
Defining a High-Level Programming Model for Emerging
NVRAM Technologies

Thomas Shull

University of Illinois at

Urbana-Champaign

shull1@illinois.edu

Jian Huang

University of Illinois at

Urbana-Champaign

jianh@illinois.edu

Josep Torrellas

University of Illinois at

Urbana-Champaign

torrella@illinois.edu

ABSTRACT
Byte-addressable non-volatile memory is poised to become preva-

lent in the near future. Thanks to device-level technological ad-

vances, hybrid systems of traditional dynamic random-access mem-

ory (DRAM) coupled with non-volatile random-access memory

(NVRAM) are already present and are expected to be common-

place soon. NVRAM offers orders of magnitude performance im-

provements over existing storage devices. Due to NVRAM’s low

overheads, many future applications are expected to leverage the

fine-grain durable storage provided by NVRAM.

Many frameworks for programming NVRAM have been pro-

posed. Unfortunately, these existing frameworks closely mirror the

underlying hardware. This lack of abstraction hurts programmer

productivity, makes it easy to write buggy code, and limits the

compiler’s effectiveness. Furthermore, this low level of abstraction

does not match the expectations of managed language users.

To rectify this situation, in this paper we describe a new high-

level NVRAMprogrammingmodel amenable tomanaged languages.

Because our model is defined at a high level, it is intuitive, not prone

to user bugs, and is flexible enough to allow language implementers

to perform many optimizations while still adhering to the model.

In addition to proposing this model, we also briefly describe

how Java can be extended to support our new model. Finally, we

present some initial results on the performance overheads of creat-

ing durable applications in NVRAM and describe what future work

we intend to complete.

CCS CONCEPTS
• Software and its engineering→ Data types and structures;
Source code generation;

KEYWORDS
Java, Non-Volatile Memory, Programming Model

ACM Reference Format:
Thomas Shull, Jian Huang, and Josep Torrellas. 2018. Defining a High-

Level Programming Model for Emerging NVRAM Technologies. In 15th
International Conference on Managed Languages & Runtimes (ManLang’18),
September 12–14, 2018, Linz, Austria. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3237009.3237027

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6424-9/18/09. . . $15.00

https://doi.org/10.1145/3237009.3237027

1 INTRODUCTION
In recent years, technological advances have been made towards

having byte-addressable non-volatile memory. Whereas tradition-

ally, durably storing data required the use of block-based storage

devices such as Hard Disk Drives (HDDs) or Solid State Drives

(SSDs), new device technologies such as Phase-change memory

(PCM) [23, 33] and Resistive RAM (ReRAM) [5] that offer non-

volatile memory with byte-level access granuarily are being rapidly

developed. These new technologies are known collectively as non-

volatile random-access memory (NVRAM). NVRAM offers substan-

tial performance improvements over traditional storage devices;

it has performance similar to current volatile dynamic random-

accessmemory (DRAM), has higher capacities, and retains its values

across system restarts. Hybrid systems consisting of both NVRAM

and DRAM are imminent; Intel has already released NVRAM prod-

ucts [2] and plans to releasemanymore higher-performing NVRAM

products in the second half of 2018.

This introduction of NVRAM with performance orders of magni-

tude higher than existing durable storage technologies necessitates

a reevaluation of existing software techniques. Traditionally, ap-

plications requiring data to be durable used logging with periodic

write-backs to storage to ensure data consistency while maintaining

acceptable performance. However, with NVRAM, now it is possi-

ble for data to reside in memory durably, eliminating the need to

write back data to peripheral storage devices. Furthermore, since

NVRAM is byte-addressable, durable updates can be performed at

a much finer granularity than before, helping to eliminate wasted

work and allowing small updates to have acceptable performance.

Because of these advantages, existing applications will observe

improved performance due to NVRAM. In addition, more appli-

cations are expected to leverage durable data in the future. For

example, we believe that many applications will start to save or

memoize values across executions. Whereas in the past, the per-

formance overhead of storing this data in durable memory made

such memoizations unprofitable, we believe that NVRAM’s substan-

tial performance improvements will now make such optimizations

profitable.

To enable applications to begin to take advantage of NVRAM,

many frameworks for NVRAM have been proposed, including

frameworks for C/C++ [4, 12–15, 19, 30, 37] and Java [4, 39] ap-

plications. Unfortunately, existing frameworks closely mirror the

underlying hardware. This lack of abstraction hurts programmer

productivity, makes it easy to write buggy code, and limits the op-

timizations a compiler can perform. Furthermore, this low level of

abstraction does not match the expectations of managed language

users.

To rectify this situation, in this paper we describe a new program-

ming model for durable applications in NVRAM which is intuitive,

not prone to user bugs, and is specified loosely enough to allow

https://doi.org/10.1145/3237009.3237027
https://doi.org/10.1145/3237009.3237027

ManLang’18, September 12–14, 2018, Linz, Austria Thomas Shull, Jian Huang, and Josep Torrellas

language implementers to perform many optimizations while still

adhering to the model. Our model is specifically geared towards

managed languages and defined at a level of abstraction users of

such languages have come to expect. Our model consists of four

requirements that implementations must meet. The requirements

ensure that data cannot be unexpectedly volatile and allow for a

user to clearly reason about what data resides in NVRAM at a given

execution point.

In addition to proposing this model, we also briefly describe

how Java can be extended to support our proposed model. Finally,

we present some initial results on the performance overheads of

creating durable applications in NVRAM and describe what future

work we intend to complete.

2 RELATEDWORK
2.1 Ordering of Durable Stores
While NVRAM moves non-volatile memory a level closer to the

processor, many levels of volatile cache still exist between the

processor and NVRAM. This means that care must be taken to

ensure a store from the processor becomes persistent, or, in other

words, that the new value is propagated to NVRAM and not hidden

by the cache hierarchy.

Without special instructions, the order in which stores are made

persistent depends on the order in which they are evicted from

the cache hierarchy. Instead, persists must be performed to ensure

a store reaches NVRAM. Recently, x86-64 processors have added

an new persist instruction [1] to support writing back a cacheline

to non-volatile memory without flushing the cacheline. Multiple

cacheline writebacks are allowed to be internally reordered by the

processor unless fences are placed in the code.

Similar to how a processor’s consistency model dictates when

stores and loads become visible to other threads, persistency models
have been proposed [11, 20, 22, 26, 31] to dictate how loads to and

stores from non-volatile memory can be reordered. These persis-

tency models are enforced by placing fences and persists within

the application to ensure a specific ordering between operations.

Different persistency models allow different amounts of reordering,

with more relaxed models potentially having better performance at

the cost of potentially creating very unintuitive data states in the

non-volatile memory. The persistency model we propose later in

the paper is derived from these existing proposals.

2.2 Existing Frameworks for NVRAM
Currently, the Storage Networking Industry Association (SNIA)

has been working to standardize the interactions with NVRAM.

They have created a low-level programming model [3] meant to

be followed by device driver programmers and low-level library

designers. In addition, an open source project led by Intel has been

created to provide application developers a higher-level toolset

which is compliant with their device-level model. This project has

resulted in the development of the Persistent Memory Development

Kit (PMDK) [4], a collection of libraries in C/C++ and Java which a

developer can use to build durable applications on top of NVRAM.

PMDK requires that programmers explicitly label all durable

data in their code with pragmas. As an alternative, PMDK also

contains a few library data structures, such as a durable primitive

array and map, with the necessary persistent pragmas already built

into the library.

1 t emp l a t e < c l a s s E>

2 c l a s s Du r a b l e L i s t {

3 du r a b l e E ∗ e lement ;

4 du r a b l e Du r a b l e L i s t ∗ nex t ;

5

6 Du r a b l e L i s t append (du r a b l e E ∗ e lement) {

7 du r a b l e Du r a b l e L i s t ∗ head =

8 durable_new Du r a b l e L i s t () ;

9 head−>e lement = e lement ;

10 head−>next = t h i s ;

11 r e t u r n head ;

12 }

13 }

Figure 1: Example with simplified PMDK pragmas

For persistenly storing durable data, PMDK requires the user

to either explicitly persist stores or use demarcated failure-atomic

regions. Failure-atomic regions enables many stores to persistent

memory to have the appearance of being persisted atomically. Re-

cently, PMDK has also introduced C++ templates that allow some

operations to be persistent without explicit user markings.

Figure 1 shows how to append to a durable list of type E using a

simplified version of the PMDK template pragmas. As shown by the

figure, the user is expected to mark all pointers to durable objects

with the durable keyword. In addition, durable objects must be

explicitly allocated in non-volatile memory with durable_new.
In addition to the industrial efforts, academia has also proposed

many frameworks for NVRAM [12–15, 19, 30, 37, 39]. The level of

support provided by these frameworks varies. At most, they provide

a similar level of abstraction as PMDK, with the user having to

specify all durable objects and also providing some minimal failure-

atomic region support. We discuss the limitations of these existing

frameworks in Section 3.

2.3 Persistent Programming Languages
Many persistent programming languages [6, 10, 17, 21, 35, 36] and

implementations [7, 24, 28] were proposed before the introduction

of byte-addressable non-volatile memory. Many of these languages

focus on attaining the orthogonal persistence defined by Atkinson

and Morrison [8], where the persistency of an application is orthog-

onal to its design.

Previous persistent programming languages are designed for a

two-level storage model with orders of magnitude differences in

performance between volatile and non-volatile storage. In these

systems, the volatile memory is used as a cache for the non-volatile

storage and much effort is devoted towards having an effective

and scalable object storage model [32], implementing efficient bar-

riers [18, 25], and optimizations such as pointer swizzling [29].

Futhermore, due to the two-level storage, persistence is attained via

checkpoints whose frequency largely determines the application’s

performance.

The model we propose in this paper is different from previous

works. Our model does not seek to attain complete orthogonal

persistence and it is designed for present-day NVRAM systems.

Since NVRAM provides persistency at the main memory level,

instead of providing checkpoints at intervals, our model allows for

continual updates to the persistent state. In addition, because our

Defining a High-Level NVRAM Programming Model ManLang’18, September 12–14, 2018, Linz, Austria

model does not use whole-application checkpoints, it expects the

user to be aware of which objects are needed at recovery time to

recreate the program state. However, like previous proposals, our

model also emphasizes having a simple persistent programming

model from the user’s perspective and using reachability to limit

the programmer’s burden.

2.4 Current Java Persistency Techniques
Presently, the two most popular ways to durably store objects

within Java is by either using the Java Persistence API (JPA) or

extending Java’s Serializable interface [16]. JPA is an API which

allows applications to transparently interface with databases from

multiple providers while extending the Serializable interface

allows an application designer to directly write objects to durable

storage. These existing techniques are designed for when there is

a separation between the volatile main memory and non-volatile

storage. New frameworks need to be designed for Java to fully

leverage the capabilities of NVRAM.

3 LIMITATIONS OF EXISTING NVRAM
FRAMEWORKS

Existing frameworks with support for programming NVRAM ask

programmers to make many concessions. To use them correctly,

a programmer must correctly mark all memory which should be

durable and ensure that data is persisted properly either through

explicit failure atomic regions or persists. This is an error-prone

process requiring many markings in code and prohibiting the use of

preexisting libraries. As highlighted by Ren, et al. [34], programmers

have many difficulties correctly adapting code to be compliant with

existing NVRAM frameworks.

Such existing frameworks are incongruent with the current trend

towards managed languages. Managed languages, such as Java, try

to lower the programmer burden and increase both safety and pro-

ductivity. Java tries to provide a user with a simple programming

model. For instance, for multi-threaded programs to execute cor-

rectly in the presence of potential data races, Java provides the

synchronized keyword and requires only that the user add the

synchronized keyword as necessary to adhere to its Data-Race-

Free (DRF) memory model [27]. Java does not force the programmer

to reason about the consistency model and synchronization prim-

itives available on the underlying platform hardware, nor does it

require the programmer to alter the code to run correctly in differ-

ent environments. Unlike Java synchronization, existing NVRAM

frameworks are both tied to the underlying hardware and its fea-

tures closely match the current hardware primitives.

Another tenet of managed languages such as Java is to ensure

safe execution. Java performs many runtime checks to detect in-

correct programs early before lasting damage is done. For instance,

Java automatically checks array accesses to ensure the element

being accessed remains within bounds and triggers an exception

as soon as an out of bounds access occurs, preventing uninten-

tionally buggy programs or malicious entities from continuing to

execute and potentially leaking or corrupting memory. Contrary to

Java, existing NVRAM frameworks present many opportunities for

unchecked or silent errors to occur, such as if non-volatile memory

points to volatile memory or if a consistent program state is not

persisted before a crash occurs.

Managed languages typically rely on a large central set of li-

braries and utilities included by default with their distributions.

Programmers appreciate that via this built-in functionality there

is a de facto standard application programmer interface (API) for

many data structures and template for accomplishing most tasks.

Unfortunately, since existing NVRAM frameworks require each

durable object to be marked, existing built-in libraries cannot be

used, as they will not have the proper durable markings and persists

in place. In other words, current NVRAM frameworks require either

the use of third-party libraries or for the user to reimplement their

needed support in a durable manner. This creates opportunities

to introduce many bugs into the program and requires existing

applications to undergo large rewrites to be converted into durable

applications.

Java and managed languages in general try to provide the pro-

grammer with simple intuitive models which are easy for the user to

adhere to. However, while the models provided may be high-level,

this does not mean that users do not expect competitive perfor-

mance. Indeed, users expect Java code to execute efficiently and

have minimal overheads. To accomplish this, most Java/JVM imple-

mentations employ Just-In-Time (JIT) compilers with speculative

optimizations to attain maximal performance. JIT compilation al-

lows for the generated code to be optimized for the common, or

“hot,” paths seen during execution. Furthermore, since the models

Java provides are high-level, the compiler has much freedom to

perform optimizations which may benefit the current execution.

Unfortunately, low-level frameworks, such as what exists for

NVRAM currently, have limited optimization potential. This is be-

cause they are overspecified – by the framework features being

closely tied to existing hardware, the high-level intentions of the

programmer are lost, making it hard to for a compiler to be effec-

tive. For instance, in many frameworks the user must manually

perform persist operations and design the logging necessary for

failure-atomic regions. This ties the application to a specific im-

plementation of failure-atomic region support. Furthermore, if a

user manually emits persist operations, they may be unnecessary

or in suboptimal places. Unfortunately, the compiler will struggle

to optimize around and remove them, as explicit persist operations

can have barriers which limit the compiler’s ability to perform

optimizations.

Overall, these existing frameworks impose many restrictions on

application programmers which will limit their integration into

managed languages. Clearly a new NVRAM programming model is

needed to match the expectations of managed language program-

mers.

4 NEWMODEL
In the previous section we highlighted the main deficiencies of

existing NVRAM frameworks; namely, that many of their features

are incongruent with the philosophy of Java and other managed

languages. In this section, we now provide a high-level specification

of what we believe a managed language NVRAM programming

model should entail.

4.1 Model Goals
An ideal model for programming NVRAM should be very intuitive

for a programmer to use, not overspecified, and should be decou-

pled from the underlying hardware. This allows for the model to

ManLang’18, September 12–14, 2018, Linz, Austria Thomas Shull, Jian Huang, and Josep Torrellas

remain unchanged as hardware improves, enables the compiler

to make aggressive optimizations, and minimizes the chances for

the programmer to write incorrect durable programs. Below we

highlight the main goals our model should meet.

Goal 1. As few objects as possible should require durable mark-
ings.

Current models require programmers to mark many objects as

durable. This is because they want to ensure only objects which

must necessarily be durable incur the performance overheads of

residing in non-volatile memory. However, this is very error-prone

and requires the programmer to mark many objects. Contrary to

this, we believe the number of durable markings should be minimal;

a user should only have to mark objects immediately visible during

the crash recovery process. We believe that the runtime should then

automatically make all objects reachable from these few objects

durable.

Goal 2. Libraries and other pre-existing codes should not need to
be changed to work correctly in a durable program.

As described in Section 3, existing NVRAM frameworks cannot

be used with current unmodified standard libraries. We believe this

is unacceptable – users should not be forced to rewrite large swaths

of code and use unfamiliar libraries to create durable applications.

Goal 3. The user should not need to explicitly persist durable
objects.

Many current NVRAM frameworks require the user to explic-

itly persist objects to ensure a value reaches NVRAM. This limits

the amount of optimizations the compiler can perform and poten-

tially enables the user to either add an excessive or insufficient

number of persist operations. We believe that a framework should

automatically persist durable objects as necessary without user

involvement.

Goal 4. A clear and simple persistency model should be provided.

As described in Section 2.1, the order of operations to NVRAM

may not be in program order unless measures are taken, due to

caches in between the processor and NVRAM. This can result in

program state at recovery time that does not correspond to a se-

quential execution of the application. A persistency model must

be established for the framework that is intuitive to the user and

simplifies recovery.

Goal 5. Failure-atomic region support should be provided and
need only minimal markings.

In many cases, it is necessary for a region of code to appear

to execute atomically in case of failure, with either all or none of

the operations in the region being persisted. We believe support

for failure-atomic regions must be provided, and that it should be

intuitive for programmers to use. Namely, the user should not need

to differentiate between durable and volatile objects within the

region and the mechanisms for achieving this atomicity should be

transparent.

4.2 Establishing New NVRAM Programming
Model

With the above goals in mind, we now establish a new NVRAM

programming model for managed languages. Our model consists of

four requirements we believe a managed language NVRAM frame-

work should uphold. We believe that it is the runtime’s obligation
to ensure they hold true; in other words, the runtime, not the user,

must perform actions tomeet these requirements. The requirements

we create fall into two categories: determining which objects must

be placed in non-volatile memory and ensuring the order in which

stores are persisted is intuitive to programmers.

4.2.1 Placing Objects in Non-Volatile Memory.

NVRAM Model Reqirement 1. All objects reachable from the
durable root set must be recoverable and in non-volatile memory.

We define the durable root set as the set of pointers which are

named entries into durable structures. At recovery time, the pro-

grammer can directly access these roots by name. Since these roots

are visible across executions, by necessity they must named and

marked; otherwise, they cannot be recovered if a crash were to

occur.

This requirement helps to meet Goals 1 and 2. This requirement

helps to meet Goal 1 because it only requires that the durable

root set have markings; since all of objects reachable from this

set must be stored in non-volatile memory by this requirement, it

is unnecessary to mark them. Note that all objects which should

be durable must be reachable from a durable root; otherwise, it

would be impossible to access them across executions as they are

unnamed.

This requirement also helps meet Goal 2, as this requirement

implies that if a library data structure is reachable from a durable

root, then it will automatically be made durable. This prevents the

libraries from having to be modified in any way. Specifically, built-

in classes’ fields do not need durable markings as is necessary in

existing NVRAM frameworks.

To meet this requirement, the runtime may need to move ob-

jects to non-volatile memory when it detects they are reachable

from a durable root. Note that managed languages already move

objects throughout execution while performing garbage collection.

How the runtime chooses to adhere to this requirement should be

implementation specific.

4.2.2 Controlling Persistent Atomicity Granularity.

NVRAM Model Reqirement 2. Support for failure-atomic re-
gions must be provided. All stores to durable objects within a failure-
atomic region should appear to have been performed atomically and
persistently at the end of the region.

This requirement is intended to satisfy Goal 5. Namely, this

requirement ensures support for atomic regions is provided, users

do not have to explicitly mark objects within atomic regions, and

that failure-atomic regions’ behavior is as expected.

While this requirement ensures that users have the support for

failure-atomic regions of arbitrary size they expect, it also does

not place unnecessary limitations on the language runtime and

compiler. The runtime is free to perform any logging strategy and

the compiler is free to reorder operations to both volatile and non-

volatile memories as long as the model requirements are met.

NVRAM Model Reqirement 3. Outside of explicit failure-
atomic regions, each store to memory reachable from a durable root
should be persistently completed before a new store to non-volatile
memory can proceed.

Defining a High-Level NVRAM Programming Model ManLang’18, September 12–14, 2018, Linz, Austria

This requirement helps to meet Goals 3 and 4. First, this re-

quirement ensures stores to durable objects must be persistently

performed without explicit user instructions. Second, for a single-

thread, this requirement enforces a specific ordering of stores to

NVRAM. This allows the user to clearly reason about what values

will be persisted at a given point in the execution.

To meet this requirement the runtime is responsible for inserting

persist operations and fences as necessary. Like NVRAM Model

Requirement 1, how the runtime chooses to achieve this should be

implementation specific.

NVRAM Model Reqirement 4. All stores to durable objects
within a failure-atomic region should become instantaneously visible
to other threads at the end of the region.

The requirement helps to meet Goal 4. In the absence of such a

requirement it is unclear what version of the value a thread will read

from a shared durable object as the object is being modified by an-

other thread within a failure-atomic region. This requirement helps

to maintain failure-atomic region isolation and ensure situations

do not arise where causality is violated.

To meet this requirement the runtime must monitor accesses

to shared objects currently being manipulated within any failure-

atomic regions and direct a given thread to the proper version of

the shared object. Once again, how the runtime chooses to achieve

this should be implementation specific.

5 APPLYING OUR MODEL TO JAVA
Given the NVRAM programming model requirements proposed

previously, in this section we briefly describe how Java can be

extended to support these requirements. Note that here we only

describe the beginnings of extending Java for writing durable ap-
plications in NVRAM. A more rigorous description of a NVRAM

programming model extension for Java is left as future work.

5.1 Marking Durable Roots
We first describe our approach to labeling durable roots in Java.

Instead of adding additional keywords to Java, we propose us-

ing annotations [16]. Durable roots are to be labeled with the

@durable_root annotation and are only allowed to be linked to

static fields. The rationale for limiting durable roots to static fields

is that durable roots must be recoverable after a crash. Like static

fields, durable roots require a unique name in the environment for

the recovery process. Having a normal object field as a durable root

is problematic, as the field would be tied to a specific instance of

the object, whereas the static field will only have one instance.

5.2 Default Persistency Support
To meet NVRAM Model Requirement 3, stores to durable objects

outside of explicit failure-atomic regions should be persisted in

program order. We apply this requirement to Java by dictating

that persistent stores to fields of durable objects complete in pro-

gram order. Note that both stores to non-durable objects and local

primitive variables are still allowed to be reordered to the same

degree as previously specified in the Java Memory Model [27]. This

is because both non-durable objects and primitive variables will

be unreachable from a durable root and hence be unrecoverable.

While difficult to differentiate between durable and non-durable

objects statically, speculative optimizations can be used to ensure

non-durable objects can be reordered to the fullest extent of the

Java Memory Model.

5.3 Affected JVM Bytecodes
To meet the requirements imposed by the changes to Java described

above, the semantics of several JVM bytecodes must be changed.

Below we describe the key changes to the bytecodes used when

storing to object fields and arrays.

PUTFIELD: Normally this instruction stores value V into field F
of object O . Now, this bytecode must now first check to see if O is

a durable object. IfO is not durable, then the operation proceeds as

before. However, If O is durable, then storing V must be persisted

in program order relative to other stores to durable objects. In

addition, ifV is a reference, then the instruction must also ensureV
points to a durable object. If the object (Ovolatile)V points to is not

currently durable, then Ovolatile as well as everything reachable

from Ovolatile must be moved to durable storage.

PUTSTATIC: Normally this instruction stores value V into field

F of static object O . If the field F is not a labeled durable root,

then putstatic’s semantics are unchanged. However, if field F
is annotated with the @durable_root marking, then the value

pointed to by V should be made durable if necessary, as if O itself

were to be a durable object.

(A,B,C,D,F,I,L,S)ASTORE: Normally this family of instructions

stores a value V into array A of type T at index I , with the specific

instruction used dependent on type T . The instructions’ new se-

mantics are similar to those defined for putfield. Note that only
aastore must check if the value pointed to by V is durable or not,

as the other primitive types are copied by value.

6 EVALUATION
To analyze the potential performance impact of our NVRAM pro-

gramming model in Java, we evaluate the DaCapo Benchmark

Suite [9] with three configurations.

The initial configuration, Baseline (B), is the unmodified JVM.

Configuration WChecks (C), is the support we proposed in Sec-

tion 5. This configuration moves objects as necessary to NVRAM

to meet NVM Model Requirement 1 and orders persistent stores

according to NVMModel Requirement 3. In addition, this configura-

tion performs the new necessary checks on the affected bytecodes

to determine what the behavior of the bytecode should be. Con-

figuration AllDurable (A), is like configuration C, but assumes all

objects should be treated as durable objects. While our NVRAM

programming model does not forbid doing this, treating all objects

as durable objects can have many overheads, including unnecessar-

ily following our persistency model and persistently storing much

data that cannot be recovered.

We modify the Maxine Java Virtual Machine [38] to implement

these configurations. Maxine is a research JVM designed to enable

fast prototyping of new features while still achieving competitive

performance. We are currently using Maxine 2.0 and have modified

its first-tier compiler (T1X) to implement the changes proposed in

Section 5. We limit the use of its second tier compiler (C1X) to code

regions unable to be compiled by T1X.

We run each of these configurations on the DaCapo Benchmark

Suite. While this benchmark suite does not contain durable applica-

tions, it is sufficient to test the overheads of our extensions to Java.

Due to the nature of the configurations, configuration C models the

ManLang’18, September 12–14, 2018, Linz, Austria Thomas Shull, Jian Huang, and Josep Torrellas

0	

0.5	

1	

1.5	

2	

2.5	

arithme.c	mean	geometric	mean	harmonic	mean	

N
or
m
al
iz
ed

	E
xe
cu
0o

n	
Ti
m
e	

Baseline	(B)	

WChecks	(C)	

AllDurable	(A)	

Figure 2: Average Normalized Execution Time for the Da-
Capo Benchmarks

overheads of performing the checks for durable objects required

for the modified bytecodes while configuration A treats all objects

as if they must be durable. Hence, configuration A acts as a worst

case when all data within an application should be made durable

while configuration C shows the overhead of the extra checks of

the affected bytecodes on all objects.

We run our evaluation on a machine with an 8-core Intel Sky-

lake i7-7820X CPU and 32GB of DDR4 DRAM. While we currently

do not use NVRAM, we accurately model the main overheads of

durable applications by performing the necessary persist opera-

tions and using fences to enforce our persistency model. For writing

cachelines back to memory we use Intel’s CLWB instruction [1] and

we use the SFENCE to implement persistent fences.

Figure 2 shows the arithmetic, geometric, and harmonic means

of our DaCapo performance results normalized to B. On average,

configuration C has negligible overheads while configuration A has

131%, 120%, and 111% overheads for the arithmetic, geometric, and

harmonic means, respectively. A primary reason C has minimal

overheads is that overheads inherent in the T1X compiler are large

enough to make the overheads of durable checks minor. Likewise,

the overheads of Awill likely be larger in a highly optimized system

unless measures are taken. However, we believe that additional

compiler optimizations will be able to limit the overheads of our

persistency model. For instance, it is possible to make speculative

optimizations based on past execution and to recompile if these

assumptions are invalidated.

Overall, we believe these are promising initial results. We plan to

create and test true durable applications once we have fully defined

and implemented our NVRAM extension to Java.

7 FUTUREWORK
As mentioned in Section 5, the changes we propose in this paper

are only the beginnings of extending Java to enable writing durable

applications in NVRAM. In the future, we plan to fully define a

NVRAM programming model in Java which adheres to all require-

ments described in Section 4.2. This includes adding support for

failure-atomic regions, introspection of durable objects, naming

durable roots, an object recovery API, and a clear multi-threading

persistency model.

In addition to the extensions to Java, we also plan to fully de-

scribe how the JVM should be modified to accommodate our Java

extensions. This includes modifying additional bytecodes, possibly

adding new bytecodes, and adding new internal metadata struc-

tures. We also must define new non-volatile heap regions as well

as the new expectations of the garbage collector. By fully defining

the support necessary at the JVM level, it will be possible for other

JVM-based languages such as Clojure, Kotlin, and Scala to also add

support for writing durable applications in NVRAM.

Finally, once we have a fully defined NVRAM programming

model for both Java and the JVM, we plan to implement a full

version of our model within the Maxine VM. We plan to adapt both

Maxine’s first tier (T1X) and second tier (C1X or Graal) compilers

to match our new model. Also, we plan to introduce optimizations

which can use profiling information gathered from the first tier

to create more efficient code and reduce the overheads of writing

durable applications.

8 CONCLUSION
In this paper we described the limitations of current NVRAM

programming models. In addition, we proposed a new high-level

NVRAM programming model for managed languages.

After proposing a new NVRAM programming model, we briefly

described how Java could be extended to support this model. Finally,

we presented some initial results on the performance overheads of

creating durable applications in NVRAM and described our future

work.

REFERENCES
[1] Intel 64 and IA-32 Architectures Software Develop’s Manual. https:

//www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.

pdf

[2] Intel Optane Technology. https://www.intel.com/content/www/us/en/

architecture-and-technology/intel-optane-technology.html

[3] NVM Programming Model v1.2. https://www.snia.org/sites/default/files/

technical_work/final/NVMProgrammingModel_v1.2.pdf

[4] Persistent Memory Development Kit. http://pmem.io/pmdk/

[5] H. Akinaga and H. Shima. 2010. Resistive Random Access Memory (ReRAM)

Based on Metal Oxides. Proc. IEEE 98, 12 (Dec 2010), 2237–2251. https://doi.org/

10.1109/JPROC.2010.2070830

[6] Malcolm Atkinson, Ken Chisholm, and Paul Cockshott. 1982. PS-algol: An

Algol with a Persistent Heap. SIGPLAN Not. 17, 7 (July 1982), 24–31. https:

//doi.org/10.1145/988376.988378

[7] Malcolm Atkinson and Mick Jordan. 2000. A Review of the Rationale and Architec-
tures of PJama: A Durable, Flexible, Evolvable and Scalable Orthogonally Persistent
Programming Platform. Technical Report. Mountain View, CA, USA.

[8] Malcolm Atkinson and Ronald Morrison. 1995. Orthogonally Persistent Object

Systems. The VLDB Journal 4, 3 (July 1995), 319–402. http://dl.acm.org/citation.

cfm?id=615224.615226

[9] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,

Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:

Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 169–190.

https://doi.org/10.1145/1167473.1167488

[10] Luc Bläser. 2007. Persistent Oberon: A Programming Language with Integrated

Persistence. In Programming Languages and Systems, Zhong Shao (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 71–85.

[11] Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Programming

Models for Non-volatile Memory. In Proceedings of the 2016 ACM SIGPLAN
International Symposium on Memory Management (ISMM 2016). ACM, New York,

NY, USA, 55–67. https://doi.org/10.1145/2926697.2926704

[12] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:

Leveraging Locks for Non-volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA, 433–452.

https://doi.org/10.1145/2660193.2660224

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
http://pmem.io/pmdk/
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/988376.988378
https://doi.org/10.1145/988376.988378
http://dl.acm.org/citation.cfm?id=615224.615226
http://dl.acm.org/citation.cfm?id=615224.615226
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/2926697.2926704
https://doi.org/10.1145/2660193.2660224

Defining a High-Level NVRAM Programming Model ManLang’18, September 12–14, 2018, Linz, Austria

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects

Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,

105–118. https://doi.org/10.1145/1950365.1950380

[14] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-

jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through Byte-

addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,

133–146. https://doi.org/10.1145/1629575.1629589

[15] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. 2016. NVL-C: Static Analysis Tech-

niques for Efficient, Correct Programming of Non-Volatile MainMemory Systems.

In Proceedings of the 25th ACM International Symposium on High-Performance Par-
allel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 125–136.

https://doi.org/10.1145/2907294.2907303

[16] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2014.

The Java Language Specification, Java SE 8 Edition (1st ed.). Addison-Wesley

Professional.

[17] Antony L. Hosking and Jiawan Chen. 1999. PM3: An Orthogonal Persistent

Systems Programming Language - Design, Implementation, Performance. In

Proceedings of the 25th International Conference on Very Large Data Bases (VLDB
’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 587–598. http:

//dl.acm.org/citation.cfm?id=645925.671503

[18] Antony L. Hosking, Nathaniel Nystrom, Quintin I. Cutts, and Kumar Brahnmath.

1999. Optimizing the Read and Write Barriers for Orthogonal Persistence. In

Proceedings of the 8th International Workshop on Persistent Object Systems (POS8)
and Proceedings of the 3rd International Workshop on Persistence and Java (PJW3):
Advances in Persistent Object Systems. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 149–159. http://dl.acm.org/citation.cfm?id=648123.747258

[19] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and

Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-threaded Ap-

plications. In Proceedings of the Twelfth European Conference on Computer Sys-
tems (EuroSys ’17). ACM, New York, NY, USA, 468–482. https://doi.org/10.1145/

3064176.3064204

[20] Joseph Izraelevitz, Hammurabi Mendes, andMichael L. Scott. 2016. Linearizability

of Persistent Memory Objects Under a Full-System-Crash Failure Model. In

Distributed Computing, Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 313–327.

[21] Mick Jordan andMalcolm Atkinson. 2000. Orthogonal Persistence for the Java[Tm]
Platform: Specification and Rationale. Technical Report. Mountain View, CA, USA.

[22] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,

Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-level Persistency.

In Proceedings of the 44th Annual International Symposium on Computer Archi-
tecture (ISCA ’17). ACM, New York, NY, USA, 481–493. https://doi.org/10.1145/

3079856.3080229

[23] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger.

2010. Phase-Change Technology and the Future of Main Memory. IEEE Micro 30,
1 (Jan 2010), 143–143. https://doi.org/10.1109/MM.2010.24

[24] Brian Lewis, Bernd Mathiske, and Neal M. Gafter. 2001. Architecture of the

PEVM: A High-Performance Orthogonally Persistent Java Virtual Machine. In

Revised Papers from the 9th International Workshop on Persistent Object Systems
(POS-9). Springer-Verlag, London, UK, UK, 18–33. http://dl.acm.org/citation.cfm?

id=648124.747405

[25] Brian T. Lewis and Bernd Mathiske. 1999. Efficient Barriers for Persistent Object
Caching in a High-Performance JavaTM Virtual Machine. Technical Report.

Mountain View, CA, USA.

[26] Y. Lu, J. Shu, L. Sun, and O. Mutlu. 2014. Loose-Ordering Consistency for per-

sistent memory. In 2014 IEEE 32nd International Conference on Computer Design
(ICCD). 216–223. https://doi.org/10.1109/ICCD.2014.6974684

[27] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory

Model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’05). ACM, New York, NY, USA, 378–391.

https://doi.org/10.1145/1040305.1040336

[28] Alonso Marquez, Stephen Blackburn, Gavin Mercer, and John N. Zigman. 2001.

Implementing Orthogonally Persistent Java. In Revised Papers from the 9th Inter-
national Workshop on Persistent Object Systems (POS-9). Springer-Verlag, London,
UK, UK, 247–261. http://dl.acm.org/citation.cfm?id=648124.747395

[29] J. E. B. Moss. 1992. Working with persistent objects: to swizzle or not to swizzle.

IEEE Transactions on Software Engineering 18, 8 (Aug 1992), 657–673. https:

//doi.org/10.1109/32.153378

[30] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and

Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHISPER.

In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’17). ACM,

New York, NY, USA, 135–148. https://doi.org/10.1145/3037697.3037730

[31] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Per-

sistency. In Proceeding of the 41st Annual International Symposium on Com-
puter Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 265–276. http:

//dl.acm.org/citation.cfm?id=2665671.2665712

[32] Tony Printezis, Malcolm Atkinson, Laurent Daynés, Susan Spence, and Pete

Bailey. 1997. The Design of a new Persistent Object Store for PJama. Technical
Report. Mountain View, CA, USA.

[33] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M.

Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam. 2008. Phase-change

random access memory: A scalable technology. IBM Journal of Research and
Development 52, 4.5 (July 2008), 465–479. https://doi.org/10.1147/rd.524.0465

[34] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. 2017. Program-

ming for Non-Volatile Main Memory Is Hard. In Proceedings of the 8th Asia-Pacific
Workshop on Systems (APSys ’17). ACM, New York, NY, USA, Article 13, 8 pages.

https://doi.org/10.1145/3124680.3124729

[35] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. 1993. The Design of

the E Programming Language. ACM Trans. Program. Lang. Syst. 15, 3 (July 1993),

494–534. https://doi.org/10.1145/169683.174157

[36] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. 1993. Texas: An Efficient,

Portable Persistent Store. In Persistent Object Systems, Antonio Albano and Ron

Morrison (Eds.). Springer London, London, 11–33.

[37] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-

weight Persistent Memory. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS XVI). ACM, New York, NY, USA, 91–104. https://doi.org/10.1145/1950365.

1950379

[38] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,

Laurent Daynès, and Douglas Simon. 2013. Maxine: An Approachable Virtual

Machine for, and in, Java. ACM Trans. Archit. Code Optim. 9, 4, Article 30 (Jan.
2013), 24 pages. https://doi.org/10.1145/2400682.2400689

[39] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu Zang, and

Haibing Guan. 2018. Espresso: Brewing Java For More Non-Volatility with Non-

volatile Memory. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’18). ACM, New York, NY, USA, 70–83. https://doi.org/10.1145/3173162.3173201

https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/2907294.2907303
http://dl.acm.org/citation.cfm?id=645925.671503
http://dl.acm.org/citation.cfm?id=645925.671503
http://dl.acm.org/citation.cfm?id=648123.747258
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1109/MM.2010.24
http://dl.acm.org/citation.cfm?id=648124.747405
http://dl.acm.org/citation.cfm?id=648124.747405
https://doi.org/10.1109/ICCD.2014.6974684
https://doi.org/10.1145/1040305.1040336
http://dl.acm.org/citation.cfm?id=648124.747395
https://doi.org/10.1109/32.153378
https://doi.org/10.1109/32.153378
https://doi.org/10.1145/3037697.3037730
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1145/169683.174157
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/3173162.3173201

	Abstract
	1 Introduction
	2 Related Work
	2.1 Ordering of Durable Stores
	2.2 Existing Frameworks for NVRAM
	2.3 Persistent Programming Languages
	2.4 Current Java Persistency Techniques

	3 Limitations of Existing NVRAM Frameworks
	4 New Model
	4.1 Model Goals
	4.2 Establishing New NVRAM Programming Model

	5 Applying Our Model to Java
	5.1 Marking Durable Roots
	5.2 Default Persistency Support
	5.3 Affected JVM Bytecodes

	6 Evaluation
	7 Future Work
	8 Conclusion
	References

