
1

Pinpointing Crash-Consistency Bugs in the
HPC I/O Stack: A Cross-Layer Approach

Jinghan Sun, Jian Huang, Marc Snir

University of Illinois Urbana-Champaign

1

The Complexity of Modern HPC I/O Stack

2

Parallel File Systems

Disk

Local FS Disk Disk

PFSes are built on local
file systems or raw disks

Disk

Local FS

Lustre, BeeGFS Aggregated bandwidth
& capacity

The Core Components of the HPC I/O Stack – I/O Library

3

open write read close

PFS stripes data across servers to provide high bandwidth and capacity

root

dir dir dir

filefilefile

metadata storage storage
meta chunk chunk

Parallel File Systems

POSIX I/O APIs

The Complexity of Modern HPC I/O Stack

4

Parallel I/O Libraries

MPI I/O

High-level APIs for
scientific datasets

Parallel I/O Access

Parallel File Systems

Disk

Local FS Disk Disk

Aggregated bandwidth
& capacity

PFSes are built on local
file systems or raw disks

Disk

Local FS

Lustre, BeeGFS

HDF5, NetCDF

The Core Components of the HPC I/O Stack – I/O Library

5

File System

H5open

MPI I/O

POSIX I/O

Library-specific APIs

MPI I/O

H5write H5read H5close

Parallel I/O library organizes scientific datasets into a similar hierarchical structure

root group

group group group

datasetdatasetdataset

Parallel I/O Libraries

The Complexity of Modern HPC I/O Stack

6

HPC Applications

HPC I/O stack is complex
and error-prone

Parallel I/O Libraries

MPI I/O Parallel I/O Access

Parallel File Systems

Disk

Local FS Disk Disk

Aggregated bandwidth
& capacity

PFSes are built on local
file systems or raw disks

Disk

Local FS

Lustre, BeeGFS

HDF5, NetCDF
High-level APIs for
scientific datasets

HPC I/O Stack Fails Frequently And Takes Long to Recover

7

8%

34% 34%

12%

0%

8%

16%

24%

32%

40%
PFS Failure Frequency

Monthly Weekly Never Not Reported

59%

24%
14%

3%
0%

15%

30%

45%

60%

75%
PFS Recovery Time

<1 day 2-3 days 1 week >1 week

42% of PFSes suffer from monthly or weekly failures and their recovery is time-consuming

Source: Hyperion Research 2019

Severe Errors Could Occur After HPC I/O Failures

8

Metadata loss during Lustre recovery Dataset corruption after HDF5 crashes

It is important to have a bug detection framework for the HPC I/O stack!

Crash Consistency of the HPC I/O Stack

9

A crash consistency bug is an unrecoverable storage state error after a system crash

void init(){
int fd = open("file.txt", ...);
write(fd, “old content”, size);
close(fd);

}
// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = creat("file.tmp");
write(fd, “new content”, size);
close(fd);
rename("file.tmp","file.txt");

}
Violation of rename atomicity may cause data loss

old

file.txt

old

file.txt

new

file.tmp
new

file.txt

file.txt

Atomic replace via rename (ARVR)

Existing Tools Are Insufficient For the HPC I/O Stack

10

They lack support to parallel programs and do no handle multi-layered storage

Existing frameworks for crash consistency detection
• Local file system: CrashMonkey and ACE
• Distributed database: PACE

• Application-level: ALICE
• Model checking: FERRITE

ParaCrash

A new framework for detecting crash-consistency bugs in the HPC I/O Stack

ParaCrash uses the golden master testing approach

Crash States Legal States

Consistency Bug Identification

ParaCrash

ParaCrash

12

A new framework for detecting crash-consistency bugs in the HPC I/O Stack

App I/O Library MPI I/O PFS Local FS / Disk

I/O Tracing and Correlation Analysis

H5Dcreate MPI_File_open open open scsi_write

correlation between I/O calls

Crash State Generation

Consistency Checking
with Consistency Model

Crash States

Legal States

Consistency Bug

Identification

Analyzing Partial Order of Operation Execution

13

MPI_File_write
Trace I/O calls and communications

Build happens-before graph

Identify synchronization operations

Identify caller-callee relationships

MPI_File_write

Process #0 Process #1

MPI_Barrier MPI_Barrier

MPI_File_write

lseek

write

MPI

PFS

lseek

write

lseek

write

From Execution Orderings to Possible Persistency Orderings

14

I/O calls can be persisted to disks different
from their execution order

DiskPFSApp

write(A)
write(B)

write(B)
write(A)

Persistency are enforced by fsync & barriers

write(fd, A)
fsync(fd)
write(fd, B)

write(A)
write(B)

write(A)
write(B) or

DiskPFSApp

Induce persists-before from happens-before
write(A) write(B) write(C)fsync

happens-before

persists-before

write(A) write(B) write(C)

ParaCrash

15

A new framework for detecting crash-consistency bugs in the HPC I/O Stack

App I/O Library MPI I/O PFS Local FS / Disk

I/O Tracing and Correlation Analysis

H5Dcreate MPI_File_open open open scsi_write

correlation between I/O calls

Crash State Generation

Consistency Checking
with Consistency Model

Crash States

Legal States

Consistency Bug

Identification

Crash State Generation

16

A crash state is a possible storage state after a system crash

A normal state is a storage state in normal program execution

A
E

B D

F
C

Happens-before graph

A E

EA EA D

EA DEA D B F

A EB

D
FC

Persists-before graph

EA D FB EA D FB C

D A B

More storage states could exist!

......E F

ParaCrash

17

A new framework for detecting crash-consistency bugs in the HPC I/O Stack

App I/O Library MPI I/O PFS Local FS / Disk

I/O Tracing and Correlation Analysis

H5Dcreate MPI_File_open open open scsi_write

correlation between I/O calls

Crash State Generation

Consistency Checking
with Consistency Model

Crash States

Legal States

Consistency Bug

Identification

Crash Consistency Models for HPC I/O

18

How to check if a crash state is consistent or not?

We define different levels of crash-consistency for HPC I/O

Weak Strong
Baseline Commit Causal Strict

all updates preceding
the crash are persisted

updates before

commits are persisted

persistence orders

follow execution orders

updates before file

closes are persisted

I/O Library may violate baseline PFS may violate causal

Examples of Crash Consistency Models

19

write(fd1, “A”)

write(fd3, “C”)

send(buf) recv(buf)

write(fd2, “B”)

fsync(fd3)

Model Legal States

Strict ABC

Causal AC, ABC

Commit C, AC, BC, ABC

Baseline Any combinations of writes

An example I/O Trace

crash crash

Consistency Checking with Crash Consistency Models

20

Crash Consistency
Model

Legal StatesCrash States

Inconsistencies

remove duplications

Consistency Bug

Report

crash recovery with

recovery tools

(fsck, h5clear)

Multi-level I/O Traces

Persists-before
Graph

Consistency Checking Across Layers

21

Legal StatesCrash States InconsistenciesI/O Library

PFS Legal StatesCrash States Inconsistencies

comparison

How to pinpoint a crash consistency bug to its corresponding layer?

We check consistency for a crash state at multiple levels -- the bug is
attributed to the lowermost inconsistent layer.

ParaCrash Optimizations

22

Incremental state constructionHeuristic-based state pruning

How to reduce the state exploration time?

How to help developers better understand inconsistency issues?

Disassembles the lower-level data structures of HDF5 files

More detailed explanations in the paper

23

ParaCrash
Implementation

18

Experimental
Setup

I/O Tracing Recorder1, strace, open-iscsi

HDF5 Support h5inspect

PFSes BeeGFS, Lustre, GPFS, OrangeFS,
GlusterFS

I/O Libraries HDF5, NetCDF

[1] Recorder 2.0: Efficient parallel I/O tracing and analysis

Test Cases

24

POSIX Programs

Atomic-Replace-via-Rename (ARVR)
Create-and-Rename (CR)

Rename-and-Create (RC)
Write-Ahead-Logging (WAL)

HDF5 and NetCDF Programs

Dataset creation (H5create, CDFcreate)
Dataset deletion (H5delete)

Dataset rename (H5rename)
Dataset resize (H5resize)

Parallel HDF5 programs

Case Study

25

creat(tmp)

pwrite(tmp, new)

close(tmp)

rename(tmp, file)

Client Metadata Server Storage Server

creat(idfile)

rename(idfile, dentries/tmp)

creat(chunk)

write(chunk, new)

close(chunk)

rename(dentries/tmp, dentries/file)

unlink(old-idfile)

unlink(old-chunk)

The consistency bugs of ARVR Program on BeeGFS

File data loss – its directory entry is modified but the content is not updated

crash

crash

New Crash Consistency Bugs Identified by ParaCrash

26

New Crash Consistency Bugs Identified by ParaCrash

27

• Three inconsistencies of HDF5 programs

are attributed to PFS

New Crash Consistency Bugs Identified by ParaCrash

28

• Many crash consistency bugs may cause

severe data loss

New Crash Consistency Bugs Identified by ParaCrash

29

• Some crash consistency bugs are

configuration-dependent

New Crash Consistency Bugs Identified by ParaCrash

30

8 new bugs identified with POSIX programs and 7 new bugs with HDF5 programs

• Three inconsistencies of HDF5

programs are attributed to PFS

• Many crash consistency bugs may

cause severe data loss

• Some crash consistency bugs are

configuration-dependent

Performance of ParaCrash

31

ParaCrash performs up to 7.3× faster with crash state pruning strategy

0
300
600
900
1200
1500
1800
2100

ARVR CR RC
WAL

H5-c
rea

te

H5-d
ele

te

H5-r
en

am
e

H5-r
es

ize

CDF-cr
ea

te

H5P
-cr

ea
te

H5P
-re

siz
e

St
at

e
Ex

pl
or

at
io

n
Ti

m
e

(s
)

Brute-force Pruning Pruning + Inc

BeeGFS OrangeFS

0
40
80
120
160
200
240
280

ARVR CR RC
WAL

H5-c
rea

te

H5-d
ele

te

H5-r
en

am
e

H5-r
es

ize

CDF-cr
ea

te

H5P
-cr

ea
te

H5P
-re

siz
e

St
at

e
Ex

pl
or

at
io

n
Ti

m
e

(s
)

Brute-force Pruning Pruning + Inc

Scalability of ParaCrash

32

ParaCrash scales linearly with an increasing number of servers

Conclusion

33

§ We present ParaCrash, the 1st crash consistency testing framework for HPC I/O

§ We define different levels of crash consistency models for HPC I/O

§ ParaCrash identifies 15 crash consistency bugs for 5 PFSes and 2 I/O libraries

§ ParaCrash is up to 7.3 times faster in bug detection with its state-pruning policy

34

We open-sourced ParaCrash on GitHub!

https://github.com/my-HenryS/ParaCrash

https://github.com/my-HenryS/ParaCrash

35

Thank you!

Jinghan Sun, Jian Huang, Marc Snir

js39@illinois.edu

