
The Security War in File Systems: An Empirical Study from A
Vulnerability-Centric Perspective
JINGHAN SUN, University of Illinois at Urbana-Champaign, USA

SHAOBO LI, University of Illinois at Urbana-Champaign, USA

JUN XU, University of Utah, USA

JIAN HUANG, University of Illinois at Urbana-Champaign, USA

This paper presents a systematic study on the security of modern file systems, following a vulnerability-centric

perspective. Specifically, we collected 377 file system vulnerabilities committed to the CVE database in the

past 20 years. We characterize them from four dimensions that include why the vulnerabilities appear, how

the vulnerabilities can be exploited, what consequences can arise, and how the vulnerabilities are fixed. This

way, we build a deep understanding of the attack surfaces faced by file systems, the threats imposed by the

attack surfaces, and the good and bad practices in mitigating the attacks in file systems. We envision that

our study will bring insights towards the future development of file systems, the enhancement of file system

security, and the relevant vulnerability mitigating solutions.

CCS Concepts: • Security and privacy → File system security; • Information systems → Storage

management.

ACM Reference Format:

Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang. 2023. The Security War in File Systems: An Empirical

Study from A Vulnerability-Centric Perspective. ACM Trans. Storage 1, 1 (September 2023), 26 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
After decades of development since the 1960s, file systems have become a core component in nearly

all computer systems. Working as the direct interfaces to user data and typically running at a high

privilege, file systems are highly security-sensitive. This has incentivized the creation of various

techniques to harden the security of file systems, ranging from formal verification [21, 23, 75, 91]

to access control [31, 77] and sanity checking [35, 42, 54].

Despite the above efforts, the security of file systems is still frequently compromised [9, 76],

causing damages such as data breaches and hijacked execution. In addition, attackers often exploit

vulnerabilities in file systems to launch ransomware attacks, affecting hundreds of victims and

costing tens of millions of dollars [81, 93]. To gain insights towards changing this situation, it is

beneficial to build a systematic understanding of the security of file systems, from angles such

as the attack surfaces [60, 85] in file systems and the threats imposed by the attack surfaces. Past

studies [49, 64] on file systems mostly focus on functionality-related perspectives, failing to provide

the desired security-centric understanding. Prior studies [16, 49] took an initial effort to investigate

Authors’ addresses: Jinghan Sun, js39@illinois.edu, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,

61820; Shaobo Li, shaobol2@illinois.edu, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61820; Jun Xu,

junxzm@cs.utah.edu, University of Utah, Salt lake City, Utah, USA, 84102; Jian Huang, jianh@illinois.edu, University of

Illinois at Urbana-Champaign, Urbana, Illinois, USA, 61820.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1553-3077/2023/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

the filesystem bugs and security in Linux. However, they targeted solely generic file systems,

with a focus on the causes and consequences, which lacks an analysis of the whole lifecycle of

the vulnerability exploitation and fixes. And we believe a thorough understanding of the attack

exploitation procedure in file systems could help developers to advance the design principles and

implementation strategies of file systems.

In this paper, we present an in-depth study on the security of various file systems, aiming to

fundamentally understand the entire vulnerability exploitation procedure and possible fix strategies.

Specifically, our study centers around addressing the following questions:

• Q1: What are the major attack surfaces in file systems?
• Q2: What are the threats posed by the attack surfaces?
• Q3: What are the common approaches to exploiting these attack surfaces by attackers?
• Q4: How are the attack surfaces fixed?

Methodology: To answer the above questions, our study takes a vulnerability-centric approach

with a focus on the reported file system vulnerabilities. We examined the full exploitation paths of

vulnerabilities, including their root causes, exploitation techniques, and the methods used to fix

them. In total, we collected 377 file system vulnerabilities committed to the CVE database [33] in the

past 20 years. They reported explicit security implications and covered nearly all the mainstream

file systems (generic file systems like Ext4 [52], XFS [82], and F2FS [44], mobile file systems like
HFS [38] and APFS [12], and networked file systems like NFS [58], GlusterFS [29], and Ceph [19]).

We manually analyzed the 377 vulnerabilities and sought answers to questions Q1 - Q4. First,
we investigated the root causes of the vulnerabilities by analyzing the vulnerable code and the

corresponding patch(es). We then categorized the vulnerabilities based on their root causes. This

enabled us to gain an understanding of the attack surfaces opened by the filesystem vulnerabilities

and the characteristics of the attack surfaces (answering Q1). Second, we manually and statically

reasoned the possible execution paths to exploit the vulnerabilities. In this process, we summarized

the potential threats that adversaries can bring by following those exploiting paths (answering
Q2 and Q3). Finally, we surveyed the patches to the vulnerabilities, unveiling the good and bad

practices in mitigating the attack surfaces (answering Q4). Throughout the study, we derived a set

of findings. We summarize the major ones that help answer Q1-Q4 as follows.
Attack surfaces: Vulnerabilities in file systems are diverse in types. Although 27% of the vulnera-

bilities are of general kinds that may appear in other software systems (e.g., memory errors and

race conditions), a unique cause of these general vulnerabilities is the addition of new features,

such as crash-consistency models into file systems. The remaining vulnerabilities are unique to file

systems but attributed to different reasons:

• (1) 29% are rooted in sanity checks that are used to validate the states of various file system

properties (e.g., namespace, inode attributes, and file category). The sanity checks are highly

semantic related, whose implementation is complicated and often leads to vulnerabilities.

• (2) 15% are due to the lack of permission checks or incorrect access control. Similar to sanity

checks, permission checks and access control are semantic dependent and highly complex. Their

buggy implementations largely turn into permission and access-related vulnerabilities.

• (3) 18% are introduced when the functionality is extended to support the use environments

of specific file systems. For instance, many vulnerabilities appear in encryption mechanisms

adopted by mobile file systems to defend against physical attacks.

Threats and their exploitation procedure: File systems vulnerabilities are dangerous. As we

will illustrate later in Figure 6, file system vulnerabilities pose a similar security threat level to that

of vulnerabilities in other OS components. The specific consequences after exploiting file system

vulnerabilities vary across vulnerability types.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 3

• (1) Exploiting general types of vulnerabilities (e.g., memory errors) in file systems can largely

cause their common sequences, such as denial-of-service (DoS) and hijacked execution. An

interesting observation is that general vulnerabilities in file systems can more often lead to data

leakage because file systems directly deal with user data.

• (2) Exploiting erroneous sanity checks can also lead to DoS but more often data leakage, which

allows attackers to initiate further attacks such as privilege escalation and permission bypass.

• (3) Exploiting lack of permission checks or incorrect access control produces more predictable

consequences, often including permission bypass and privilege escalation as well as subsequent

damages such as data leakage and data corruption.

• (4) Exploiting the remaining vulnerabilities typically causes consequences pertaining to the use

contexts of the file systems. For instance, exploiting vulnerabilities in the encryption modules

of mobile file systems often enables physical attacks, while exploiting vulnerabilities in the

networking management of network file systems usually leads to code injection attacks.

Fixes with patches: File system patches are diverse in both complexity and functionality. 56%

of the patches only change less than 10 lines of code, using simple operations such as adding a

boundary check and fixing a syntax error (see the details in Figure 8). In contrast, around 20% of the

patches bring modifications to over 50 lines of code, involving complex behaviors ranging from full

validation of data structures to fixes in multiple components. The majority of existing and current

patches work in an ad-hoc style. For instance, the patches to many race conditions simply make the

responsible operations atomic. These ad-hoc patches can heal the target vulnerabilities, but they

fail to prevent similar vulnerabilities from emerging or fundamentally mitigate them. Nevertheless,

our study identifies positive signs. Strategies to enforce preventive and secure-by-design patching

are arising. For instance, many patches of race conditions switch from lock-based implementations

to lock-free implementations, fundamentally eliminating issues like deadlocks. File systems are

also often correlated, so as their patches. In particular, a patch to the VFS subsystem often requires

updating the underlying file systems. Otherwise, the patch may not come into effect. However,

today’s practice often overlooks the correlated file systems when patching the target ones, thus

leading to insecure patches.

Contributions: Our main contributions are as follows.

• We perform the first in-depth study on the security of file systems, from a vulnerability-centric

perspective. The study unveils the attack surfaces of file systems, followed by demystifying the

root causes and threats of the attack surfaces.

• We present 21 previously-unknown findings throughout the study. Besides facilitating a deeper

understanding of the attack surfaces, the findings also reveal how the development of file systems

influences or even impedes security.

• We distill 7 insights from the results and findings of the study. The insights point out the

deficiencies in today’s practice of addressing security threats faced by file systems and also bring

up a set of guidance towards improvements.

2 STUDY METHODOLOGY
Our study aims to understand the attack surfaces in file systems, from the perspectives summarized

as Q1 - Q3. To support the study, we consider public vulnerabilities as the data source. In comparison

to other applicable data sources such as attacks that happened in the past, vulnerabilities are more

accessible and more abundant.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

4 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

Table 1. File systems covered in our study.1

Type File Systems # of CVE

Generic Ext4, VFS, XFS, F2FS, BtrFS, profs, Ext2, Ext3, tmpfs, ReiserFS, JFS 178

Mobile HFS/HFS+, APFS, F2FS, eCryptFS 57

Networked NFS, OpenAFS, GlusterFS, CephFS, HDFS 142

Total – 377

2000 2004 2008 2012 2016 2020
Year

0

20

40

60

80

100

120

N
um

be
r

of
 C

VE
s

Generic FS
Mobile FS

Networked FS
Total

Fig. 1. Distribution of vulnerabilities over the past twenty years.

2.1 Data Collection
We collected file system vulnerabilities from the CVE database [33].We considered the CVE database

for three reasons. First, the CVE reports are reviewed and confirmed by trustworthy parties (major

IT vendors, security companies, and research organizations [7]) and thus, offer high reliability.

Second, the CVE reports largely provide important details, such as root cause information and

patch information. Such details are helpful for us to answer Q1 - Q3. Third, the CVE reports are

large in number and diverse in terms of sources, which should properly reflect the overall situation.

Specifically, we examined the CVE reports committed in the past 20 years (January 1999 to

December 2020) and identified those associated with mainstream file systems. They cover most

of the widely deployed open-sourced file systems, as illustrated in Table 1. Older reports were

omitted since they may not represent what is happening at present. We further refined the reports

to only keep those carrying information about or giving references to the following three criteria:

(i) location of the vulnerable code, (ii) analysis of the root cause (comprehensive or brief), (iii)

possible exploitation of the vulnerability and subsequent consequences (which will be verified

following our approach in §2.2). We present below an example CVE report (CVE-2018-1094) that
includes the three aforementioned criteria:

The ext4_fill_super function in fs/ext4/super.c (criterion i, location of code) in the
Linux kernel through 4.15.15 does not always initialize the crc32c checksum driver (crite-
rion ii, root cause), which allows attackers to cause a denial of service (criterion iii,

consequence) via a crafted ext4 image.
In total, we filtered out 35 CVEs, and kept 377 CVEs that cover the three criteria. We present

their distribution across time in Figure 1. We also collected the patches to these CVEs to further

understand the strategies used to fix the vulnerabilities. Among all CVEs, 62% of them have

open-sourced their patches, which facilitates our analysis.

2.2 Vulnerability Analysis
We ran three analyses on each of the 377 vulnerabilities.

1
VFS (Virtual File System) [4] is a software layer that lies between the operating system kernel and the actual file system

implementations, providing a unified interface to access different file systems. A VFS vulnerability is not exploited alone

but together with its underlying generic file systems. NFS (Network File System [58]) is a network protocol that allows

computers to access files over a network. In our study, we cover both of its NFSv3 and NFSv4 implementations.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 5

1 int xfs_ioc_fsgetxattr(xfs_inode_t *ip,int attr,...){
2 struct fsxattr fa;
3 + memset(&fa, 0, sizeof(struct fsxattr));
4 // data structure ``fa'' is uninitialized before patching
5 xfs_ilock(ip, XFS_ILOCK_SHARED);
6 fa.fsx_xflags = xfs_ip2xflags(ip);
7 if (copy_to_user(arg, &fa, sizeof(fa)))
8 return -EFAULT;
9 }

Fig. 2. An uninitialized memory vulnerability in XFS and its patch (CVE-2010-3078).

Root cause analysis. The first analysis focuses on understanding the root cause of a CVE report.

In this analysis, we first extract descriptions of the root causes from the report and then verify the

description through interpretation of the vulnerable code and its patch.

Exploitation analysis. Following the root cause analysis, we aim to understand the possible

exploitation of a vulnerability and the subsequent consequences. One common approach is to

reproduce the existing proof-of-concept (PoC) exploits against the vulnerability [56]. These PoC

exploits trigger simulated attacks with test programs, and reproduce the consequences to expose

the system weakness. However, PoC exploits are not available for most of the CVE reports due to

security concerns.

In our study, we use a more generic and lightweight approach. We first parse the description

in a CVE report to retrieve the reported exploitation and its consequences. We then reason the

vulnerable code to identify execution paths that can verify the description. Specifically, an execution

path successfully verifying the exploitation must meet the following conditions:

• The execution path covers a feasible route from a user-space interface to the vulnerable code.

• The execution path covers a feasible route to triggering the vulnerability.

• The execution path covers a feasible route from triggering the vulnerability to causing the

described consequence(s).

If no such execution paths can be identified for a CVE report, we skip the report. The example in

Figure 2 illustrates our approach. In the example, a local data structure fa (declared at line 2) is not

fully initialized before it is copied to user space at line 7. The CVE report says “It allows local users
to obtain potentially sensitive information from kernel stack memory via an ioctl call”.We find that

any execution path first opening a legitimate file in an XFS file system and then calling ioctl (with

XFS_IOC_FSGETXATTR) on the opened file will trigger the vulnerability, and leak data from the

kernel stack. This way the exploitation and the consequence are considered verified.

Patch analysis. The last analysis examines the patches to file system vulnerabilities. One goal

is to understand the strategies used by the existing patches (e.g., ad-hoc or systematic). This way,

we expect to unveil whether today’s practice of file system patching can help fundamentally resolve

the issues of vulnerabilities. Another goal of the analysis is to summarise the aspects overlooked

by file system developers when patching vulnerabilities. We anticipate bringing related evidence to

incentivize broader attention to those aspects.

2.3 Discussion of Study Validity
While we carefully designed our methodology, our study may have several limitations. First, similar

to other sampling-based studies, our study can miss certain types of vulnerabilities. Thus, our

findings might be biased towards the collected samples. To mitigate the issue, we include as many

types of popular file systems as possible in our CVE dataset, from generic file systems ext4 [52]

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

6 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

Table 2. Summary of file system vulnerabilities. M: Memory Errors; C: Concurrency Issues; S: Sanity Check
Errors; P: Permission Errors; N: Network Errors; O: Others (e.g., hash collisions like CVE-2014-7283).

File Systems Vulnerabilities

Type Name

Release

Time

#CVEs M C S P N O

Generic

JFS [2] 1990 4 50% 0% 50% 0% 0% 0%

Ext2 [18] 1993 7 14% 14% 43% 14% 0% 14%

XFS [82] 1993 23 30% 4% 35% 4% 0% 26%

VFS [4] 1995 28 18% 11% 40% 18% 0% 14%

procfs [55] 1999 18 22% 6% 11% 22% 0% 39%

ReiserFS [5] 2000 5 40% 0% 40% 20% 0% 0%

Ext3 [80] 2001 11 9% 0% 36% 18% 0% 36%

tmpfs [78] 2001 6 17% 0% 17% 33% 0% 33%

Ext4 [52] 2008 45 13% 4% 49% 4% 0% 24%

Btrfs [68] 2009 13 15% 8% 38% 31% 0% 8%

F2FS [44] 2012 18 11% 11% 56% 6% 0% 17%

Total 178 19% 6% 39% 13% 0% 22%

Mobile

HFS/HFS+ [38] 1985 8 25% 0% 75% 0% 0% 0%

eCryptFS [36] 2006 16 44% 0% 25% 19% 0% 13%

F2FS [44] 2012 11 36% 0% 45% 9% 0% 9%

APFS [12] 2016 4 25% 25% 25% 25% 0% 0%

Others – 18 22% 17% 33% 6% 0% 22%

Total 57 32% 7% 39% 11% 0% 12%

Networked

NFS [63] 1984 72 17% 7% 13% 20% 24% 19%

GlusterFS [29] 2005 18 16% 0% 11% 11% 39% 22%

OpenAFS [3] 2006 27 44% 4% 11% 11% 22% 7%

HDFS [37] 2006 6 0% 0% 33% 67% 0% 0%

CephFS [84] 2012 19 16% 0% 16% 21% 26% 21%

Total 142 21% 4% 13% 19% 25% 16%

to networked file systems GlusterFS [29] and HDFS [37]. Our study also does not aim to discover

uncaught vulnerabilities in file systems. Second, we verify the exploitation of a vulnerability and the

consequences through static reasoning. Unlike PoC exploits, static reasoning does not guarantee

the fidelity of the results. As such, we may present underestimated/exaggerated/erroneous threats

of the vulnerabilities. To mitigate this issue, we document the execution paths identified to exploit

the vulnerability and then have another person review and vet the execution paths. Any execution

paths that raise discrepancy are discarded. Third, the analysis of the patches can often require deep

domain knowledge. Lack of such knowledge will lead to misunderstanding about the patches. To

mitigate the problem, we only allow authors whose research focus is file/storage system to look at

the patch and again, we have multiple authors vet the results.

Similar to prior characteristic studies that may suffer from limitations of sampling, we make

our best effort to collect the available vulnerabilities. Given that we focus on popular file systems

developed over the past two decades, we believe the limitations do not invalidate our study results.

We also encourage readers to focus on the attack procedure behind each case rather than the precise

numbers, since a single vulnerability can cause massive severe damages.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 7

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
0

20

40

%
 o

f m
em

or
y

bu
gs

 o
f

ge
ne

ric
 fi

le
 sy

st
em smoothed curve distribution

CPG
JANUS

Fig. 3. Distribution of memory errors reported from file systems over time. The deployment of JANUS [88]
and Code Property Graph (CPG) [89] led to spikes of reported memory bugs in 2013 and 2018.

3 TAXONOMY OF FILE SYSTEM VULNERABILITIES
We present the breakdown of file system vulnerabilities in Table 2, and their distribution over

time in Figure 1. Popular file systems tend to have more CVEs. For example, the popular Linux file

system ext4 [52] has the largest number of vulnerabilities reported. To facilitate our study, we first

build a deeper understanding of the categories of vulnerabilities. We categorize the vulnerabilities

into two types:

• Generic vulnerabilities – vulnerabilities that can appear in any kind of software systems. The

major types include memory errors and race conditions.

• Semantic vulnerabilities – vulnerabilities that are unique to file system design and implementation.

These vulnerabilities are mostly caused by errors related to file system semantics, such as

violations to the file system permission model or missing sanity checks to the metadata structures.

The categorization brings a set of statistical findings and interesting observations. We summarize

our findings as follows:

F-1: Generic vulnerabilities are common in file systems (>27%) but present positive signs.

And there has been a misconception that generic vulnerabilities are decreasing as file

systems become mature. Our study reveals that there would be a significant amount of deep

memory and concurrency vulnerabilities that can be detected with advanced bug-finding tools, as

shown in Table 2. Generic vulnerabilities account for a significant portion of the vulnerabilities in

file systems. In particular, memory errors and concurrency issues led to 21.7% and 5.5% of all the

vulnerabilities, respectively. The numbers are not surprising since file systems are largely developed

in memory unsafe languages (e.g., C/C++) and widely support concurrency.

There is no doubt that the above numbers give the important message that generic vulnerabilities

still constitute a major attack surface in file systems. We cannot overlook generic vulnerabilities,

since we do observe a gradual rise in memory errors after 2012 (see Figure 3). Various bug-finding

tools (e.g., JANUS [88] in 2018 and Code Property Graph [89] in 2013) also emerged in recent years.

Real-world deployment of these tools since 2012 has been disclosing more generic vulnerabilities

in file systems. Consider Figure 3 as an example. Code Property Graph [89] and JANUS [88], after

deployment, discover a surge of memory errors in generic file systems. JANUS applies fuzzing

techniques to file system vulnerability detection by mutating file system images and manipulating

file system operations as the input to the fuzzer. The large search space of fuzzing helps detect deep

memory errors that cannot be manually tested via hand-crafted images (e.g., CVE-2018-10880).
This could encourage researchers to apply other advanced bug detection tools to file systems.

F-2: Semantic vulnerabilities are the dominant category of vulnerabilities in file systems

(43%). File systems involve highly complex semantics for reliable and efficient file management.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

8 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

2004 2008 2012 2016 2020
Year

0
10
20
30
40
50
60

%
 o

f V
ul

ne
ra

bi
lit

y
Ty

pe
s

Generic (M + C) Semantic (S + P)

Fig. 4. Distribution of vulnerabilities across time. Generic vulnerabilities are stabilizing and semantic vulnera-
bilities present an increasing trend.

Implementation of the semantics is challenging and often error-prone, bringing the dominant

category of vulnerabilities. There are two major sources leading to semantic vulnerabilities, sanity

checks and file permissions. We separately discuss them in the following.

Sanity checks. File systems maintain a mass of semantic-related states, such as file system

namespace, inode attributes, cache consistency, and so on. Missing sanity checks on the states is a

major way of introducing vulnerabilities. For instance, the implementations of the journaling in

Ext2 and Ext3 never validate the journal superblock before reading it, which can cause an assertion

or even kernel corruption (CVE-2011-4132). Erroneous sanity checks on the states is another way

of introducing vulnerabilities. For example, the f2fs utilities before version 1.12.0 has a logical flaw

when validating the sanity of the superblock (CVE-2020-6070). The logical flaw can lead to bypass

of validation and even user-controlled execution. In total, missing sanity checks and erroneous

sanity checks caused 29% of the total vulnerabilities in file systems.

File permissions. File permissions are indispensable to the protection of user data. To enforce

file permissions, file systems rely on standard permission models (e.g., u/g/o:r/w/x1) and access

control list (ACL) (e.g., POSIX ACLs) to manage accesses. The actual implementations of permission

models and ACL, however, often miss or add insufficient permission checks, leading to 15% of the

vulnerabilities in file systems. For example, ReiserFS misses permission checks on the accesses to

the directory storing file attributes (i.e., xattrs) (CVE-2010-1146). This enables any user to access

or modify the attributes of files that are not allowed.

In contrast to generic vulnerabilities, semantic vulnerabilities are more concerning today. On

the one hand, most of the semantic vulnerabilities seem to be discovered in an ad-hoc manner. We

did not identify many tools that can systematically detect semantic vulnerabilities. While some

generic tools, like the fuzzing-based JANUS, do help find semantic vulnerabilities, they are still

better at detecting generic vulnerabilities as they often lack domain-specific guidance to capture

semantic vulnerabilities. On the other hand, as shown in Figure 4, the number of reported semantic

vulnerabilities is clearly increasing over time. This might be attributed to that more file systems are

included in our study as time moves forward or that the number of hidden semantic vulnerabilities

is significantly large. But either way, the trend implies an increasing threat posed by semantic

vulnerabilities in file systems.

1
In the notation, "u", "g", and "o" represent three user classes: the owner user, the users in the file’s group, and other users,

respectively. Permission-symbols "r", "w", and "x" represent permission settings of three operations: "read", "write", and

"execute", respectively.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 9

Table 3. Distribution of vulnerabilities caused by different features in block management. Only representative
file systems are selected. The numbers are per file system.

File

Systems

#CVEs Extent Extended

Attribute

Delayed

Allocation

Flex/Meta

Block Group

Inline

Data

Ext4 [52] 45 29% 13% 4% 16% 6%

XFS [82] 23 6% 16% - - -

F2FS [44] 18 - 6% - - -

JFS [2] 4 - 25% - - -

Summary: Both generic vulnerabilities and semantic vulnerabilities open large attack surfaces in

file systems. However, generic vulnerabilities preset a seemingly improving trend while semantic

vulnerabilities show the opposite.

Insight-1: To heal the attack surfaces of file systems, more efforts should be prioritized to mitigate

semantic vulnerabilities. In particular, it is wise to explore tools that can systematically unveil

semantic vulnerabilities.

Our categorization brings knowledge about the major vulnerabilities to be addressed. However,

it gives few insights into how. To this end, we further investigate which file system functionality

and what file operations introduce the vulnerabilities. In a nutshell, every major functionality of

file systems brings in vulnerabilities, but inode management, block management, and page cache

system brings in more. And a key observation is that extending the existing core functionality with

new features contributed to a substantial number of vulnerabilities. We detail our findings below.

F-3: Inodemanagement is amajor source of introducing vulnerabilities (13% out of Linux

FS).As per our study, inode management is also one of the most vulnerable parts of file systems. One

reason is the complexity in the nature of inode management. Another reason, which is becoming

more dominant, is the increasing need to support newly emerging features such as inline data

blocks and extended attributes. A particular example is Ext4. Unlike Ext2 and Ext3 that uniformly

keep extended attributes in a block, Ext4 supports three on-disk formats to store extended attributes,

including internal inode, additional block, and dedicated inode. In regular cases where the extended

attributes are small, Ext4 simply stores them in the internal inode. However, when the attributes

grow bigger, Ext4 will swap them to an additional block. This type of format adjustment brings

extra complexities and causes multiple vulnerabilities (e.g., CVE-2018-11412). Prior work proposed
isolating metadata structures of unrelated files and directories to avoid failure propagation [50].

And inode replication was also proposed to ensured its fault tolerance [6]. We believe more efforts

should be made to decouple the inode management from other components in file systems.

F-4: Block management incurs a significant portion of vulnerabilities, and presents an

increasing trend. These vulnerabilities could be mitigated by having a more expressive

interface to offload block management to the storage devices. Block management accounts

for 21% of Linux file system vulnerabilities. In Table 3, we present the ratio of vulnerabilities caused

by different features in block management. This is not surprising since block management has

complexity comparable to inode management. Moreover, more features are being integrated into

block management for better efficiency. In particular, recent file systems, such as Ext4 and BtrFS, use

extents instead of direct/indirect blocks to organize file blocks. The codebase of extent management

(7K lines of code) is much larger than that of direct/indirect block organization (1.5K lines of code).

The need for fast indexing, flexible block group [25] and delayed block allocation all contribute

to the increasing complexity of the block management, and hence result in more vulnerabilities.

Instead of purely relying on the storage software for the block management, we believe that future

file systems should explore an expressive interface to offload the block management tasks to storage

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

10 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

devices. This could not only ease the file system development and verification procedure, but also

isolate its vulnerabilities from the OS kernel. As the hardware resources (i.e., storage processor

and memory capacity) inside storage controllers become more powerful, the device is capable of

handling more management tasks. The most recent work on device-level file systems, such as DevFS

[41] and KEVIN [43], demonstrated the feasibility of offloading the file system functionalities to

storage devices, however, they purely focused on performance improvement. It is highly desirable

to explore the design trade-offs with respect to security enhancement.

F-5: Page cache causes 12% of the vulnerabilities and they could leak sensitive kernel

information. Modern file systems widely use page cache to temporarily store data blocks that

will be flushed to the persistent storage. The use of page cache avoids frequent interactions with

the persistent storage and thus, improves the performance of applications. However, the extra

layer of cache creates new space for vulnerabilities. A major type of such vulnerabilities is caused

by uninitialized cache. Specifically, developers often do not initialize many fields of metadata

structures saved in page cache. Later when the page cache is flushed, the uninitialized fields, whose

memory may still carry sensitive kernel information, will be leaked to the persistent storage (e.g.,

CVE-2005-0400 and CVE-2006-6054). Any user who has access to the block can steal the sensitive

information. As we will discuss in §4, uninitialized memory in cache systems poses higher threats

than uninitialized memory in general, because the former may always propagate to the disk at the

point of flush. Therefore, the memory safety for page cache is especially critical in file systems.

F-6:Crash-consistencymodels for persistent storage often lead to uninitializedmemory.

Many file systems use crash consistency models, such as journaling [80], logging [69], and shadow

paging [39]. For instance, JFS employs a synchronous writing strategy to log the storage opera-

tions and inode. This will ensure that the file system can always recover to a correct state at a

crash. The support of crash-consistency introduces new data structures and requires sophisticated

synchronizations across different components, which involves high complexity and often incurs

vulnerabilities. For example, JFS logs all relevant in-memory data structures but many of them

may not be properly initialized. The uninitialized data may later be written to persistent storage,

resulting in leakage of kernel information (e.g., CVE-2004-0181).

F-7: The mismatch between VFS semantics and file system implementations introduces

vulnerabilities. The correctness of VFS is crucial to the underlying file system. However, it attracts

much less attention than the integrity checking of the actual file system implementations. Operating

systems often incorporate a Virtual File System (VFS), which offers uniform interfaces for user

applications and redirects operations from applications to the underlying file system. For things to

work correctly, the underlying file systemmust follow the specifications of the VFS. This is, however,

often violated and brings many vulnerabilities. VFS vulnerabilities (such as CVE-2015-1420 and
CVE-2015-2925) could affect a wide range of file system implementations. Many fault-tolerant

file system designs, such as EnvyFS [14], also rely upon the correct operations of the VFS layer.

However, existing work mostly focused on the bug detection for each individual file system (e.g.,

ext4, btrfs) [42, 64, 88], and they rarely work on the correctness of the VFS layer [27]. Therefore,

we believe applying bug detection techniques like model checking and fuzzing to VFS could also

significantly improve file system security.

F-8: Functionalities for supporting use-context can become the attack vectors of mobile

and networked file systems. Unlike generic file systems, mobile file systems and networked

file systems need special functionalities to support their use contexts. Implementation of these

functionalities often involves vulnerabilities, which we detail below.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 11

Mobile files systems typically run on portable devices like smart phones, which can easily get

lost and encounter physical attacks. To protect user data under physical attacks, many mobile file

systems introduce encryption mechanisms. For instance, APFS leverages AES-XTS or AES-CBC

to encrypt user files on demand [1]. F2FS, instead of directly providing file encryption, utilizes a

cryptographic stacked file system (eCryptFS) to encrypt data. However, vulnerabilities can arise

in the implementation, often breaking the security of the encryption mechanisms. APFS leaks

encryption keys via the Disk Utility hints (CVE-2017-7149) and APFS allows reading of decrypted

data via Direct Memory Access (CVE-2017-13786). The eCryptFS on Samsung KNOX 1.0 uses a

weak key generation algorithm, which makes brute-force attacks feasible (CVE-2016-1919).
Networked file systems need communication modules based on protocols like HTTP and RPC

to support remote data transfer and access authentication. Many vulnerabilities appear in the

communication modules, due to mishandling of malformed or crafted network packets, such as

zero payloads, crafted packet header, and uninitialized packets. For example, GlusterFS allows RPC

requests to create symbolic links (e.g., gfs3_symlink_req) pointing to file paths in the GlusterFS

volume. This enables adversaries to send crafted RPC to create arbitrary symbolic links in the

storage server and then execute arbitrary code (CVE-2018-10928).

Summary: Core components in file systems, due to their high complexities, contribute a majority

of the vulnerabilities. The situation is worsening because new features are being integrated into

the core components and are building up the complexities.

Insight-2: Different file system components introduce different types of vulnerabilities, which

are often related to their own semantics. This suggests that different tools should be tailored,

in a semantic-aware manner, to detect vulnerabilities in different components. For instance, to

detect uninitialized memory in cache systems, a tool needs to identify not only explicit access

(e.g., by regular file system operations) but also implicit access (e.g., by synchronization of cache

management).

Insight-3: At present, security seems insufficiently considered when new file system features

are added. It is desirable that the trade-off between functionality/efficiency and security is taken

into account before new features are incorporated, particularly in security-sensitive sectors.

References about which new features bring what security issues can be found from F-3 to F-8.
To fundamentally improve the situation, proactive measures, such as regression test [8, 61, 92] on

the new features, must be taken.

4 THREATS OF FILE SYSTEM VULNERABILITIES
Our taxonomy brings insights towards mitigating vulnerabilities in file systems. However, file sys-

tem vendors or distributors may still hesitate to take action because the threats of the vulnerabilities

are unclear to them. In this section, we summarise the threats posed by file system vulnerabilities.

We anticipate bringing evidence to motivate mitigation and bring insights into prioritizing the

mitigation against more dangerous vulnerabilities.

Overall, different vulnerabilities, when exploited, can lead to very diverse consequences. Figure 5

gives an overview of the trajectories from vulnerabilities in different file systems. The major attacks

of generic file systems are caused by incomplete sanity checks which exploit memory errors like

memory corruption and memory contention, which often result in Denial-of-Service (DoS). Mobile

file systems have their unique attack paths, which mainly exploit the physical access vulnerabilities.

They could bring severe consequences, such as data leakage. As networked file systems launches

multiple file system instances, due to their incomplete packet filtering and validation, their network

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

12 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

(a) Threats to generic file systems

(b) Threats to mobile file systems

(c) Threats to networked file systems

Fig. 5. Trajectory from vulnerabilities to threats in different types of file systems. For each type of file systems,
we present a graph of its vulnerability exploitation trajectories. Each trajectory represents a feasible route to
triggering the vulnerability, which includes the root cause (e.g., sanity check), the exploitation methods, and
the consequence (e.g., DoS attack). The bolded lines represent the most common trajectories.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 13

fs mm arch net sound kernel drivers
0
1
2
3
4
5
6
7

Av
er

ag
e

Sc
or

es

Severity Impact Exploitability

Fig. 6. Vulnerabilities of different core OS components. We measure the vulnerabilities in three dimensions:
Severity, Impact, and Exploitability. For each CVE report, we obtain its Severity Score, CIA Impacts
(Impacts of Confidentiality-Integrity-Availability), and Access Complexity from CVSS (Common Vulnerability
Scoring System) [59]. Each CVSS score ranges from 0 to 10, while the score of 10 represents the most severe,
the most impactful, and the most exploitable vulnerability, respectively.

Table 4. Distribution of file system vulnerabilities based on their threats. D: DoS, L: Data Leakage, E: Privilege
Escalation, A: Access Permission Bypass, O: Other (e.g., write access to proc entries like CVE-2004-2613).

Type Name #CVEs D L E A O

Generic

JFS [2] 4 50% 25% 0% 25% 0%

Ext2 [18] 7 57% 14% 14% 14% 0%

XFS [82] 23 70% 22% 4% 4% 0%

VFS [4] 28 50% 4% 14% 25% 7%

procfs [55] 18 44% 22% 22% 6% 6%

ReiserFS [5] 5 60% 0% 40% 0% 0%

Ext3 [80] 11 82% 9% 0% 9% 0%

tmpfs [78] 6 33% 17% 50% 0% 0%

Ext4 [52] 45 87% 4% 7% 2% 0%

Btrfs [68] 13 54% 15% 8% 23% 0%

F2FS [44] 18 94% 0% 6% 0% 0%

Mobile

HFS/HFS+ [38] 8 25% 13% 62% 0% 0%

eCryptFS [36] 16 25% 25% 38% 0% 13%

F2FS [44] 11 18% 55% 27% 0% 0%

APFS [12] 4 0% 25% 75% 0% 0%

Others 18 28% 17% 33% 11% 11%

Networked

NFS [63] 72 68% 1% 12% 18% 0%

GlusterFS [29] 18 28% 17% 17% 38% 0%

OpenAFS [3] 27 63% 30% 4% 4% 0%

HDFS [37] 6 33% 17% 33% 17% 0%

CephFS [84] 19 73% 20% 7% 0% 0%

connection could be attacked with crafted packets via HTTP or RPC protocols. We also examine the

distribution of vulnerabilities based on the threats they can pose in Table 4. For example, DoS is a

major threat to both generic and networked file systems. A significant portion of vulnerabilities in

mobile file systems can lead to privilege escalation. Table 5 demonstrates the correlation between

the vulnerability types (see §3) and the threats. Following a similar organization of §3, we summarize

our major findings below.

F-9: File systems vulnerabilities impose a comparable level of security threat to vulnera-

bilities in other OS components. Similar to our study on file system vulnerabilities, we gathered

vulnerabilities in other operating system (OS) components that are committed to the CVE database

in the past 20 years. As illustrated in Figure 6, file system vulnerabilities are as dangerous as

vulnerabilities in other components, considering severity, impact, and exploitability as the metrics.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

14 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

Table 5. Correlation between the file system vulnerability types and their threats. We use the same taxonomy
for vulnerabilities as in Table 2.

Type #CVEs D L E A O

Concurrency Issues 22 76% 8% 8% 8% 0%

Memory Errors 82 59% 26% 12% 1% 3%

Sanity Check Errors 111 60% 8% 18% 13% 1%

Permission Errors 56 20% 15% 26% 39% 0%

Network Errors 36 57% 16% 12% 10% 6%

F-10: DoS is the dominant threat brought by vulnerabilities to file systems. About 61% of

all the vulnerabilities can lead to DoS. As shown in Table 5, DoS is also the most common threat

among memory errors, sanity check errors, network errors, and concurrency vulnerabilities. They

often first incur one of the following behaviors and eventually cause a DoS.

• Memory corruption: Memory errors and race conditions in file systems, as they typically do, can

often cause memory corruption, followed by a kernel panic, such as the case CVE-2013-6382.
Many semantic vulnerabilities can also lead to memory corruption and subsequent kernel panics.

The previously discussed CVE-2015-8839 is such an example.

• Memory consumption: Another major cause of DoS in file systems is excessive memory con-

sumption. Most of such cases are caused by memory leakage vulnerabilities. For instance, XFS

before Linux 4.5.1 does not properly free the memory allocated for extended file attributes

(CVE-2016-9685), which can be exploited to exhaust the memory and cause a DoS.

• System hang: CPU over-consumption, mainly brought by infinite loops and deadlocks, can turn

into DoS. For instance, the integer overflow reported in CVE-2017-18257 can be exploited to

trigger an infinite loop in the block allocation of F2FS, causing a system hang.

• Network congestion: Vulnerabilities derived from protocol flaws, which account for about 16% of

all the vulnerabilities in networked file systems, frequently trigger DoS. As shown in Table 5,

57% of the network errors can lead to DoS. Such vulnerabilities typically happen because of

mishandling of malformed network packets, which often easily disrupt normal communication

and result in DoS. For example, the remote procedure call (RPC) module in OpenAFS (before

1.6.23 or 1.8.x before 1.8.2) does not restrict the size of an input. Adversaries can send, or claim

to send, large inputs and consume server resources waiting for those inputs, blocking service to

other valid connections (e.g., CVE-2018-16949).

F-11: Data leakage is another big threat that vulnerabilities pose to file systems. Three

major types of file system vulnerabilities often lead to data leakage. The first type is uninitialized

memory, where sensitive information, such as user data, file system metadata, and kernel memory

unintentionally propagates to unauthorized destinations (e.g., CVE-2005-0400 and CVE-2004-0177).
In comparison to other software systems, uninitialized memory in file systems can more often lead to
data leakage. As we pointed out in §3, file systems incorporate many cache systems to improve

their performance. Memory objects used by the cache systems shall be flushed to the disk, which

creates extra paths for uninitialized memory to leak.

The second type is permission-bypassing vulnerabilities. By exploiting such vulnerabilities, the

adversaries can gain access to files without the proper authorization and thus, indirectly leak

private data. For instance, CVE-2012-4508 allows adversaries to obtain sensitive information from

a deleted file by exploiting a race condition to gain permissions.

The last type is vulnerabilities in mobile file systems that enable physical attacks. The most direct

consequence of such attacks is the breach of private data. For instance, physical adversaries, by

exploiting CVE-2014-7951 in Android Debug Bridge of Android 4.0.4, can gain a direct connection

to the device to read/write arbitrary files in the file system.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 15

We further study the severity of data leakage vulnerabilities in various types of file systems

using the CVSS Severity Score [59]. We find that networked file systems have the highest severity

for data leakage, with a Severity Score of 4.5. This was higher than the average scores for generic

file systems (a score of 3.6) and mobile file systems (a score of 3.2). One possible reason for this is

that networked file systems typically enable multi-tenancy. These vulnerabilities allow attackers to

obtain password information from the server (CVE-2020-10762, CVE-2020-10763), potentially
affecting all tenants of the networked file system.

F-12: Attackers can bypass access control via exploiting vulnerabilities in the enforce-

ment of file permissions. Flaws in the enforcement of permissions largely become vulnerabilities.

In comparison to other types of vulnerabilities, permission-related vulnerabilities can often be

reliably exploited and consistently lead to permission bypassing.

Beyond the authentication of user identities, networked file systems also run access control

on file access requests. Two categories of vulnerabilities in this type of access control can also

be exploited to gain file permissions on the removed servers: (1) validation operations before

setting ACL are missing; (2) permission checks are missing. For example, the NFS client in Linux

2.6.29.3 or before misses a check on the permission bits for execution, allowing local users to bypass

permissions and execute files on an NFSv4 fileserver (CVE-2009-1630). Similar issues are also

reported in CVE-2005-3623 and CVE-2016-1237.

F-13: Adversaries can achieve privilege escalation via exploiting file system vulnerabili-

ties. All the file systems we studied run at a high privilege. A significant subset of sanity-check

vulnerabilities can enable adversaries to improperly “inherit” the high privilege. Some representa-

tive examples are: (i) CVE-2017-5551 preserves the setgid bit during a setxattr call in a tmpfs

file system, allowing local users to gain group privileges with restrictions on execute permissions;

(ii) CVE-2016-5393 wrongly gives HDFS service privileges to users who can only authenticate with

the HDFS NameNode. This enables arbitrary commands execution with the same privileges as the

HDFS service; (iii) CVE-2016-1572 does not validate mount destination file system types, which

allows local users to gain privileges by mounting over a nonstandard file system.

Authentication protocol used in modern networked file systems can also fail due to vulnerabilities,

and thus, give users undeserved privileges. Current networked file systems either develops its own

authentication protocol [84] or reuses the third-party infrastructure [62, 79]. Both ways of authen-

tication can be tricked and bypassed. We observe a large number of such cases in Ceph and HDFS,

mostly caused by mishandling of user credential messages (e.g., CVE-2013-4134, CVE-2009-3516).

F-14: Vulnerabilities in mobile file systems can sabotage the protection of data privacy.

To secure private data, mobile file systems have adopted protection mechanisms, mainly including

encrypting user files [1] and isolating critical data inside trusted execution environments (TEEs).

However, both mechanisms can be bypassed due to vulnerabilities. Since vulnerabilities related to

file encryption have been discussed in §3 (see F-8), we now focus on TEEs below.

TEE has become a standard feature on mobile devices, which has been leveraged by mobile

file systems to enable an isolated environment for protecting sensitive data. However, a drop-in

deployment of TEE can be insufficient due to vulnerabilities in the interactions with TEE. For

instance, a system crash in the non-secure domain of a TrustZone-enabled ARM platform will

trigger an interrupt to switch the system context to the secure domain. Therein, CPU, memory,

and register states can be accessed. However, an armored adversary can prevent the non-secure

domain to issue the context switch, and initiate a Man-in-the-middle attack to obtain the execution

information. For another example, eCryptFS uses an algorithm to generate a 32-byte AES key that

combines the user password and 32-byte TIMA (TrustZone-based Integrity Measurement) key. The

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

16 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

2000 2004 2008 2012 2016 2020
Year

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

) DoS
Data Leakage

Privilege Escalation
Access Permission Bypass

(a) The threats of generic file system vulnerabilities.

2000 2004 2008 2012 2016 2020
Year

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

) DoS
Data Leakage

Privilege Escalation
Access Permission Bypass

(b) The threats of mobile file system vulnerabilities.

2000 2004 2008 2012 2016 2020
Year

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

) DoS
Data Leakage

Privilege Escalation
Access Permission Bypass

(c) The threats of networked file system vulnerabilities.

Fig. 7. Evolutionary trend of the threats imposed by file system vulnerabilities. As for mobile file systems, no
CVEs were reported before 2009.

vulnerability (CVE-2016-1919) occurs because Base64.getEncoder expends the input with a ratio

of 4:3. This means that only 24 bytes determine the final eCryptFS key and adversaries can easily

crack the key with a brute-force search.

F-15: Protocol flaws in networked file systems can enable code injection attacks. Consider

CephFS as an example. It uses the Ceph Object Gateway daemon (RGW) as an HTTP server to

communicate with Ceph storage cluster and retrieve file data. The HTTP response splitting (HRS)

flaw (e.g., CVE-2015-5245) in the RGW can enable the well-known Carriage Return Line Feed

(CRLF) injection and cross-site scripting (XSS) attacks. Once the malicious code is injected, attackers

will have the privilege to compromise the victim server, and then tamper the entire networked

storage cluster.

F-16: Vulnerabilities in a single instance of networked file system can impose threats to

the entire system. Networked file systems (e.g., HDFS [74] and GFS [28]) can often run a group of

parallel instances on a cluster of servers. Each instance runs atop the local file system and delegates

the file system to store data on the disk. The consequence of vulnerabilities in a single instance can

propagate to all other instances in the same group. Consider GlusterFS as an example. GlusterFS

supports brick multiplexing to reduce memory consumption, which allows multiple compatible

bricks to share the same process and manage their own data volumes. However, a NULL pointer

dereference (CVE-2018-10914) triggered by a client request in one instance can interrupt the brick

process. This will propagate to other multiplexed brick processes, crushing the entire GlusterFS.

Other similar cases include CVE-2012-4417, CVE-2019-15538, CVE-2020-24394.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 17

F-17: Vulnerabilities in different types of file systems present a different evolutionary

trend in their threats. As shown in Figure 7, vulnerabilities in generic file systems tend to result

in more DoS and fewer attacks of other types. However, vulnerabilities in mobile file system and

networked file systems present an opposite evolutionary trend. A presumable reason is vulnerabili-

ties in generic file systems are more conventional and their consequences are limited by mitigation

mechanisms such as memory sanitizer [71] and thread sanitizer [72]. In contrast, many vulnerabili-

ties in mobile/networked file systems belong to newly emerging types (e.g., protocol flaws) and

have been less mitigated. Considering all types of file systems together, the evolution in the threat

of their vulnerabilities presents no clear trend.

Summary: The threats of file system vulnerabilities, varying across different types, ranging from

more functionality-critical ones like DoS to more security-critical ones like privilege escalation.

Historical data shows that file system vulnerabilities, in general, are not becoming less harmful.

Insight-4: Our study unveils that different file system operations, when becoming vulnerable,

can turn into different threats. This brings insights towards the mitigating process (e.g., patching):

vulnerabilities involved in operations that can result in higher threats shall be prioritized. For

instance, uninitialized memory errors in cache systems, which often incur data leakage, deserve

an earlier fix than excessive memory consumption that typically incurs DoS. References about

which file system operations can lead to what threats can be found from F-10 to F-16.
Insight-5: Our study also unveils that vulnerabilities in mobile/networked file systems are

presenting increasing threats (e.g., more data leakage than DoS). Considering the increasing

popularity of mobile/networked file systems in the coming era of IoT, our study brings evidence

that more efforts should be prioritized to mitigate vulnerabilities in mobile/networked file systems.

5 PATCHING OF FILE SYSTEM VULNERABILITIES
Our taxonomy and threat analysis offer insights and motivations to mitigate file system vulner-

abilities. We take a step further to analyze their patches and gain deeper insights. This will be

beneficial to file system developers, since it can help people learn about the common patterns of

patching file systems and guide them to avoid the deficiencies in today’s practice. As stated in §2,

we collected the open-sourced patches from CVE reports and obtained information such as the

lines of code (LoC) added, LoC removed, and the commit time. Our study on the commit messages

of each patch and the Debian Security Bug Tracker records [24] also shows that it takes 3.1 years

on average from the vulnerability was introduced to it being fixed, which is similar to other Linux

system software [10]. Therefore, we do not study further in this direction.

In the patch analysis process, we focus on answering these three questions: (1) how complex are
the patches? (2) how are the patches applied, systematically or in an ad-hoc manner? (3) are patches
across different file systems correlated, and how that may affect the patching process?

F-18: Most of the patches (56%) produce small modifications to the file systems. Figure 8

shows the distribution of patches based on their complexities (i.e., how many lines of code are

modified).We find that a large number of patches are simply adding a check to thememory boundary

(e.g., CVE-2013-6382) or fixing a syntax error (e.g., CVE-2013-1848). These patches constitute the
low-complexity group. Most of the strategies are conventional, such as adding boundary checks

to fix buffer overflows (e.g., CVE-2008-3531). For instance, the patches of many race conditions

simply make the responsible operations atomic. The drawback of such ad-hoc strategies is they

are too passive. They can neither help prevent similar vulnerabilities in the codebase nor bring

global benefits like new designs. We believe a more systematic strategy should be taken (see our

discussion in F-20).

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

18 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

[1,
6]

(6,
11

]

(11
,16

]

(16
,21

]

(21
,26

]

(26
,31

]

(31
,36

]

(36
,41

]

(41
,45

]

(45
,49

]
>49

Lines of code modified

0

20

40

%
 o

f p
at

ch
es

Fig. 8. Distribution of file system patches, based on the lines of code (LoC) changed.

1 int setattr_killpriv(struct dentry *dentry, struct iattr *iattr)
2 if (!(iattr->ia_valid & ATTR_KILL_PRIV))
3 return 0;
4 iattr->ia_valid &= ~ATTR_KILL_PRIV;
5 return security_inode_killpriv(dentry);

(a) A new interface added to VFS that removes extended privilege attributes.

1 int ext3_setattr(struct dentry *dentry,
struct iattr *attr)

2 error = inode_change_ok(inode, attr);
3 if (error)
4 return error;
5 + error = setattr_killpriv(dentry, attr);
6 + if (error)
7 + return error;

(b) Patch to ext3 filesystem.

1 int btrfs_setattr(struct dentry *dentry,
struct iattr *attr)

2 error = inode_change_ok(inode, attr);
3 if (err)
4 return err;
5 + err = setattr_killpriv(dentry, attr);
6 + if (err)
7 + return err;

(c) Patch to btrfs filesystem.

Fig. 9. Similar patches to different Linux file systems for fixing the same VFS vulnerability.

F-19: A non-negligible portion (20%) of the patches involve complex modifications, such

as fixes to multiple file systems and comprehensive validations of file system data struc-

tures. Somevulnerabilities that are shared across file systems can cause duplicated patches.

In most of the patches we studied, the patches aim to solve a unique flaw in a certain file system.

In the study, we discovered that for a shared vulnerability in multiple file systems, developers

release patches that have a similar strategy or even the same code logic. These patches build up

the high-complexity group. Strategies of a certain patch to a specific file system can be borrowed

by patches that are used by other types of file systems. For example, as shown in Figure 9 (a), the

VFS subsystem added a new function setattr_killpriv to remove extended privilege attributes

(xattrs). Since most Linux file systems support xattrs, they have to properly invoke this function

after the permission check 𝑖𝑛𝑜𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒_𝑜𝑘 () to ensure security. As a result, these file systems

generate similar patches (Figure 9 (b) and (c), CVE-2015-1350). Such pattern also occurs in the

patching of xattr block caching in the ext2 and ext4 file systems. Both of the file systems have

to convert the original meta block cache from mbcache to mbcache2. Hence, they should add the

same sanity checking to the entries and generate similar patches (e.g., CVE-2015-8952).
A cross-filesystem patching approach could offer two major benefits. First, having a unified

solution simplifies the patch development process as well as the future maintenance. Second, file

systems which share the patch can take advantage of further improvements in each individual file

system, which enables us to improve the overall robustness and reliability.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 19

F-20: Some patches demonstrate systematic strategies, which can benefit vulnerability

prevention. Despite ad-hoc strategies still being dominant, we do observe systematic strategies in

two cases. First, there are patches that perform systematic verification on file system data structures

instead of simply applying an ad-hoc fix. For instance, CVE-2018-14613 reports a simple invalid

pointer dereference issue when mounting and operating a crafted btrfs image caused by invalid

block group items. This specific vulnerability could have been solved by a low complexity patch.

However, the patch to it demonstrates good practice by adding a new sanity check function that

performs a complete check of the item size, offset, object id, type, and used space. This not only helps

fix the reported vulnerabilities, but also removes the undiscovered hidden flaws to prevent future

vulnerabilities. Indeed, none of the follow-up CVEs has related issues when mounting and operating

on btrfs images. Second, many patches of race conditions switch from lock-based implementations

to lock-free implementations, such as deploying semaphore-based solutions (e.g., CVE-2014-9710)
or avoiding race conditions in the first place (e.g., CVE-2014-8086). These patches bring design-wise
insights, which are applicable to a more fundamental resolution of race conditions.

F-21: Patches that modify the VFS need coordinated updates to the underlying file sys-

tems. A patch to the VFS subsystem often requires updating the underlying file systems. Otherwise,

the patch may not come into effect. In CVE-2015-1350, the VFS subsystem provides an incom-

plete set of requirements for setattr operations, which under-specifies the removal of extended

privilege attributes. The corresponding patch silently introduces a new VFS API to fix the flaw.

Concurrently, the patch has to modify all 21 affected underlying file systems to use the new API.

While, in this example, the complexity incurred by the need for coordinated patching is well

handled, it is not always so. For example, the patch to CVE-2016-7097 modifies VFS but fails to

update the complete set of 15 affected underlying file systems, leaving the vulnerability still open

(reported as CVE-2017-5551). Until one year later, another patch to CVE-2017-5551 eventually

fixed the problem.

Summary: Patches to file system vulnerabilities carry different complexities. The patches also

adopt various strategies. Most of them are ad-hoc, bringing no help with addressing similar but

yet unknown vulnerabilities. However, patches following systematic strategies are arising. These

patches present preventive measures or new designs, offering insights towards fundamentally

mitigating vulnerabilities of the same root causes. Finally, file systems are often correlated.

However, today’s practice often overlooks the correlated file systems when patching the target

ones, thus leading to insecure patches.

Insight-6: Our study unveils that the current practice of patching file systems is largely passive.

Continuing this practice will likely prolong the arm race between vulnerability creation and

patching. To fundamentally escalate the security of file systems, the community should encourage

and promote the adoption of preventive and secure-by-design patching. Exemplary strategies

observed by our study have been presented in F-20.
Insight-7: Better attention needs to be drawn on the correlation of file systems when developing

patches. To ensure the correctness of patches, any modification to a file system (in particular VFS)

must be validated to understand its impacts on other file systems. Whenever such impacts arise,

the affected file systems must be updated accordingly.

6 SUGGESTIONS
In this study, we find that a large portion of filesystem vulnerabilities are semantic related or use-

context related. We summarize the common suggested strategies used by the patches on generic

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

20 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

Table 6. Suggested strategies to patch common types of file system vulnerabilities. The third column shows
the percentage of CVEs that can be fixed with the suggested strategies.

Type Suggested Defense Strategies #CVEs % of Applicable CVEs

Sanity

checks

FS image validation before mounting 53 47.7%

Validating fs parameters upon file access 14 12.6%

Memory pointer validation and bounds checking 6 5.4%

Handle exceptions of division by zero 4 3.6%

Avoid integer overflows 4 3.6%

Concurrency

issues

Enforce atomic ToCToU race operations 9 40.9%

Support of lock-free optimizations 6 27.3%

Memory

errors

Initialize unused, allocated memory 32 39.0%

Initialize data before copying them from user space 20 24.4%

Reinitialize fs metadata upon file updates 12 14.6%

File

permissions

Check enforcement of user privileges 24 42.9%

Check file permissions for direct storage access 16 28.6%

Validate fs metadata information before mounting fs 3 5.4%

Table 7. Suggested defense strategies for mobile fs vulnerabilities. The second column shows the percentage
of CVEs that could be fixed with the suggested strategies.

Suggested Defense Strategies # CVEs % of Applicable CVEs

Enhance authentication mechanisms in ADB channels 14 24.5%

Enhance USB debugging mode 11 19.3%

Enforce secure interaction between TrustZone and FS 7 12.3%

(Total) 32 56.1%

Table 8. Suggested defense strategies for networked fs vulnerabilities. The second column shows the percent-
age of CVEs that could be fixed with the suggested strategies.

Suggested Defense Strategies #CVEs % of Applicable CVEs

Enforce strict authentication/permission control 37 26.1%

Verify (HTTP/RPC) network packets 33 23.2%

Enforce VFS specifications 13 9.2%

Fault isolation between fs instances 10 7.0%

(Total) 93 65.5%

file system vulnerabilities in Table 6. The common defense strategies discussed of patching generic

file system can be also applied to fix 44% of the mobile file system and 34% of the networked file

system vulnerabilities. Meanwhile, we identify their unique defense strategies vulnerabilities, as

shown in Table 7 and 8.

S-1: Verifying file system implementations with semantics specified in VFS. As discussed,

VFS provides a uniform abstraction level for upper-level programs to interact with real file system

implementations. It offers semantics (e.g., POSIX) for accessing the underlying file systems. However,

the real filesystem implementation may not exactly satisfy the semantics, due to the unclear

specifications between the VFS and low-level filesystem implementations (e.g., CVE-2015-1350 and
CVE-2016-7097). Prior verification studies of file systems [57, 75] mostly worked on the crash safety.

Our findings reveal that more efforts are required to achieve the end-to-end verification of each

semantic mapping from the high-level VFS specification to the low-level file system implementation.

S-2: Integrity check for file system images. Attackers can exploit the flaws in sanity checks

to bypass the validation of illegal file system data to initiate their attacks. Since the file system

provides data durability, the transient errors or modifications to the in-memory data structures

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 21

could be persisted to the disk (file system image), causing long-term threats to the host system.

Moreover, attackers can leverage crafted file system images with incorrect attributes, invalid links,

or illegal data to compromise the file system or the entire operating system (e.g., CVE-2018-14613
and CVE-2016-1572). To defend against such attacks, we encourage preventive measures or new

designs to enforce integrity checks on file system images before mounting.

S-3: Enhancing secure channels between mobiles and external physical devices. Due to

the unique attack surface of mobile file systems, they need to enforce stricter security checks

against physical attacks. As described in §3 and F-8, attackers could exploit flaws in encryption

mechanisms in mobile file systems. We need to further develop secure channels between mobile

devices and external devices such as Thunderbolt adapters and USB ports. According to our study,

nearly 23% of vulnerabilities in Android can be exploited by evil-maid attacks. These attacks can be

prevented by explicitly authorizing the mounting of external devices.

S-4: Enforcing secure communication between TEE and file systems.We still cannot solely

rely on TEE or encrypted file systems or even both to ensure the security of mobile file systems.

This is because the file system might not be able to correctly use, interact, and manage the trusted

environments (e.g., CVE-2017-13786), and the encryption itself might be compromised by brute

force attacks (e.g., CVE-2016-1919 and CVE-2016-1919). Particularly, we have to ensure the secure
interactions between TEE and file systems, such as preventing the direct access to the memory

used by the Volume Daemon or storage management process from TrustZone. We have to carefully

refine the interfaces between them, which can be improved with the development at both TEE and

file system side [20, 65, 87].

S-5:Verifying network packet.According to our study, verifying the network packets, especially

those via the HTTP or RPC protocols, can significantly reduce the risk of network attacks in

networked file systems. The semantic specifications from upper-level service protocols defined by

network file systems will facilitate such network packet verification. Similar network verification

techniques have been developed in software-defined networking domain [66, 67] and packet level

authentication [47], however, few of them focused on the semantic-aware verification of storage

traffic from networked file systems.

S-6: Fault isolation for networked filesystem instances. As discussed in §4, a filesystem

instance (e.g., a data volume manager) has correlations with many system components such as

local file systems and OS kernel. These correlations significantly complicate the management of

filesystem instances and increase the attack surface. Providing a fault isolation mechanism for

filesystem instances can significantly enhance the security of the entire networked system. Systems

techniques, such as containers [46, 73], sandbox [17], and TEE [13], have been proposed to enforce

the isolation between programs. They can be leveraged to enable isolation between filesystem

instances. However, a holistic approach that requires fine-grained function partition and placement

for networked file systems is still highly desirable [94].

7 RELATEDWORK
Study of Bugs and Vulnerabilities. Past research has conducted many studies on defects in

operating systems. The studies vary in targets. Many of them [49, 54, 83, 88] focus on functionality

bugs in file systems while some others [30, 40] concentrate on virtual memory management

problems. The studies also vary in scope that ranges from concurrent issues [26, 34, 45, 51] to

specific families of vulnerabilities [22, 48, 70]. Our work uses a methodology similar to many of the

studies. However, we focus on the secuirty vulnerabilities in file systems. Unlike the previous file

system studies that focused on bug causes and consequences [49], our study centers around the

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

22 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

understanding of the attack surface of file systems and the vulnerability exploitation procedure,

while covering a wider range of CVEs across different types of file systems. To the best of our

knowledge, our study is the first in-depth work of its kind.

Bug and Vulnerability Detection. Research in this line can be classified into two categories: bug

finding and formal verification. Bug finding tools, such as FiSC [91], eXplode [90], and juxta [54],

can discover file system bugs based on semantic-aware patterns. Our study can benefit these tools

by providing insights into expanding their patterns. Formal verification [11, 15, 21, 23, 32, 57, 75] is

also promising. However, at this stage, it is still challenging to verify the security of an entire file

system due to the high complexity [32, 75, 86]. Our study can complement formal verification. It

pinpoints the file system components that are more vulnerable, thus enabling formal verification

to narrow down the scope and scale up.

Secure File Systems. Besides bug study and detection, researchers have also been endeavoring to

build secure and reliable file systems [50, 53]. Lu et al. [50] proposed the physical disentanglement

to minimize storage faults propagation. Min et al. [53] leveraged transaction flash storage to build

crash-consistent file systems. Our study can bring insights to follow-up works in this line of

research. For instance, we find that many vulnerabilities in networked file systems are caused

by the lack of fault isolation across different instances. This can motivate efforts to develop fault

isolation mechanisms for file systems.

8 CONCLUSION
This paper presents an empirical study on the security of modern file systems, following the angle

of inspecting vulnerabilities disclosed from mainstream file systems. Throughout the study, we

build the first systematic understanding of the attack surfaces faced by file systems, the threats tied

to the attack surfaces, and the limitations in today’s practice of addressing the attack surfaces. We

envision that our study will raise awareness of file system security and, more importantly, offer

insights towards improving file system security.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments and feedback. This work was

partially supported by NetApp Faculty Fellowship Award and NSF CAREER Award 2144796.

REFERENCES
[1] Apple File System secure encryption mechanism. https://9to5mac.com/2016/06/13/apple-file-system-apfs/.

[2] Journaled File System Technology for Linux. http://jfs.sourceforge.net.

[3] OpenAFS. https://www.openafs.org.

[4] Overview of the Linux Virtual File System. https://www.kernel.org/doc/html/latest/filesystems/vfs.html.

[5] ReiserFS. https://en.wikipedia.org/wiki/ReiserFS.

[6] Metadata replication for ext4. https://lwn.net/Articles/465041/, 2011.

[7] Request cve ids. https://cve.mitre.org/cve/request_id.html, 2021.

[8] Hiralal Agrawal, Joseph Robert Horgan, Edward W Krauser, and Saul A London. Incremental regression testing. In

1993 Conference on Software Maintenance, pages 348–357. IEEE, 1993.
[9] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung Lee. Obliviate: A data oblivious

filesystem for intel sgx. In Network and Distributed System Security Symposium, (NDSS ’18), San Diego, CA, USA, 2018.

[10] Nikolaos Alexopoulos, Manuel Brack, Jan Wagner, Tim Grube, Max Mühlhäuser, Andrew Meneely, Dorian Arnouts,

Emmanouil Vasilomanolakis, Stephane Le, Steven Rowe, et al. How long do vulnerabilities live in the code? a large-scale

empirical measurement study on foss vulnerability lifetimes.

[11] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Na-

gashima, Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby C. Murray, Gerwin Klein, and Gernot

Heiser. Cogent: Verifying high-assurance file system implementations. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’16), Atlanta, GA, 2016.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

https://9to5mac.com/2016/06/13/apple-file-system-apfs/
http://jfs.sourceforge.net
https://www.openafs.org
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://en.wikipedia.org/wiki/ReiserFS
https://lwn.net/Articles/465041/
https://cve.mitre.org/cve/request_id.html

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 23

[12] APFS: Apple File System.

https://en.wikipedia.org/wiki/Apple_File_System.

[13] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Christian Priebe, Joshua Lind, Robert Krahn,

Christof Fetzer, David Eyers, and Peter Pietzuch. Libseal: Revealing service integrity violations using trusted execution.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys’18), 2018.
[14] Lakshmi N Bairavasundaram, Swaminathan Sundararaman, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.

Tolerating file-system mistakes with envyfs. In USENIX Annual Technical Conference, volume 9, 2009.

[15] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. Specifying

and checking file system crash-consistency models. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2016.

[16] Miao Cai, Hao Huang, and Jian Huang. Understanding security vulnerabilities in file systems. In Proceedings of the
10th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’19, page 8–15, New York, NY, USA, 2019. Association for

Computing Machinery.

[17] Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh, Cosmin Barsan, Arvind Krishnamurthy,

and Thomas Anderson. Retaining sandbox containment despite bugs in privileged memory-safe code. In Proceedings
of the 17th ACM Conference on Computer and Communications Security (CCS’10), 2010.

[18] Remy Card. Design and implementation of the second extended filesystem. In Proceedings of the First Dutch International
Symposium on Linux, 1995, 1995.

[19] Ceph.

https://en.wikipedia.org/wiki/Ceph_(software).

[20] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. Sok: Understanding the prevailing security vulner-

abilities in trustzone-assisted tee systems. In Proceedings of IEEE Symposium on Security and Privacy (Oakland’20),
2020.

[21] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Ileri, Adam Chlipala, M. Frans Kaashoek, and

Nickolai Zeldovich. Verifying a high-performance crash-safe file system using a tree specification. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP ’17), Shanghai, China, October 2017.

[22] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans Kaashoek. Linux kernel

vulnerabilities: state-of-the-art defenses and open problems. In APSys ’11 Asia Pacific Workshop on Systems, Shanghai,
China, July 2011.

[23] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. Using crash

hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 2015.

[24] Debian. Security bug tracker. https://security-tracker.debian.org/tracker/, 2022.

[25] Ext4 Disk Layout.

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Flexible_Block_Groups, 2020.

[26] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A study of the internal and external effects of

concurrency bugs. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2010, Chicago, IL, USA, June 2010.

[27] Andy Galloway, Gerald Lüttgen, Jan Tobias Mühlberg, and Radu I Siminiceanu. Model-checking the linux virtual file

system. In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages 74–88. Springer,
2009.

[28] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. 2003.

[29] GlusterFS. Glusterfs architecture. https://docs.gluster.org/en/v3/Quick-Start-Guide/Architecture/.

[30] Sudhakar Govindavajhala and Andrew W Appel. Using memory errors to attack a virtual machine. In 2003 Symposium
on Security and Privacy (SP)., Berkeley, CA, USA, 2003.

[31] Andreas Gruenbacher. POSIX access control lists on linux. In Proceedings of the 2003 USENIX Annual Technical
Conference (USENIX ATC’03), San Antonio, TX, June 2003.

[32] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.

Certikos: An extensible architecture for building certified concurrent OS kernels. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, uSA, November 2016.

[33] Researcher Reservation Guidelines. https://cve.mitre.org/cve/researcher_reservation_guidelines, 2019.

[34] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry Adityatama,

Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. What bugs live in the

cloud? A study of 3000+ issues in cloud systems. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
2014, Seattle, WA, USA, November 2014.

[35] Haryadi S Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.

Improving file system reliability with i/o shepherding. In Proceedings of twenty-first ACM SIGOPS symposium on

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

https://en.wikipedia.org/wiki/Apple_File_System
https://en.wikipedia.org/wiki/Ceph_(software)
 https://security-tracker.debian.org/tracker/
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Flexible_Block_Groups
https://docs.gluster.org/en/v3/Quick-Start-Guide/Architecture/
https://cve.mitre.org/cve/researcher_reservation_guidelines

24 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

Operating systems principles, pages 293–306, 2007.
[36] Michael Austin Halcrow. ecryptfs: An enterprise-class encrypted filesystem for linux. In Proceedings of the 2005 Linux

Symposium, volume 1, pages 201–218, 2005.

[37] Haoop Distributed File System.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, 2019.

[38] HFS: Hierarchical File System.

https://en.wikipedia.org/wiki/Hierarchical_File_System.

[39] Dave Hitz, James Lau, and Michael A. Malcolm. File system design for an NFS file server appliance. In USENIX Winter
1994 Technical Conference, San Francisco, CA, USA, January 1994.

[40] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. An Evolutionary Study of Linux Memory Management for

Fun and Profit. In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC’16), Denver, Co, June 2016.
[41] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. Designing a true direct-access file system with devfs. In 16th USENIX Conference on File and Storage Technologies
(FAST’18), Oakland, CA, 2018.

[42] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs in file

systems with an extensible fuzzing framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19), Ontario, Canada, 2017.

[43] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee, Bryan S Kim, and Sungjin Lee. Modernizing file

system through in-storage indexing. In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’21), pages 75–92, 2021.

[44] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. F2FS: A new file system for flash storage. In

Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February
2015.

[45] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. Taxdc: A taxonomy of non-

deterministic concurrency bugs in datacenter distributed systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’16), Atlanta, GA, April
2016.

[46] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. A measurement study on linux container

security: Attacks and countermeasures. In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC’18), 2018.

[47] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Călin Caşcaval,

Nick McKeown, and Nate Foster. P4v: Practical verification for programmable data planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’18), 2018.

[48] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nümberger, Wenke Lee, and Michael Backes. Unleashing

use-before-initialization vulnerabilities in the linux kernel using targeted stack spraying. In Network and Distributed
System Security Symposium, (NDSS ’17), San Diego, CA, USA, 2017.

[49] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A study of linux file system evolution.

In Proceedings of the 11th USENIX conference on File and Storage Technologies (FAST’13), San Jose, CA, 2013.

[50] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Physical disentanglement in a container-based file system. In 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, October 2014.

[51] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a comprehensive study on real

world concurrency bug characteristics. In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 2008.

[52] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and Laurent Vivier. The new

ext4 filesystem: current status and future plans. In Proceedings of the Linux symposium, 2007.

[53] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and Young Ik Eom. Lightweight application-level crash

consistency on transactional flash storage. In 2015 USENIX Annual Technical Conference, USENIX ATC ’15, Santa Clara,
CA, USA, July 2015.

[54] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim. Cross-checking semantic

correctness: the case of finding file system bugs. In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 2015.

[55] Erik Mouw. Linux kernel procfs guide. Delft University of Technology, 2001.
[56] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao, and Gang Wang. Understanding the

reproducibility of crowd-reported security vulnerabilities. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 919–936, 2018.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://en.wikipedia.org/wiki/Hierarchical_File_System

The Security War in File Systems: An Empirical Study from A Vulnerability-Centric Perspective 25

[57] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Torlak, and Xi Wang.

Hyperkernel: Push-button verification of an os kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP’17), 2017.

[58] Network File System.

https://en.wikipedia.org/wiki/Network_File_System, 2020.

[59] NVD.

https://nvd.nist.gov/vuln-metrics/cvss.

[60] National Institute of Standards and Technology. Attack surface. https://csrc.nist.gov/glossary/term/attack_surface,

2022.

[61] Akira K Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. Regression testing in an industrial

environment. Communications of the ACM, 41(5):81–86, 1998.

[62] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave Hitz. Nfs version 3: Design and

implementation. In USENIX Summer Technical Conference, Boston, MA, USA, 1994.

[63] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. The nfs version 4 protocol. In In Proceedings of
the 2nd International System Administration and Networking Conference (SANE 2000), Maastricht, Netherlands, 2000.

[64] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. All file systems are not created equal: On the complexity of crafting

crash-consistent applications. In 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’14,
Broomfield, CO, USA, October 2014.

[65] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive survey. ACM Comput. Surv., 51(6),
January 2019.

[66] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and George Varghese. Scaling network

verification using symmetry and surgery. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’16), 2016.

[67] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. Plankton: Scalable

network configuration verification through model checking. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20), Santa Clara, CA, February 2020.

[68] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree filesystem. ACM Transactions on Storage (TOS),
9(3):1–32, 2013.

[69] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file system. In

Proceedings of the Thirteenth ACM Symposium on Operating System Principles, SOSP 1991, Pacific Grove, CA, USA,
October 1991.

[70] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. kafl: Hardware-

assisted feedback fuzzing for {OS} kernels. In 26th {USENIX} Security Symposium ({USENIX} Security 17), San Jose,

CA, USA, 2017.

[71] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. Addresssanitizer: A fast address

sanity checker. In 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12), pages 309–318, 2012.
[72] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race detection in practice. In Proceedings of

the workshop on binary instrumentation and applications, pages 62–71, 2009.
[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delimitrou, Robbert Van Renesse, and Hakim

Weatherspoon. X-containers: Breaking down barriers to improve performance and isolation of cloud-native containers.

In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’19), 2019.

[74] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. The hadoop distributed file system. In

IEEE 26th Symposium on Mass Storage Systems and Technologies, (MSST ’10), Incline Village, NV, USA, 2010.
[75] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button verification of file systems via crash

refinement. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16),
Savannah, GA, USA, November 2016.

[76] Satyam Singh. Exploiting nfs share. https://resources.infosecinstitute.com, 2021.

[77] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a linux security module. NAI Labs Report,
1(43):139, 2001.

[78] Peter Snyder. tmpfs: A virtual memory file system. In Proceedings of the autumn 1990 EUUG Conference, pages 241–248,
1990.

[79] Jennifer G Steiner, B Clifford Neuman, and Jeffrey I Schiller. Kerberos: An authentication service for open network

systems. In Usenix Winter Technical Conference, Dallas, TX, USA, 1988.
[80] Stephen Tweedie. Journaling the linux ext2fs filesystem. In The Fourth Annual Linux Expo, 1998, Durhan, NC, USA,

May 1998.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

https://en.wikipedia.org/wiki/Network_File_System
https://nvd.nist.gov/vuln-metrics/cvss
https://csrc.nist.gov/glossary/term/attack_surface
https://resources.infosecinstitute.com

26 Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang

[81] VulDB.

https://vuldb.com/?id.141577, 2019.

[82] Randolph Y Wang and Thomas E Anderson. xfs: A wide area mass storage file system. In Proceedings of IEEE 4th
Workshop on Workstation Operating Systems. WWOS-III, pages 71–78. IEEE, 1993.

[83] Jinpeng Wei and Calton Pu. Tocttou vulnerabilities in unix-style file systems: An anatomical study. In 4th USENIX
Conference on File and Storage Technologies, (FAST ’05), San Francisco, CA, USA, December 2005.

[84] Sage AWeil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph: A scalable, high-performance

distributed file system. In Proceedings of the 7th symposium on Operating systems design and implementation (OSDI’06),
Seattle, WA, USA, 2006.

[85] Wikipedia contributors. Attack surface - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Attack_

surface, 2022.

[86] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A practical verification framework for

preemptive OS kernels. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 2016.

[87] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung

Lee, Chenxiong Qian, Sangho Lee, and Taesoo Kim. Toward engineering a secure android ecosystem: A survey of

existing techniques. ACM Comput. Surv., 49(2), August 2016.
[88] Wen Xu, HyungonMoon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim. Fuzzing file systems via two-dimensional

input space exploration. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (Oakland’19), San Francisco,

CA, USA, 2019.

[89] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering vulnerabilities with code

property graphs. In 2014 IEEE Symposium on Security and Privacy, pages 590–604. IEEE, 2014.
[90] Junfeng Yang, Can Sar, and Dawson R. Engler. EXPLODE: A lightweight, general system for finding serious storage

system errors. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI)’06), Seattle,
WA, USA, November 2006.

[91] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. Using model checking to find serious file

system errors. In 6th Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco, CA, USA,

December 2004.

[92] Shin Yoo and Mark Harman. Regression testing minimization, selection and prioritization: a survey. Software testing,
verification and reliability, 22(2):67–120, 2012.

[93] ZDNet.

https://www.zdnet.com/article/fbi-warning-this-ransomware-gang-has-hit-over-100-targets-and-made-more-

than-60-million/, 2022.

[94] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading off correlated failures through

independence-as-a-service. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI’14), Broomfield, CO, October 2014.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: September 2023.

https://vuldb.com/?id.141577
https://en.wikipedia.org/wiki/Attack_surface
https://en.wikipedia.org/wiki/Attack_surface
https://www.zdnet.com/article/fbi-warning-this-ransomware-gang-has-hit-over-100-targets-and-made-more-than-60-million/
https://www.zdnet.com/article/fbi-warning-this-ransomware-gang-has-hit-over-100-targets-and-made-more-than-60-million/

	Abstract
	1 Introduction
	2 Study Methodology
	2.1 Data Collection
	2.2 Vulnerability Analysis
	2.3 Discussion of Study Validity

	3 Taxonomy of File System Vulnerabilities
	4 Threats of File System Vulnerabilities
	5 Patching of File System Vulnerabilities
	6 Suggestions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

