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Out-of-Order Execution

Persistence/Performance Tradeoff
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Writes must be persisted in program order!

Strong Persistency Guarantees
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Low Performance!
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between 
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begin_epoch
A
B
end_epoch
begin_epoch
C
end_epoch

Writes can be concurrent within an epoch!

Enables Higher Concurrency

Relaxed Persistency Guarantees

Improved Performance!

Ordering enforced 
between epochs!

Concurrency 
within an epoch!
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begin_strand
B
begin_strand
A
barrier
C

Writes can be reordered within and across strands!

Difficult to program correctly

Highest Possible Performance
Order within 
strand!

No false 
dependencies!
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Epoch PersistencyStrict Persistency Strand Persistency

Guide developers 
in NVM 
programming

NVM Programs

Does my program 
correctly follow the 
model specifications?
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Select programs from open source framework 
PMDK, PMFS, and NVM-Direct

Manually study 19 representative persistency bugs
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We analyze each bug and discover they fall into two categories: 
Model Violations [V] or Performance Bugs [P]. 
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hashmap from PMDK 
using strict persistency

nbuckets initialized 
on line 3

nbuckets is not 
persisted until line 6

Crash between lines 4 and 6 results in inconsistency!
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Object is updated without logging and is not persisted!

btree_map from PMDK 
using epoch persistency

items is not logged in 
the transaction
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nvm_create_region from NVM-Direct 
using strict persistency

No persist barrier to 
enforce ordering

Object is flushed but ordering is not enforced with persist barrier
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pi_task_construct from PMDK

Flushing unmodified data hurts performance!

Persist entire object 
when only one field 
is modified.
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nvm_free from NVM-Direct

Flushing twice in a row.

Redundant flushing does not affect correctness and hurts performance!
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pm_invaders from PMDK examples

Transactions without updates enforce unnecessary orderings!

Persist alien object

Object is unmodified if 
condition is false!
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Flushing Unmodified Data

Redundant Write-Backs of 
Updated Data

Durable Transactions Without 
Updates

Every flush should have a 
preceding write

Consecutive flushes should not 
flush the same address

Every transaction should 
contain at least one write
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Epoch PersistencyStrict Persistency Strand Persistency

The static and dynamic components combine to check all rules

Static Analysis Dynamic Analysis
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• Unflushed/Unlogged Writes

• Semantic Mismatch

• Missing Persist Barrier

• Redundant Write-backs of Data

• Flushing Unmodified Data

• Durable Transactions without Updates

Can be detected statically!

Epoch and Strand 
dependencies require 
runtime information!

We introduce a static and dynamic component to check all rules!
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NVM 
Program LLVM IR

Data 
Structure 

Graph

Control Flow 
Graph

Call Graph

Apply data structure analysis!
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Phase 2:
Bottom-Up Analysis

Phase 1:
Local Analysis

Phase 3:
Top-Down Analysis

Include caller information to finalize the data structure graph
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nvm_lock from NVM-Direct

Phase 3: Top-Down Analysis

int: nvm_lock
omutex excl timeout

Data structure graph for nvm_lock

lk

mutex
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NVM 
Program LLVM IR

Data 
Structure 

Graph

Static 
Checking 

Rules

Static 
Checker

Error 
Warnings

+

Control Flow 
Graph

Call Graph

Combine with checking rules for static checking
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...
write a
call function B()
...
persist barrier

write b
...
persist barrier

Local Trace 
in function A

Local Trace 
in function B

Merge

...
write a
write b
...
persist barrier
...
persist barrier

Split

...
write a
write b
...
persist barrier

...
persist barrier

Merged Traces 
in function A Traces in function A

Split Point
Merge Point

Split into smaller traces at persistent barriers
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nvm_lock from NVM-Direct

Op Line Obj

Write 4 state

Flush 5 state

Fence 5 state

Write 6 owners

Flush 7 owners

Fence 7 owners

Write 9 new_level

Write 10 state

Flush 11 state
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High Overhead

Use DSG to track only  
persistent objects!

Reuse existing library 
annotations!
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Experimental 
Setup

Static Analysis
13k LoC on top of LLVM/Clang

Dynamic Analysis
450 LoC on top of ThreadSanitizer

Server
8 Intel Xeon(R), 3.3 GHz

16GB Main Memory
Ubuntu 18.04, Linux kernel 5.0

Clang/Clang++ 7.0.0, O3 optimization

Workloads
Memcached, Redis, Nstore

PMDK, PMFS, NVM-Direct, Mnemosyne
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24 new bugs, 18 confirmed
8 model violations, 16 performance bugs
18 statically detected, 6 dynamically detected
Common performance bug was flushing unmodified data!

1
2
3
4
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Dynamic analysis adds minimal performance overhead!
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Approved violations 
of the model

Lack of dynamic 
context for DSA

Checking rules can be 
further enriched

Checking rules can be enriched as models are added and refined
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DeepMC
Summary

39

Study Bugs in NVM Programs

Develop Static and 
Dynamic Detection Tools

Discover 24 new persistency bugs 
in NVM Programs



Thank You!

Benjamin Reidys, Jian Huang
breidys2@illinois.edu

Systems Platform Research Group
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