sends a request to the hypervisor through a
para-virtualized interface. (4) The vNPU manager identifies
the available NPU hardware resources to allocate the vNPU
instance (§3.7), and creates the MMIOmappings for the guest
VM to access the vNPU. (5) During execution, the user ap-
plication issues memcpy and compute offloading commands
through the command buffer. The NPU hardware directly
fetches and executes the commands from the host memory
without the hypervisor intervention. It also has DMA access
to the guest memory space via the IOMMU. The guest VM
can wait for the command completion interrupt or actively
poll the control registers for the current status of the vNPU
instance (Figure 3). (6) The user can detach and free the
vNPU instance or request a different vNPU configuration.

3.3 vNPU Allocation
To optimize NPU utilization while guaranteeing service level
objectives (SLOs), the allocator should assign a proper com-
bination of SAs, VUs, and SRAM/HBM to a vNPU instance.
As discussed in §2.2, DNN workloads have imbalanced

SA/VU demands. To improve the NPU utilization, NeuCloud
decides the ratio between the numbers of SAs and VUs as
follows. The SA/VU demands of a DNN workload can be
reflected by how it runs on 1 SA and 1 VU, and we denote its
active runtime on the SA as x, and that on the VU as y. These
numbers can be obtained via profiling at the compilation
stage. In reality, tensor operators have to execute sequentially
due to data dependency, so the SA/VU will be idle while
waiting for the execution of previous VU/SA operators. Thus,
the total execution time of the workload on one SA and one
VU is 𝑥 + 𝑦. With Amdahl’s Law, the new execution time on
𝒏𝒙 SAs and 𝒏𝒚 VUs will be 𝑥

𝑛𝑥
+ 𝑦

𝑛𝑦
. Therefore, the expected

speedup is

𝑺 = (𝑥 + 𝑦)/
(
𝑥

𝑛𝑥
+ 𝑦

𝑛𝑦

)
. (1)

Let 𝑺𝒉 = 𝑛𝑥 + 𝑛𝑦 be the hypothetical speedup regardless
of EU types, which means an EU can execute both SA and

83

System Virtualization for Neural Processing Units HotOS ’23, June 22–24, 2023, Providence, RI, USA

VU operators. Compared to real cases where each EU must
respect data dependencies and operator types, the hypothet-
ical speedup assumes all 𝑛𝑥 + 𝑛𝑦 EUs are always busy and
100% utilized. The utilization of running an ML workload on
𝑛𝑥 SAs and 𝑛𝑦 VUs can be quantified as the ratio between
the expected and hypothetical speedups:

𝑼 =
𝑆

𝑆ℎ
=

(𝑥 + 𝑦)𝑛𝑥𝑛𝑦
(𝑥𝑛𝑦 + 𝑦𝑛𝑥) (𝑛𝑥 + 𝑛𝑦)

. (2)

To isolate the impact of total SA and VU quantity, we sim-
plify the function by letting 𝒂 = 𝑥/𝑦 be the SA/VU intensity
ratio of the given workload, and 𝒌 = 𝑛𝑥/𝑛𝑦 be the ratio be-
tween the numbers of SAs and VUs. Then, we can simplify
Equation (2) with WolframAlpha [21]:

𝑈 =
𝑘 (1 + 𝑎)

(𝑘 + 𝑎) (𝑘 + 1) , 𝑘 > 0, 𝑎 > 0. (3)

To find the value of 𝑘 that maximizes 𝑈 , we compute the
value of 𝑘 where d𝑈

d𝑘 = 0. Thus, when 𝑘 =
√
𝑎, we have

the maximum value of 𝑈 . In this case, for workloads with
SA/VU intensity ratio 𝑎, we can maximize its EU utilization
by allocating approximately

√
𝑎 times more SAs than VUs.

The total quantity of EUs is determined by the smallest
possible value that satisfies the SLO for the ML workload
running in the guest VM. For the workloads that do not have
specified SLO, they will get only one SA and one VU, as small
instances can obtain idle EUs more easily. As for the mem-
ory allocation for an instance, NeuCloud relies on the DNN
compiler to estimate the total amount of memory needed by
the DNN workload. The ML compilers will compile the NPU
program using the given SA/VU configuration [32].

3.4 vNPU Mapping
Initial mapping. To allocate a new vNPU, the vNPU man-
ager takes the SA/VU configuration and requested memory
size as the input. It aims to fit as many vNPUs as possible on
a physical NPU to maximize the utilization of both the EU
and memory resources.
To maximize the EU utilization, the vNPU manager in

NeuCloud groups vNPUs, such that the total number of EUs
of all vNPUs is as large as possible without exceeding the
number of available EUs on an NPU core. For example, for
an NPU with 4 SAs and 4 VUs, NeuCloud can map one vNPU
demanding 2 SAs and 3 VUs with another demanding 2 SAs
and 1 VU, so all EUs are utilized.

The vNPU manager also attempts to balance the number
of allocated EUs and the size of allocated memory. This min-
imizes the chance that all EUs on one core are allocated but
a large portion of its memory is not allocated, or vice versa.
Therefore, vNPUs with many EUs and small memory will be
collocated with vNPUs with few EUs and large memory.

For the case that all EUs have been allocated but there are
still vNPUs to be mapped, NeuCloud provides the flexibility
to allow vNPU instances to oversubscribe an NPU core. The
scheduler will manage the vNPU execution at runtime and
perform context switches between vNPUs (§3.5).
Dynamic remapping. After the initial mapping, the work-
load patterns, including the SA/VU intensity ratio and mem-
ory usage, may change over time. When a certain amount
of vNPUs on the cloud are not running with optimized con-
figurations, the NeuCloud scheduler will adjust the vNPU
configurations and remap them to the physical NPUs.

The key challenge of vNPU remapping is to avoid moving
workloads between physical cores, as it requires moving a
large amount of data in the HBM across NPU cores or even
across the low-bandwidth PCIe link. Thus, the scheduler
will avoid vNPU migration across cores by remapping most
vNPUs to the same NPU core they are originally on. In this
way, the data remain stationary in HBM, and only the EU
configuration needs to be updated.

3.5 vNPU Scheduling
After assigning vNPUs to different EUs on anNPU core, these
vNPUsmay become idle when there is no offloadedworkload.
This creates temporal underutilization. To address this issue,
NeuCloud allows the oversubscription of EUs by mapping
more vNPUs to the core. Therefore, when a vNPU is idle,
another vNPU can utilize the EUs. When multiple vNPU
instances require the same EU simultaneously, the vNPU
scheduler needs to decide which vNPU can be executed.

There are two cases for NPU oversubscription. First, Neu-
Cloud only allocates vNPUs that have the same SA/VU con-
figurations to the same NPU cores. In this case, the NPU core
is considered by the scheduler as multiple SA/VU partitions,
and each partition is temporally shared by a set of vNPUs
with identical SA/VU configurations. Similar to scheduling
vGPUs on an NVIDIA multi-instance GPU [24], NeuCloud
scheduler only needs to schedule vNPUs in each partition
independently. Second, a more complicated case is that the
vNPUs can have arbitrary SA/VU configurations. This means
the scheduler must also consider dynamic vNPU mappings.
We wish to explore this as future work.

3.6 vNPU Isolation
As multiple application instances share the same NPUs, we
need to enforce runtime isolation between vNPU instances.
This includes security isolation to prevent malicious attacks,
and performance isolation to provide SLO guarantees.
Security isolation on an NPU core is enforced by mem-
ory address space isolation for the on-chip SRAM and off-
chip HBM. For performance reasons, this can be achieved
by using a hardware memory management unit (MMU) to

84

HotOS ’23, June 22–24, 2023, Providence, RI, USA Yuqi Xue, Yiqi Liu, and Jian Huang

perform address translations and permission checks, such
as the MMU in CPUs or GPUs [27]. One option is to sup-
port page-level address mapping on NPUs. However, since
NPUs are intrinsically designed to support DNNmodels with
moderate to large sizes, it could be sufficient to have coarse-
grained memory segmentation rather than the page-level
address mapping. This reduces the hardware complexity and
performance overhead of address translation.

Given the deterministic data access patterns of DNNwork-
loads, even though the hardware MMU is unavailable, ad-
dress space isolation is still possible with static address trans-
lation in the hypervisor. Before offloading the ML work-
load, the hypervisor parses the instructions by conducting
the boundary checking for each address. This is feasible
for NPUs, since the NPU programming model has separate
instruction and data address spaces, and it prohibits self-
modifying codes and dynamic code generation.
Performance isolation can be enforced collaboratively
with hardware and software techniques. For example, static
partitioning of EUs already provides compute resource iso-
lation. Memory bandwidth isolation can also be enforced
by allocating an HBM channel to a vNPU. In addition, the
vNPU scheduler can prioritize vNPUs with stricter SLOs,
and avoid collocating vNPUs that are likely to have severe
performance interference [5, 22, 23].

3.7 Integration with Cloud Infrastructures
In previous sections, we discussed how to virtualize a single
NPU device and maximize its resource utilization. In real-
ity, a data center consists of thousands of NPUs deployed
on different host machines. To achieve improved resource
utilization, a VM/container orchestration framework decides
which VM/container is placed onwhich physical machine, ac-
cording to its scheduling policies. In this section, we describe
how to integrate NeuCloud into current cloud platforms.

As a case study, we can implement NeuCloud with Kube-
Virt/Kubernetes [11]. First, we integrate the vNPU manager
into the KVM hypervisor, which exposes the vNPU instances
as mediated PCIe devices to the guest VM [18]. The guest
NPU driver also needs modifications to be aware of the para-
virtualized interface like KVM hypercalls [20]. As KVM sup-
ports hot plugging of PCIe devices, it provides the system
support for vNPU allocation and (re)mapping.
We can also extend the Kubernetes scheduler [2] to im-

plement vNPU mapping policies. The kube-scheduler will
assign a score to each available NPU node, and then rank all
the nodes. After that, the VM is assigned to the node with
the highest score. We can extend the scoring mechanism to
rank the nodes by their remaining NPU hardware resources,
such as the amount of free cores, EUs, and memory.

4 CONCLUSION AND FUTUREWORK
In this paper, we discuss system virtualization techniques
for NPUs. We discuss the necessary hardware support to
make NPU virtualization practical. We identify the key chal-
lenges of virtualizing NPUs, such as the need for fine-grained
resource allocation, as well as security and performance iso-
lation between vNPUs. As future work, we plan to develop
a real system prototype of NeuCloud, and demonstrate its
benefits for machine learning services.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. This
work was partially supported by NSF grant CCF-1919044,
NSF CAREER Award 2144796, and the Hybrid Cloud and AI
program at the IBM-Illinois Discovery Accelerator Institute.

REFERENCES
[1] Altexsoft. 2021. Comparing Machine Learning as a Service:

Amazon, Microsoft Azure, Google Cloud AI, IBM Watson.
https://www.altexsoft.com/blog/datascience/comparing-machine-
learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-
ibm-watson/

[2] The Kubernetes Authors. 2023. Kubernetes Scheduler. https:
//kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

[3] Amazon AWS. 2022. Machine Learning on AWS Innovate faster with
the most comprehensive set of AI and ML services. https://aws.
amazon.com/machine-learning/

[4] Amazon AWS. 2023. AWS Inferentia. https://aws.amazon.com/
machine-learning/inferentia/

[5] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason
Mars, and Lingjia Tang. 2017. Prophet: Precise QoS Prediction on
Non-Preemptive Accelerators to Improve Utilization in Warehouse-
Scale Computers. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17). Xi’an, China.

[6] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Bay-
max: QoS Awareness and Increased Utilization for Non-Preemptive
Accelerators in Warehouse Scale Computers. In Proceedings of the
Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’16). Atlanta,
GA.

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. DianNao: A Small-Footprint
High-Throughput Accelerator for Ubiquitous Machine-Learning. In
Proceedings of the 20th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’14). Salt
Lake City, UT.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’18). Carlsbad, CA.

[9] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Christian Boehn, Oren Firestein, Alessandro Forin,
Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Tamas
Juhasz, Ratna Kumar Kovvuri, Sitaram Lanka, Friedel vanMegen, Dima

85

https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/

System Virtualization for Neural Processing Units HotOS ’23, June 22–24, 2023, Providence, RI, USA

Mukhortov, Prerak Patel, Steve Reinhardt, Adam Sapek, Raja Seera,
Balaji Sridharan, Lisa Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug
Burger. 2017. Accelerating Persistent Neural Networks at Datacenter
Scale. In Proceedings of HotChips’17. Cupertino, CA.

[10] Alibaba Clouder. 2019. Alibaba Unveils AI Chip to Enhance Cloud Com-
puting Power. https://www.alibabacloud.com/blog/alibaba-unveils-
ai-chip-to-enhance-cloud-computing-power_595409

[11] The KubeVirt Contributors. 2023. KubeVirt.io. https://kubevirt.io/
[12] Google. 2022. System Architecture - Cloud TPU. https://cloud.google.

com/tpu/docs/system-architecture-tpu-vm
[13] Google. 2023. Supported reference models. https://cloud.google.com/

tpu/docs/tutorials/supported-models
[14] Graphcore. 2022. Graphcore IPU Overview. https://www.graphcore.

ai/products/ipu
[15] Graphcore. 2023. Graphcloud: Cloud-based Machine Intelligence.

https://www.graphcore.ai/graphcloud
[16] Linley Gwennap. 2020. Tenstorrent Scales AI Performance: New Mul-

ticore Architecture Leads in Data-Center Power Efficiency. https:
//www.linleygroup.com/mpr/article.php?id=12287

[17] Bongjoon Hyun, Youngeun Kwon, Yujeong Choi, John Kim, and Min-
soo Rhu. 2020. NeuMMU: Architectural Support for Efficient Address
Translations in Neural Processing Units. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’20). Lausanne, Switzerland.

[18] Neo Jia and Kirti Wankhede. 2023. VFIO Mediated devices. https:
//docs.kernel.org/driver-api/vfio-mediated-device.html

[19] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant
Patil, James Laudon, Cliff Young, and David Patterson. 2020. A Domain-
Specific Supercomputer for Training Deep Neural Networks. Commun.
ACM 63, 7 (June 2020).

[20] The kernel development community. 2023. Linux KVM Hypercall.
https://docs.kernel.org/virt/kvm/x86/hypercalls.html

[21] Wolfram Alpha LLC. 2023. WolframAlpha: Computational Intelligence.
https://www.wolframalpha.com/

[22] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture (ISCA’15). Portland, OR.

[23] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. 2011. Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’11). Porto Alegre, Brazil.

[24] Nvidia. 2022. Multi-Instance GPU User Guide. https://docs.nvidia.
com/datacenter/tesla/mig-user-guide/

[25] Ejiro Onose. 2022. Machine Learning as a Service: What
It Is, When to Use It and What Are the Best Tools Out
There. https://neptune.ai/blog/machine-learning-as-a-service-what-
it-is-when-to-use-it-and-what-are-the-best-tools-out-there

[26] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, AlbanDesmaison, Luca Antiga, and
Adam Lerer. 2017. Automatic Differentiation in PyTorch. In Proceedings
of the 30th International Conference on Neural Information Processing
Systems (NIPS’17). Long Beach, CA.

[27] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architec-
tural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In
Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’14).
Salt Lake City, UT.

[28] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf
Inference Benchmark. arXiv:1911.02549

[29] RUN:AI. 2022. Google TPU Architecture and Performance Best Prac-
tices. https://www.run.ai/guides/cloud-deep-learning/google-tpu

[30] Alexander Spiridonov. 2021. New Cloud TPU VMs make training your
ML models on TPUs easier than ever. https://cloud.google.com/blog/
products/compute/introducing-cloud-tpu-vms

[31] Google TensorFlow. 2023. Create production-grade machine learning
models with TensorFlow. https://www.tensorflow.org/

[32] Google TensorFlow. 2023. XLA: Optimizing Compiler for Machine
Learning. https://www.tensorflow.org/xla

[33] HaifengWang. 2019. HUAWEI CLOUD Enables More Intelligence with
Its AI Chips. https://www.huaweicloud.com/intl/en-us/cloudplus/
thirdphase/detail_12.html

[34] Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10: Hardware-
Assisted NPU Multi-tenancy for Improved Resource Utilization and
Fairness. In Proceedings of the 50th International Symposium on Com-
puter Architecture (ISCA’23). Orlando, FL.

86

https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://www.alibabacloud.com/blog/alibaba-unveils-ai-chip-to-enhance-cloud-computing-power_595409
https://kubevirt.io/
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/graphcloud
https://www.linleygroup.com/mpr/article.php?id=12287
https://www.linleygroup.com/mpr/article.php?id=12287
https://docs.kernel.org/driver-api/vfio-mediated-device.html
https://docs.kernel.org/driver-api/vfio-mediated-device.html
https://docs.kernel.org/virt/kvm/x86/hypercalls.html
https://www.wolframalpha.com/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://arxiv.org/abs/1911.02549
https://www.run.ai/guides/cloud-deep-learning/google-tpu
https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms
https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms
https://www.tensorflow.org/
https://www.tensorflow.org/xla
https://www.huaweicloud.com/intl/en-us/cloudplus/thirdphase/detail_12.html
https://www.huaweicloud.com/intl/en-us/cloudplus/thirdphase/detail_12.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 NPU System Architecture
	2.2 NPU Resource Underutilization

	3 Towards NPU virtualization
	3.1 Architectural Support for Virtualization
	3.2 vNPU Abstraction
	3.3 vNPU Allocation
	3.4 vNPU Mapping
	3.5 vNPU Scheduling
	3.6 vNPU Isolation
	3.7 Integration with Cloud Infrastructures

	4 Conclusion and Future Work
	Acknowledgments
	References

