
Understanding and Detecting Deep Memory

Persistency Bugs in NVM Programs with DeepMC

Benjamin Reidys Jian Huang

Non-Volatile Memory is a Promising Technology

2 Systems Platform Research Group at UIUC

Non-Volatile Memory is a Promising Technology

2 Systems Platform Research Group at UIUC

Data Durability

Non-Volatile Memory is a Promising Technology

2 Systems Platform Research Group at UIUC

Data Durability

High Performance

Non-Volatile Memory is a Promising Technology

2 Systems Platform Research Group at UIUC

Data Durability

High Performance

Byte Addressability

Using Non-Volatile Memory is Not Easy

3 Systems Platform Research Group at UIUC

Volatile Caches

NVM

Using Non-Volatile Memory is Not Easy

3 Systems Platform Research Group at UIUC

Volatile Caches

NVM

Volatile Processor Caches

Using Non-Volatile Memory is Not Easy

3 Systems Platform Research Group at UIUC

Volatile Caches

NVM

Volatile Processor Caches

Out-of-Order Execution

Using Non-Volatile Memory is Not Easy

3 Systems Platform Research Group at UIUC

Volatile Caches

NVM

Volatile Processor Caches

Out-of-Order Execution

Persistence/Performance Tradeoff

Persistency Models for Non-Volatile Memory

4 Systems Platform Research Group at UIUC

Strict Persistency

Writes must be persisted in program order!

Persistency Models for Non-Volatile Memory

4 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency

Writes can be concurrent within an epoch!

Persistency Models for Non-Volatile Memory

4 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Writes can be concurrent within and across strands!

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

A

B

C

Dependency

False dependency

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

A

B

C

Dependency

False dependency

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

Insert barriers
between
operations!

A

B

C

Dependency

False dependency

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

Strong Persistency Guarantees
Insert barriers
between
operations!

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

Strong Persistency Guarantees

Easy to Use

Insert barriers
between
operations!

Persistency Models – Strict Persistency

5 Systems Platform Research Group at UIUC

A
clwb(A)
mfence
B
clwb(B)
mfence
C

Writes must be persisted in program order!

Strong Persistency Guarantees

Easy to Use

Low Performance!

Insert barriers
between
operations!

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

A

B

C

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

A

B

C

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Ordering enforced
between epochs!

A

B

C

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Ordering enforced
between epochs!

A

B

C

Concurrency
within an epoch!

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Relaxed Persistency Guarantees

Ordering enforced
between epochs!

Concurrency
within an epoch!

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Enables Higher Concurrency

Relaxed Persistency Guarantees

Ordering enforced
between epochs!

Concurrency
within an epoch!

Persistency Models – Epoch Persistency

6 Systems Platform Research Group at UIUC

begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Enables Higher Concurrency

Relaxed Persistency Guarantees

Improved Performance!

Ordering enforced
between epochs!

Concurrency
within an epoch!

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

A

B

C

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

A

B

C

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

A

B

C

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

Order within
strand!

A

B

C

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

Order within
strand!

A

B

C

No false
dependencies!

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

Highest Possible Performance
Order within
strand!

No false
dependencies!

Persistency Models – Strand Persistency

7 Systems Platform Research Group at UIUC

begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

Difficult to program correctly

Highest Possible Performance
Order within
strand!

No false
dependencies!

Implementing Persistency Models Properly is Challenging

8 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Implementing Persistency Models Properly is Challenging

8 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Guide developers
in NVM
programming

NVM Programs

Implementing Persistency Models Properly is Challenging

8 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Guide developers
in NVM
programming

NVM Programs

Does my program
correctly follow the
model specifications?

Understanding Persistency Bugs in NVM Programs

9 Systems Platform Research Group at UIUC

Understanding Persistency Bugs in NVM Programs

9 Systems Platform Research Group at UIUC

Select programs from open source framework
PMDK, PMFS, and NVM-Direct

Understanding Persistency Bugs in NVM Programs

9 Systems Platform Research Group at UIUC

Select programs from open source framework
PMDK, PMFS, and NVM-Direct

Manually study 19 representative persistency bugs

Understanding Persistency Bugs in NVM Programs

9 Systems Platform Research Group at UIUC

Understanding Persistency Bugs in NVM Programs

9 Systems Platform Research Group at UIUC

We analyze each bug and discover they fall into two categories:
Model Violations [V] or Performance Bugs [P].

Classifying Persistency Bugs in NVM Programs

10 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

Persistency Model Violations

Classifying Persistency Bugs in NVM Programs

10 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

Persistency Model Violations

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Performance Bugs

Classifying Persistency Bugs in NVM Programs

10 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

Persistency Model Violations

Persistency Model Violations: Semantic Mismatch

11 Systems Platform Research Group at UIUC

hashmap from PMDK
using strict persistency

Persistency Model Violations: Semantic Mismatch

11 Systems Platform Research Group at UIUC

hashmap from PMDK
using strict persistency

nbuckets initialized
on line 3

Persistency Model Violations: Semantic Mismatch

11 Systems Platform Research Group at UIUC

hashmap from PMDK
using strict persistency

nbuckets initialized
on line 3

nbuckets is not
persisted until line 6

Persistency Model Violations: Semantic Mismatch

11 Systems Platform Research Group at UIUC

hashmap from PMDK
using strict persistency

nbuckets initialized
on line 3

nbuckets is not
persisted until line 6

Strict persistency requires persists to occur in program order!

Persistency Model Violations: Semantic Mismatch

11 Systems Platform Research Group at UIUC

hashmap from PMDK
using strict persistency

nbuckets initialized
on line 3

nbuckets is not
persisted until line 6

Crash between lines 4 and 6 results in inconsistency!

Persistency Model Violations: Unflushed/Unlogged Writes

12 Systems Platform Research Group at UIUC

btree_map from PMDK
using epoch persistency

Persistency Model Violations: Unflushed/Unlogged Writes

12 Systems Platform Research Group at UIUC

btree_map from PMDK
using epoch persistency

items is not logged in
the transaction

Persistency Model Violations: Unflushed/Unlogged Writes

12 Systems Platform Research Group at UIUC

Object is updated without logging and is not persisted!

btree_map from PMDK
using epoch persistency

items is not logged in
the transaction

Persistency Model Violations: Missing Persist Barrier

13 Systems Platform Research Group at UIUC

nvm_create_region from NVM-Direct
using strict persistency

Persistency Model Violations: Missing Persist Barrier

13 Systems Platform Research Group at UIUC

nvm_create_region from NVM-Direct
using strict persistency

No persist barrier to
enforce ordering

Persistency Model Violations: Missing Persist Barrier

13 Systems Platform Research Group at UIUC

nvm_create_region from NVM-Direct
using strict persistency

No persist barrier to
enforce ordering

Object is flushed but ordering is not enforced with persist barrier

Persistency Model Violations: Checking Rules

14 Systems Platform Research Group at UIUC

Persistency Model Violations: Checking Rules

14 Systems Platform Research Group at UIUC

Strict Persistency

• Every write is followed
by a flush.

• Every flush is preceded
by a single write.

Persistency Model Violations: Checking Rules

14 Systems Platform Research Group at UIUC

Strict Persistency

• Every write is followed
by a flush.

• Every flush is preceded
by a single write.

Epoch Persistency

• Every epoch is followed
by a flush.

• Consecutive or nested
epochs have barriers
between them.

Persistency Model Violations: Checking Rules

14 Systems Platform Research Group at UIUC

Strict Persistency

• Every write is followed
by a flush.

• Every flush is preceded
by a single write.

Epoch Persistency

• Every epoch is followed
by a flush.

• Consecutive or nested
epochs have barriers
between them.

Strand Persistency

• Different strands
should write to
different addresses.

Persistency Model Violations: Checking Rules

14 Systems Platform Research Group at UIUC

Strict Persistency

• Every write is followed
by a flush.

• Every flush is preceded
by a single write.

Epoch Persistency

• Every epoch is followed
by a flush.

• Consecutive or nested
epochs have barriers
between them.

Strand Persistency

• Different strands
should write to
different addresses.

Classifying Persistency Bugs in NVM Programs

15 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

Persistency Model Violations

Classifying Persistency Bugs in NVM Programs

15 Systems Platform Research Group at UIUC

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Performance Bugs

Performance Bugs: Flushing Unmodified Data

16 Systems Platform Research Group at UIUC

pi_task_construct from PMDK

Performance Bugs: Flushing Unmodified Data

16 Systems Platform Research Group at UIUC

pi_task_construct from PMDK

Persist entire object
when only one field
is modified.

Performance Bugs: Flushing Unmodified Data

16 Systems Platform Research Group at UIUC

pi_task_construct from PMDK

Flushing unmodified data hurts performance!

Persist entire object
when only one field
is modified.

Performance Bugs: Redundant Write-Backs of Data

17 Systems Platform Research Group at UIUC

nvm_free from NVM-Direct

Performance Bugs: Redundant Write-Backs of Data

17 Systems Platform Research Group at UIUC

nvm_free from NVM-Direct

Performance Bugs: Redundant Write-Backs of Data

17 Systems Platform Research Group at UIUC

nvm_free from NVM-Direct

Flushing twice in a row.

Performance Bugs: Redundant Write-Backs of Data

17 Systems Platform Research Group at UIUC

nvm_free from NVM-Direct

Flushing twice in a row.

Redundant flushing does not affect correctness and hurts performance!

Performance Bugs: Transactions without Updates

18 Systems Platform Research Group at UIUC

pm_invaders from PMDK examples

Performance Bugs: Transactions without Updates

18 Systems Platform Research Group at UIUC

pm_invaders from PMDK examples

Persist alien object

Performance Bugs: Transactions without Updates

18 Systems Platform Research Group at UIUC

pm_invaders from PMDK examples

Persist alien object

Object is unmodified if
condition is false!

Performance Bugs: Transactions without Updates

18 Systems Platform Research Group at UIUC

pm_invaders from PMDK examples

Transactions without updates enforce unnecessary orderings!

Persist alien object

Object is unmodified if
condition is false!

Performance Bugs: Checking Rules

19 Systems Platform Research Group at UIUC

Flushing Unmodified Data

Redundant Write-Backs of
Updated Data

Durable Transactions Without
Updates

Performance Bugs: Checking Rules

19 Systems Platform Research Group at UIUC

Flushing Unmodified Data

Redundant Write-Backs of
Updated Data

Durable Transactions Without
Updates

Every flush should have a
preceding write

Performance Bugs: Checking Rules

19 Systems Platform Research Group at UIUC

Flushing Unmodified Data

Redundant Write-Backs of
Updated Data

Durable Transactions Without
Updates

Every flush should have a
preceding write

Consecutive flushes should not
flush the same address

Performance Bugs: Checking Rules

19 Systems Platform Research Group at UIUC

Flushing Unmodified Data

Redundant Write-Backs of
Updated Data

Durable Transactions Without
Updates

Every flush should have a
preceding write

Consecutive flushes should not
flush the same address

Every transaction should
contain at least one write

Classifying Persistency Bugs in NVM Programs

20 Systems Platform Research Group at UIUC

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Performance Bugs

Classifying Persistency Bugs in NVM Programs

20 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

Persistency Model Violations

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Performance Bugs

Persistency Models for Non-Volatile Memory

21 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Persistency Models for Non-Volatile Memory

21 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Strict Persistency rules can be checked statically!

Static Analysis

Persistency Models for Non-Volatile Memory

21 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

Detecting data races between strands or epochs requires dynamic analysis!

Static Analysis Dynamic Analysis

Persistency Models for Non-Volatile Memory

21 Systems Platform Research Group at UIUC

Epoch PersistencyStrict Persistency Strand Persistency

The static and dynamic components combine to check all rules

Static Analysis Dynamic Analysis

Detecting Persistency Bugs in NVM Programs

22 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Detecting Persistency Bugs in NVM Programs

22 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Detecting Persistency Bugs in NVM Programs

22 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Can be detected statically!

Detecting Persistency Bugs in NVM Programs

22 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Can be detected statically!

Epoch and Strand
dependencies require
runtime information!

Detecting Persistency Bugs in NVM Programs

22 Systems Platform Research Group at UIUC

• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Can be detected statically!

Epoch and Strand
dependencies require
runtime information!

We introduce a static and dynamic component to check all rules!

Detecting Memory Persistency Bugs with DeepMC

23 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Compile the program into LLVM IR

Detecting Memory Persistency Bugs with DeepMC

23 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Data
Structure

Graph

Control Flow
Graph

Call Graph

Apply data structure analysis!

Adapting Data Structure Analysis to Persistent Objects

24 Systems Platform Research Group at UIUC

Phase 1:
Local Analysis

Create nodes for functions and new variables with edges for dependencies

Adapting Data Structure Analysis to Persistent Objects

24 Systems Platform Research Group at UIUC

Phase 2:
Bottom-Up Analysis

Phase 1:
Local Analysis

Resolve updates occurring in function calls with callee information

Adapting Data Structure Analysis to Persistent Objects

24 Systems Platform Research Group at UIUC

Phase 2:
Bottom-Up Analysis

Phase 1:
Local Analysis

Phase 3:
Top-Down Analysis

Include caller information to finalize the data structure graph

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

omutex excl timeout

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

lk

void: nvm_add_lock_op
tx td stmutex

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

lk

void: nvm_add_lock_op
tx td stmutex

void: nvm_persist1
pers_obj

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

lk

void: nvm_add_lock_op
tx td stmutex

void: nvm_persist1
pers_obj

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

25 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 1: Local Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

lk

void: nvm_add_lock_op
tx td stmutex

void: nvm_persist1
pers_obj

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

26 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 2: Bottom-Up Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

lk

void: nvm_add_lock_op
tx td stmutex

void: nvm_persist1
pers_obj

Data structure graph for nvm_lock

Adapting Data Structure Analysis to Persistent Objects

26 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 2: Bottom-Up Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

void: nvm_persist1
pers_obj

Data structure graph for nvm_lock

lk

Adapting Data Structure Analysis to Persistent Objects

26 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 2: Bottom-Up Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

Data structure graph for nvm_lock

lk

Adapting Data Structure Analysis to Persistent Objects

26 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 2: Bottom-Up Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

Data structure graph for nvm_lock

lk

Adapting Data Structure Analysis to Persistent Objects

27 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 3: Top-Down Analysis

int: nvm_lock
omutex excl timeout

excl timeoutmutex

Data structure graph for nvm_lock

lk

Adapting Data Structure Analysis to Persistent Objects

27 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Phase 3: Top-Down Analysis

int: nvm_lock
omutex excl timeout

Data structure graph for nvm_lock

lk

mutex

Detecting Memory Persistency Bugs with DeepMC

28 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Data
Structure

Graph

Control Flow
Graph

Call Graph

Detecting Memory Persistency Bugs with DeepMC

28 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Data
Structure

Graph

Static
Checking

Rules

Static
Checker

Error
Warnings

+

Control Flow
Graph

Call Graph

Combine with checking rules for static checking

Applying the Data Structure Graph to NVM Programs

29 Systems Platform Research Group at UIUC

...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace
in function A

Local Trace
in function B

Traverse control flow graph in depth-first order

Applying the Data Structure Graph to NVM Programs

29 Systems Platform Research Group at UIUC

...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace
in function A

Local Trace
in function B

Merge Point

Traverse control flow graph in depth-first order

Applying the Data Structure Graph to NVM Programs

29 Systems Platform Research Group at UIUC

...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace
in function A

Local Trace
in function B

Merge

...
write a
write b
...
persist barrier
...
persist barrier

Merged Traces
in function A

Merge Point

Merge function calls into their call sites

Applying the Data Structure Graph to NVM Programs

29 Systems Platform Research Group at UIUC

...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace
in function A

Local Trace
in function B

Merge

...
write a
write b
...
persist barrier
...
persist barrier

Merged Traces
in function A

Split Point
Merge Point

Merge function calls into their call sites

Applying the Data Structure Graph to NVM Programs

29 Systems Platform Research Group at UIUC

...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace
in function A

Local Trace
in function B

Merge

...
write a
write b
...
persist barrier
...
persist barrier

Split

...
write a
write b
...
persist barrier

...
persist barrier

Merged Traces
in function A Traces in function A

Split Point
Merge Point

Split into smaller traces at persistent barriers

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Trace

Applying our Checking Rules to Static Analysis

30 Systems Platform Research Group at UIUC

nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Trace

Split Points

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every write is followed by a flush

Every flush is preceded by a single write

M
od

el
 V

io
la

ti
on

s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Applying our Checking Rules to Static Analysis

31 Systems Platform Research Group at UIUC

Strict Persistency Checking Rules

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state

Fence 11 state

Traces

Every flush should have a preceding write

Flushes should flush different addresses

Transactions must have at least one write

Every write is followed by a flush

Every flush is preceded by a single write

Pe
rf

or
m

an
ce

 B
ug

s
M

od
el

 V
io

la
ti

on
s

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Higher Possible Performance

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Higher Possible Performance

Read-after-Write Dependencies

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Higher Possible Performance

Read-after-Write Dependencies

Write-after-Write Dependencies

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Dynamic Analysis

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Dynamic Analysis

High Overhead

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Dynamic Analysis

High Overhead

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Dynamic Analysis

High Overhead

Use DSG to track only
persistent objects!

Dynamic Analysis for Epoch and Strand Persistency

32 Systems Platform Research Group at UIUC

Dynamic Analysis

High Overhead

Use DSG to track only
persistent objects!

Reuse existing library
annotations!

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

Start tracking upon epoch annotations.

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

Only include persistent object in the shadow segment

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

x:1,2

u:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

x:1,2

u:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

x:1,2

End tracking with end of epochs

u:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

x:1,2

u:2

Checking for Epoch and Strand Violations

33 Systems Platform Research Group at UIUC

begin_epoch;
x = a;
y = b;
barrier;
z = x + y;
end_epoch;

begin_epoch;
w = c;
v = d;
barrier;
u = x + v*w;
end_epoch;

Epoch 1 Epoch 2

u

v

w

x

y

z

Shadow Segment

x:1

y:1

z:1

w:2

v:2

x:1,2

Accesses to x race and should be ordered!

u:2

Detecting Memory Persistency Bugs with DeepMC

34 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Data
Structure

Graph

Static
Checking

Rules

Static
Checker

Error
Warnings

+

Control Flow
Graph

Call Graph

Detecting Memory Persistency Bugs with DeepMC

34 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Automated
Code

Annotation

Dynamic
Analysis

Strand
Persistency
WarningsInstrumented

Program+

Dynamic component to catch strand persistency violations

Detecting Memory Persistency Bugs with DeepMC

34 Systems Platform Research Group at UIUC

NVM
Program LLVM IR

Data
Structure

Graph

Static
Checking

Rules

Static
Checker

Automated
Code

Annotation

Dynamic
Analysis

Error
Warnings

Strand
Persistency
WarningsInstrumented

Program

+

Control Flow
Graph

Call Graph

+

DeepMC
Implementation

34

DeepMC
Implementation

34

Static Analysis
13k LoC on top of LLVM/Clang

Dynamic Analysis
450 LoC on top of ThreadSanitizer

DeepMC
Implementation

34

Experimental
Setup

Static Analysis
13k LoC on top of LLVM/Clang

Dynamic Analysis
450 LoC on top of ThreadSanitizer

Server
8 Intel Xeon(R), 3.3 GHz

16GB Main Memory
Ubuntu 18.04, Linux kernel 5.0

Clang/Clang++ 7.0.0, O3 optimization

Workloads
Memcached, Redis, Nstore

PMDK, PMFS, NVM-Direct, Mnemosyne

New Persistency Bugs

36 Systems Platform Research Group at UIUC

New Persistency Bugs

36 Systems Platform Research Group at UIUC

24 new bugs, 18 confirmed1

New Persistency Bugs

36 Systems Platform Research Group at UIUC

24 new bugs, 18 confirmed
8 model violations, 16 performance bugs

1
2

New Persistency Bugs

36 Systems Platform Research Group at UIUC

24 new bugs, 18 confirmed
8 model violations, 16 performance bugs

1
2

New Persistency Bugs

36 Systems Platform Research Group at UIUC

24 new bugs, 18 confirmed
8 model violations, 16 performance bugs
18 statically detected, 6 dynamically detected

1
2
3

New Persistency Bugs

36 Systems Platform Research Group at UIUC

24 new bugs, 18 confirmed
8 model violations, 16 performance bugs
18 statically detected, 6 dynamically detected
Common performance bug was flushing unmodified data!

1
2
3
4

Impact of DeepMC on Performance

37 Systems Platform Research Group at UIUC

Static analysis introduces minimal compilation overhead

Impact of DeepMC on Performance

37 Systems Platform Research Group at UIUC

Dynamic analysis adds minimal performance overhead!

0

50

100

150

200

250

50% Update 5% Update 100% Read 5% Insert 50% R-M-W

Th
ro

ug
hp

ut
 (K

 T
PS

)
Memcached DeepMC

Limitations of DeepMC

38 Systems Platform Research Group at UIUC

Lack of dynamic
context for DSA

Certain memory references cannot be resolved statically!

Limitations of DeepMC

38 Systems Platform Research Group at UIUC

Approved violations
of the model

Lack of dynamic
context for DSA

Programmers may violate the model intentionally for performance

Limitations of DeepMC

38 Systems Platform Research Group at UIUC

Approved violations
of the model

Lack of dynamic
context for DSA

Checking rules can be
further enriched

Checking rules can be enriched as models are added and refined

DeepMC
Summary

39

DeepMC
Summary

39

Study Bugs in NVM Programs

DeepMC
Summary

39

Study Bugs in NVM Programs

Develop Static and
Dynamic Detection Tools

DeepMC
Summary

39

Study Bugs in NVM Programs

Develop Static and
Dynamic Detection Tools

Discover 24 new persistency bugs
in NVM Programs

Thank You!

Benjamin Reidys, Jian Huang
breidys2@illinois.edu

Systems Platform Research Group

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182

