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The Complexity of Modern HPC I/O Stack
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The Core Components of the HPC I/O Stack – I/O Library
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open write read close

PFS stripes data across servers to provide high bandwidth and capacity
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MPI I/O

High-level APIs for
scientific datasets

Parallel I/O Access

Parallel File Systems

Disk

Local FS Disk Disk

Aggregated bandwidth
& capacity

PFSes are built on local
file systems or raw disks

Disk

Local FS

Lustre, BeeGFS

HDF5, NetCDF



The Core Components of the HPC I/O Stack – I/O Library
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HPC Applications

HPC I/O stack is complex
and error-prone

Parallel I/O Libraries

MPI I/O Parallel I/O Access

Parallel File Systems

Disk

Local FS Disk Disk

Aggregated bandwidth
& capacity

PFSes are built on local
file systems or raw disks

Disk

Local FS

Lustre, BeeGFS

HDF5, NetCDF
High-level APIs for
scientific datasets



HPC I/O Stack Fails Frequently And Takes Long to Recover
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42% of PFSes suffer from monthly or weekly failures and their recovery is time-consuming

Source: Hyperion Research 2019



Severe Errors Could Occur After HPC I/O Failures
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Metadata loss during Lustre recovery Dataset corruption after HDF5 crashes

It is important to have a bug detection framework for the HPC I/O stack!



Crash Consistency of the HPC I/O Stack
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A crash consistency bug is an unrecoverable storage state error after a system crash

void init(){
int fd = open("file.txt", ...);
write(fd, “old content”, size); 
close(fd); 

}
// atomic replace via rename (ARVR)
bool atomic_update(){

int fd = creat("file.tmp");
write(fd, “new content”, size); 
close(fd); 
rename("file.tmp","file.txt");

}
Violation of rename atomicity may cause data loss

old

file.txt

old

file.txt

new

file.tmp
new

file.txt

file.txt

Atomic replace via rename (ARVR)



Existing Tools Are Insufficient For the HPC I/O Stack
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They lack support to parallel programs and do no handle multi-layered storage

Existing frameworks for crash consistency detection
• Local file system: CrashMonkey and ACE
• Distributed database: PACE

• Application-level: ALICE
• Model checking: FERRITE



ParaCrash

A new framework for detecting crash-consistency bugs in the HPC I/O Stack

ParaCrash uses the golden master testing approach

Crash States Legal States

Consistency Bug Identification

ParaCrash



ParaCrash
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A new framework for detecting crash-consistency bugs in the HPC I/O Stack

App I/O Library MPI I/O PFS Local FS / Disk

I/O Tracing and Correlation Analysis

H5Dcreate MPI_File_open open open scsi_write

correlation between I/O calls

Crash State Generation

Consistency Checking
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Crash States
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Consistency Bug

Identification



Analyzing Partial Order of Operation Execution
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MPI_File_write
Trace I/O calls and communications

Build happens-before graph

Identify synchronization operations

Identify caller-callee relationships

MPI_File_write

Process #0 Process #1

MPI_Barrier MPI_Barrier

MPI_File_write

lseek

write
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From Execution Orderings to Possible Persistency Orderings
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I/O calls can be persisted to disks different
from their execution order

DiskPFSApp

write(A)
write(B)

write(B)
write(A)

Persistency are enforced by fsync & barriers

write(fd, A)
fsync(fd)
write(fd, B)

write(A)
write(B)

write(A)
write(B) or

DiskPFSApp

Induce persists-before from happens-before
write(A) write(B) write(C)fsync

happens-before

persists-before

write(A) write(B) write(C)



ParaCrash
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A new framework for detecting crash-consistency bugs in the HPC I/O Stack
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Crash State Generation
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A crash state is a possible storage state after a system crash

A normal state is a storage state in normal program execution
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A new framework for detecting crash-consistency bugs in the HPC I/O Stack
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Crash Consistency Models for HPC I/O
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How to check if a crash state is consistent or not?

We define different levels of crash-consistency for HPC I/O

Weak Strong
Baseline Commit Causal Strict

all updates preceding
the crash are persisted

updates before

commits are persisted

persistence orders

follow execution orders

updates before file

closes are persisted

I/O Library may violate baseline PFS may violate causal



Examples of Crash Consistency Models
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write(fd1, “A”)

write(fd3, “C”)

send(buf) recv(buf)

write(fd2, “B”)

fsync(fd3)

Model Legal States

Strict ABC

Causal AC, ABC

Commit C, AC, BC, ABC

Baseline Any combinations of writes

An example I/O Trace

crash crash



Consistency Checking with Crash Consistency Models
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Crash Consistency
Model

Legal StatesCrash States

Inconsistencies

remove duplications

Consistency Bug

Report

crash recovery with

recovery tools 

(fsck, h5clear)

Multi-level I/O Traces

Persists-before
Graph



Consistency Checking Across Layers
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Legal StatesCrash States InconsistenciesI/O Library

PFS Legal StatesCrash States Inconsistencies

comparison

How to pinpoint a crash consistency bug to its corresponding layer?

We check consistency for a crash state at multiple levels -- the bug is
attributed to the lowermost inconsistent layer.



ParaCrash Optimizations
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Incremental state constructionHeuristic-based state pruning

How to reduce the state exploration time?

How to help developers better understand inconsistency issues?

Disassembles the lower-level data structures of HDF5 files

More detailed explanations in the paper
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ParaCrash
Implementation

18

Experimental 
Setup

I/O Tracing Recorder1, strace, open-iscsi

HDF5 Support h5inspect

PFSes BeeGFS, Lustre, GPFS, OrangeFS,
GlusterFS

I/O Libraries HDF5, NetCDF

[1] Recorder 2.0: Efficient parallel I/O tracing and analysis



Test Cases
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POSIX Programs

Atomic-Replace-via-Rename (ARVR)
Create-and-Rename (CR)

Rename-and-Create (RC)
Write-Ahead-Logging (WAL)

HDF5 and NetCDF Programs

Dataset creation (H5create, CDFcreate)
Dataset deletion (H5delete)

Dataset rename (H5rename)
Dataset resize (H5resize)

Parallel HDF5 programs



Case Study
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creat(tmp)

pwrite(tmp, new)

close(tmp)

rename(tmp, file)

Client Metadata Server Storage Server

creat(idfile)

rename(idfile, dentries/tmp)

creat(chunk)

write(chunk, new)

close(chunk)

rename(dentries/tmp, dentries/file)

unlink(old-idfile)

unlink(old-chunk)

The consistency bugs of ARVR Program on BeeGFS

File data loss – its directory entry is modified but the content is not updated

crash

crash



New Crash Consistency Bugs Identified by ParaCrash
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New Crash Consistency Bugs Identified by ParaCrash
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• Three inconsistencies of HDF5 programs

are attributed to PFS



New Crash Consistency Bugs Identified by ParaCrash
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• Many crash consistency bugs may cause

severe data loss



New Crash Consistency Bugs Identified by ParaCrash
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• Some crash consistency bugs are

configuration-dependent



New Crash Consistency Bugs Identified by ParaCrash
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8 new bugs identified with POSIX programs and 7 new bugs with HDF5 programs

• Three inconsistencies of HDF5

programs are attributed to PFS

• Many crash consistency bugs may

cause severe data loss

• Some crash consistency bugs are

configuration-dependent



Performance of ParaCrash
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ParaCrash performs up to 7.3× faster with crash state pruning strategy
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Scalability of ParaCrash
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ParaCrash scales linearly with an increasing number of servers



Conclusion
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§ We present ParaCrash, the 1st crash consistency testing framework for HPC I/O

§ We define different levels of crash consistency models for HPC I/O

§ ParaCrash identifies 15 crash consistency bugs for 5 PFSes and 2 I/O libraries

§ ParaCrash is up to 7.3 times faster in bug detection with its state-pruning policy
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We open-sourced ParaCrash on GitHub!

https://github.com/my-HenryS/ParaCrash

https://github.com/my-HenryS/ParaCrash
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Thank you!

Jinghan Sun, Jian Huang, Marc Snir

js39@illinois.edu


