
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

SkyByte: Architecting an Efficient Memory-Semantic
CXL-based SSD with OS and Hardware Co-design

Haoyang Zhang∗, Yuqi Xue∗, Yirui Eric Zhou, Shaobo Li, Jian Huang
University of Illinois Urbana Champaign

{zhang402, yuqixue2, yiruiz2, shaobol2, jianh}@illinois.edu

Abstract—The CXL-based solid-state drive (CXL-SSD) provides
a promising approach towards scaling the main memory capacity
at low cost. However, the CXL-based SSD faces performance
challenges due to the long flash access latency and unpredictable
events such as garbage collection in the SSD device, stalling
the host processor and wasting compute cycles. Although the
CXL interface enables the byte-granular data access to the SSD,
accessing flash chips is still at page granularity due to physical
limitations. The mismatch of access granularity causes significant
unnecessary I/O traffic to flash chips, worsening the suboptimal
end-to-end data access performance.

In this paper, we present SkyByte, an efficient CXL-based SSD
that employs a holistic approach to address the aforementioned
challenges by co-designing the host operating system (OS) and
SSD controller. To alleviate the long memory stall when accessing
the CXL-SSD, SkyByte revisits the OS context switch mechanism
and enables opportunistic context switches upon the detection of
long access delays. To accommodate byte-granular data accesses,
SkyByte architects the internal DRAM of the SSD controller
into a cacheline-level write log and a page-level data cache, and
enables data coalescing upon log cleaning to reduce the I/O traffic
to flash chips. SkyByte also employs optimization techniques that
include adaptive page migration for exploring the performance
benefits of fast host memory by promoting hot pages in CXL-SSD
to the host. We implement SkyByte with a CXL-SSD simulator
and evaluate its efficiency with various data-intensive applications.
Our experiments show that SkyByte outperforms current CXL-
based SSD by 6.11×, and reduces the I/O traffic to flash chips by
23.08× on average. SkyByte also reaches 75% of the performance
of the ideal case that assumes unlimited DRAM capacity in the
host, which offers an attractive cost-effective solution.

I. INTRODUCTION

CXL-based solid-state drives (CXL-SSDs) have been pre-
sented as a practical and cost-effective approach towards
expanding the memory capacity [54], [62], as current manufac-
turing technology has allowed SSDs to scale up to terabytes,
and the cost of SSDs is significantly lower than DRAM [7],
[26], [49], [58]. The CXL-SSD allows programs to use the SSD
as main memory via load/store instructions in a transparent
fashion. It enables byte-granular data access to SSDs via CXL
protocols. Because of these enabled memory properties in
SSDs, we also define CXL-SSD as memory-semantic SSD.

The CXL technology facilitates the use of flash-based SSDs
as memory [7], [11], [54]. However, simply treating SSDs
as an extension of host memory via CXL causes dramatic
performance degradation and excessive CPU stalls (see §II-C).
This is for three major reasons. First, the flash access latency

*Co-primary authors.

is several orders of magnitude higher than the host DRAM
latency. Although the SSD has an internal DRAM cache, the
capacity is relatively small (a few GBs in modern SSDs) [42],
[57], its miss penalty is still determined by the long flash
access latency. Second, due to the inherent properties of flash
memory (i.e., out-of-place updates and garbage collection), the
complexity of managing flash chips inside the SSD controller
causes performance interference. For instance, the garbage
collection (GC) of SSDs will postpone the read/write requests
to flash chips until the GC is finished. The underlying SSD
events can cause long host CPU stalls and unpredictable end-
to-end performance. Third, although CXL technology enables
byte-granular data access to SSDs, flash chips support only
page-granular data access due to physical limitations [11], [20],
[42]. The mismatch of data access granularity between CXL
(byte-granular) and flash chips (page-granular) causes high I/O
amplification and extra I/O traffic to flash chips.

To address the above challenges, we employ a holistic
approach to develop an effective CXL-based SSD, named
SkyByte, by co-designing the host OS and CXL-based SSD
controller. We elaborate the key ideas of SkyByte as follows.
Coordinated context switch for CXL-SSD. To hide memory
access latency, processors typically employ out-of-order ex-
ecution and issue multiple memory requests in parallel in
the hope that there are sufficient non-memory instructions
to fill the pipeline, while waiting for the response from the
memory. This technique has been proven effective with the host
DRAM, however, it fails to hide the long flash access latency of
CXL-SSDs, unless the processor can examine an impractically
large instruction window (for identifying sufficient instructions
to hide the memory latency). In modern OS, if one thread
needs to wait for a long SSD access, the OS can perform a
context switch and select another thread to utilize the CPU
core. Unfortunately, this context switch opportunity is missing
for CXL-SSDs, because the OS cannot intercept the load/store
memory instructions issued directly from the host CPU to the
SSD device via the CXL protocol.

We revisit the OS context switch mechanism and develop
a coordinated approach between the host OS and the SSD
controller. To precisely track which instruction is blocked by
long SSD delay, we extend the CXL.mem response packet
format to encode a long-delay hint. When the SSD controller
detects that a CXL memory request will suffer from a long
delay, it responds to the host with this hint. The host CXL
controller forwards this hint to the CPU core in the form of a

ar
X

iv
:2

50
1.

10
68

2v
1

 [
cs

.A
R

]
 1

8
Ja

n
20

25

hardware exception triggered by the corresponding load/store
instruction. Then, the exception handler calls the host OS
scheduler to perform a context switch. SkyByte supports
different policies for deciding when to trigger a context switch
and which thread will be executed next (see §III-A).
CXL-aware SSD DRAM management. Since modern SSDs
are primarily designed as block devices, they organize the
DRAM cache in page granularity. However, for CXL-SSDs,
our study in §II finds that most workloads access less than 40%
of cachelines in more than 75% of pages. Caching the entire
page in the SSD DRAM significantly wastes precious SSD
DRAM space. This also leads to significant write amplification,
as we need to write back the entire page to flash chips even
though only a few cachelines of a page are dirty.

To bridge the gap between the cacheline-granular CXL
interface and the page-granular flash chips, we structure the
SSD DRAM into a cacheline-granular write log and a page-
granular read-write cache. Write requests are served by the
write log at cacheline granularity without first fetching the
original page from flash chips. The read-write cache is managed
in page granularity to exploit spatial locality, as we need to
read an entire page from flash chips anyway. When the write
log is full, SkyByte performs log compaction in the background
to coalesce writes to the same page. This greatly reduces the
write traffic to the flash chips and mitigates long flash write
latency. For read requests, SkyByte looks up the write log and
the read-write cache in parallel to locate the latest data with
an efficient hash-based indexing mechanism (see §III-B).

Since the SSD DRAM capacity is limited, we leverage the
host memory to expand the SSD DRAM capacity by enabling
adaptive page migrations in the background. SkyByte identifies
hot pages in the SSD DRAM and performs page migrations
transparently (see §III-C). SkyByte ensures data consistency
during page migrations by employing a promotion buffer in the
host bridge developed in prior studies [7]. Upon the completion
of a page migration, the corresponding page table entry will
be updated to reflect the new memory address.

We implement SkyByte with a CXL-SSD simulator based
on MacSim [41] and SimpleSSD [21]. We extend MacSim
to simulate context switches on each CPU core and modify
its memory interface to simulate the CXL.mem. The CXL
memory requests are sent to the SSD that has the write log, the
data cache, and the flash translation layer (FTL). We evaluate
SkyByte with data-intensive workloads (see Table I). For each
workload, we capture the instruction traces of each thread
using PIN [30] and replay the multi-threaded traces in our
simulator. Our evaluation shows that SkyByte outperforms
state-of-the-art CXL-SSDs by 6.11×, and reduces the I/O
write amplification to the flash chips by 23.08× on average.
SkyByte also achieves 75% of the performance of the ideal
case assuming unlimited host DRAM capacity, demonstrating
its benefit on cost-effectiveness. In summary, we make the
following contributions:

• We examine the performance bottlenecks of CXL-SSDs, and
identify that they are caused by excessive CPU stalls due to

long CXL memory access latency, and the access granularity
mismatch between the CXL interface and the flash memory.

• We propose SkyByte, which employs an OS and hardware
co-design approach to hide the flash access latency of CXL-
based SSDs with a coordinated context switch.

• We re-architect the SSD DRAM cache with a write log and a
read-write cache to bridge the gap between the page-granular
flash accesses and the byte-granular CXL memory accesses.

• We implement SkyByte in a CXL-SSD simulator to accu-
rately simulate the interplay among the CXL-SSD, the multi-
core processor microarchitecture, and the OS scheduling.

• We evaluate the effectiveness of SkyByte with various data-
intensive workloads and sensitivity analysis, showing that
SkyByte is a practical and cost-effective approach.

II. BACKGROUND AND MOTIVATION

A. CXL and Memory Expansion

The Compute Express Link (CXL) [18] is a new interconnect
standard built on PCIe 5.0 physical interface. It can construct
a unified and coherent memory space and enable high-speed
communication across different types of processors, memory,
and accelerators. CXL has been rapidly gaining industry
adoption and is on track to become a primary interconnect.
CXL defines three protocols that include CXL.io, CXL.cache,
and CXL.mem for different purposes. CXL.io is functionally
equivalent to the traditional PCIe protocol. CXL.cache enables
cache coherence between interconnected devices. CXL.mem
enables the device’s local memory to be directly accessed by
the host CPU via load/store instructions. With these protocols,
CXL supports three primary device types: Type-1 is for devices
to access the host memory in a cache-coherent manner (only
CXL.cache enabled), such as specialized accelerators like NICs;
Type-2 is for devices and the host CPU to access each other’s
memory with cache coherence (both CXL.cache and CXL.mem
enabled); and Type-3 is for devices that allow the host CPU
to access and cache its memory at cacheline granularity (only
CXL.mem enabled), such as memory expander devices.

In this paper, we use SSD as a Type-3 CXL device. The entire
SSD is exposed as host-managed device memory (HDM). The
SSD memory space is mapped to the host’s physical memory
space. The CXL.mem protocol allows the host CPU to directly
access the SSD via cachable load/store instructions.

B. Architecture of CXL-based SSDs

A simple approach to building a CXL-SSD is to directly
connect CXL with a byte-addressable SSD by having a few
simple changes to the SSD controller, as described in prior
studies [12], [32], [62]. We show its architecture in Figure 1.

Figure 1 (a) shows the memory mapping with a CXL-SSD.
Upon booting, the host initializes the CXL-SSD by mapping
its logical memory space into the system physical memory
space. The CXL memory or HDM is exposed to the OS as
normal physical memory. It is CPU-cacheable and accessible
with load/store instructions. However, it possesses different
performance attributes compared to the host DRAM. Therefore,

Application

Host DRAM Memory CXL Memory

Virtual Memory Space

Flash Memory

Flash Translation Layer

CXL-SSD

System
Memory Space

C
XL

 In
te

rfa
ce

Host Requests

DRAM Cache

 Flash Memory Chip Chip Chip Chip Chip

CXL-SSD
Controller

Cacheline
Granularity Access

Page Granularity
Caching

(a) System memory mapping

(b) Architecture of the CXL-SSD

Fig. 1: System architecture of CXL-based SSD (CXL-SSD).

the entire system memory can be considered as a heterogeneous
memory system. The host OS remains responsible for managing
the memory placement and the virtual-to-physical memory
mapping. And the Flash Translation Layer (FTL) of the SSD
handles the address translation from the logical page address
(LPA) to the physical page address (PPA) of flash memory.

Figure 1 (b) shows the architecture of the CXL-SSD. When
an application generates a memory access to the CXL-SSD,
the CXL home agent will send a message via the CXL.mem
protocol. The SSD controller will then parse the message to
extract the memory request and serve the data by coordinating
with the SSD firmware. To support cacheline (64B) access
granularity, the controller utilizes the DRAM cache inside the
SSD to serve the memory requests from the host. The SSD
DRAM will cache the data from flash chips at page granularity.

C. Challenges of Using CXL-Based SSDs

Although the CXL technology offers a great opportunity for
the wide adoption of memory-semantic SSDs, the current OS
and processor architecture does not work well with CXL-SSDs
out of the box. Naı̈vely treating CXL-SSDs as conventional
DRAM memory will lead to severe performance degradation.

To understand this issue, we study various data-intensive
applications (see Table I) and examine their performance when
allocating all their data (1) in a CXL-SSD device as described
in §II-B and (2) in the host DRAM. For each program, we
launch four threads on four cores without hyperthreading. We
use PIN [30] to collect the instruction and memory traces,
and replay the traces in a cycle-accurate simulator (see §V for
details) to quantify the microarchitectural performance impact
of using CXL-SSDs. We summarize our key insights as follows.
Long tail latency. Figure 2 shows the total execution time of the
workloads with host DRAM and CXL-SSD, respectively. These
workloads perform 1.5–31.4× worse with CXL-SSD than with
DRAM due to the long flash memory access latency even

bc bfs-dense dlrm radix srad ycsb tpcc

1
2
4
8

16
32

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

DRAM Memory Baseline CXL-SSD

Fig. 2: End-to-end execution time of running different workloads
using DRAM vs. CXL-SSD.

0% 20% 40% 60% 80% 100%
101

102

103

104

105

La
te

nc
y

(n
s)

(a) bc
0% 20% 40% 60% 80% 100%

101

102

103

104

105

(b) bfs-dense

0% 20% 40% 60% 80% 100%
101

102

103

104

105

La
te

nc
y

(n
s)

(c) srad
0% 20% 40% 60% 80% 100%

101

102

103

104

105

(d) tpcc

DRAM CXL-SSD

Fig. 3: Latency distribution of DRAM vs. CXL-SSD.

with SSD internal DRAM cache. Figure 3 shows the off-chip
memory access latency distribution of DRAM and CXL-SSD.
Due to space limitations, we only show four representative
workloads (all workloads have similar patterns). While more
than 90% of the CXL-SSD memory requests are within 200
ns thanks to the SSD DRAM cache, the tail latency can be as
high as hundreds of µs when a flash read/write happens due to
the SSD DRAM cache miss. The latency will be even higher
(e.g., a few milliseconds) when garbage collection is triggered.
Excessive processor pipeline stalls. The tail latency of CXL-
SSD causes severe processor pipeline stalls, leading to both
performance degradation and underutilization of CPU and
SSD bandwidth. We quantify the impact of pipeline stalls
by analyzing compute vs. memory boundedness, following
Intel’s Vtune profiling tool [29]. We define that a clock cycle
is bounded by memory if no instructions except memory
operations are executing in this cycle (i.e., the pipeline is stalled
by memory) and bounded by compute otherwise. Figure 4
quantifies the percentage of cycles bounded by memory or
compute. The portion of memory-bounded cycles grows from
62.9%–98.7% with DRAM to 77%–99.8% with CXL-SSD.
Although modern processors employ techniques such as OoO
and multi-level caches to hide memory latency and exploit
memory parallelism, they are less effective for hiding the long
flash access latency, causing severe pipeline stalls.

Even worse, the long pipeline stalls lead to memory band-
width underutilization of the CXL-SSD device. Although we
can use more cores to improve the bandwidth, this will also lead
to more severe compute underutilization as more cores are being
stalled. This is because the processor cannot keep enough in-
flight memory requests to saturate the available SSD bandwidth.
For example, to saturate a single DDR5 channel with a
bandwidth of 32GB/s and 70 ns latency for each 64B cache line,

bc bfs-dense dlrm radix srad tpcc ycsb0%

20%

40%

60%

80%

100%
E

xe
cu

tio
n

Ti
m

e
DRAM CXL-SSDBounded by Memory Bounded by Compute

Fig. 4: Execution boundedness breakdown of various workloads with
DRAM vs. CXL-SSD.

0% 25% 50% 75% 100%
(a) bc

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

ac
ce

ss
ed

CDFCDFCDFCDFCDFCDFCDF
0% 25% 50% 75% 100%

(b) dlrm

0.00

0.25

0.50

0.75

1.00
R

at
io

 o
f C

L
ac

ce
ss

ed

CDFCDFCDFCDFCDFCDFCDF

0% 25% 50% 75% 100%
(c) radix

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

ac
ce

ss
ed

CDFCDFCDFCDFCDFCDFCDF
0% 25% 50% 75% 100%

(d) ycsb

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

ac
ce

ss
ed

CDFCDFCDFCDFCDFCDFCDF

Page Locality Read CDF

1:128
1:64

1:32
1:16

1:8
1:4

1:2

Fig. 5: Locality distribution of all pages read from flash chips into the
SSD DRAM cache. The legend “1:n” means the workload’s memory
footprint is n× larger than the SSD DRAM cache. The y-axis is the
percentage of cache lines accessed in each page.

we need to issue at least 70× 32/64 = 35 concurrent memory
requests. To hide the flash access latency (3 µs read latency
for state-of-the-art Z-NAND [52]) assuming a bandwidth of 16
GB/s for PCIe 5.0 x4, we need 3000× 16/64 = 750 memory
requests, which is impractical for today’s processor.
Access granularity mismatch between CXL interface and
flash memory. To hide the long flash access latency, modern
SSDs typically employ an internal DRAM cache managed at
flash page granularity, as they are designed for the block inter-
face, and flash chips support only page-granular access [11],
[20], [42]. Thus, the current SSD DRAM cache design becomes
significantly less effective for the CXL-SSD due to the access
granularity mismatch between the CXL interface (64B cache
line) and the flash memory (4KB page or even larger).

We quantify the memory access patterns of different work-
loads in Figure 5 and Figure 6. Many workloads only access
less than 40% of the cache lines in more than 75% of pages.
This causes two problems. First, as we cache an entire page in
the SSD DRAM, the DRAM capacity is significantly wasted
as most cache lines in the page are not accessed. Second, even
if we only write a few cache lines in a page, we still need to
write the entire page to the flash memory, which leads to write
amplifications and shortens the SSD lifetime. Enlarging the
SSD DRAM capacity has limited benefits unless the DRAM is
sufficiently large to hold the entire working set of workloads.

III. DESIGN OF SKYBYTE

SkyByte consists of three major components: (1) the co-
ordinated context switch mechanism based on the detection
of long SSD access delays (§III-A); (2) a cacheline-granular

0% 25% 50% 75% 100%
(a) bc

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

w
ri

tt
en

CDFCDFCDFCDFCDFCDFCDF
0% 25% 50% 75% 100%

(b) dlrm

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

w
ri

tt
en

CDFCDFCDFCDFCDFCDFCDF

0% 25% 50% 75% 100%
(c) radix

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

w
ri

tt
en

CDFCDFCDFCDFCDFCDFCDF
0% 25% 50% 75% 100%

(d) ycsb

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f C
L

w
ri

tt
en

CDFCDFCDFCDFCDFCDFCDF

Page Locality Write CDF

1:128
1:64

1:32
1:16

1:8
1:4

1:2

Fig. 6: Locality distribution of all pages flushed to flash chips from
the SSD DRAM cache. The legend “1:n” means the workload’s
memory footprint is n× larger than the SSD DRAM cache. The
y-axis is the percentage of dirty cache lines in each page.

log-structured memory in SSD controller, for bridging the gap
between the byte-granular CXL interface and the page-granular
flash chips (§III-B); (3) an adaptive page migration mechanism
that leverages the host memory to expand SSD DRAM by
migrating hot pages to the host in a transparent and consistent
manner (§III-C). We discuss each of them as follows.

A. Coordinated Context Switch Mechanism

When a thread encounters a long CXL-SSD access caused
by SSD DRAM cache miss, we can context switch to another
thread to better utilize the CPU core. However, the SSD device
has no knowledge about the microarchitectural status of the
host CPU, such as which core triggers a missed memory access
and whether this load is speculative. Similarly, the host CPU
does not know whether a memory access is a hit/miss in
the SSD DRAM cache. Neither CPU nor SSD can by itself
decide whether to trigger a context switch. Therefore, to enable
context switch on long CXL-SSD memory stalls, we coordinate
between host OS and SSD controller.

To enable a coordinated context switch, we need to decide
(1) when to trigger the context switch; (2) how to conduct
the context switch; and (3) what are the policies for the
context switch. To address these questions, we first present
the coordinated context switch procedure. Then, we discuss
policies for deciding when to trigger a context switch and which
thread is executed next. Finally, we discuss the hardware and
software modifications needed for this mechanism.
Context switch procedure. We show the context switch
procedure with an example of a CXL memory read from
the host CPU in Figure 7. As writes are buffered in the write
log (see §III-B), they do not need to trigger context switch.
C1 Sending CXL.mem request message with tracking infor-
mation. The host CPU sends a CXL.mem MemRd request
message to the SSD controller. By default, the CPU maintains
microarchitectural status, including the miss status handling
registers (MSHRs) of the shared LLC, for tracking which
load/store instruction in which core is waiting for the response
of this memory request. The MSHRs also perform memory
access coalescing, so a memory request may be associated

Host SSD Controller
CXL.mem:MemRd Request

CXL.mem:

No Data Response

w/ SkyByte-Delay Opcode

Context Switch
Trigger Policy

Trigger
Do Not
Trigger

SSD DRAM
Cache Miss

Wait for Flash
Page Fetch

Data Ready in
SSD DRAMCXL.mem:MemRd Request

CXL.mem:

MemData Response
SSD DRAM
Cache Hit

CXL-Aware Thread
Scheduling Policy

C3

Context Switch to
Another Thread

Thread
Resumed

Trigger SkyByte
Long Delay
Exception

C2

C1

C4

Fig. 7: The procedure of coordinated context switch in SkyByte.

with multiple instructions from different cores if they request
for the same cache line. The CXL controller tracks all the
memory requests between the host CPU and the SSD via the
CXL.mem MemRd message (see Figure 8).
C2 Sending context switch request with extended CXL.mem No
Data Response Message. Upon an SSD DRAM cache miss,
the SSD controller starts to fetch the page from the flash.
It will determine whether or not to send a context switch
request to the host OS based on an estimated access latency
(as discussed later in the conetxt switch trigger policy). The
SSD controller sends the context switch request via a No Data
Response (NDR) message (one type of the slave-to-master
(S2M) message). The NDR message indicates the completion
of a CXL memory request without returning any data to the
host CPU. As shown in Figure 8, the MemRd message includes
a 16-bit tag [18] for each CXL.mem transaction. SkyByte
extends the NDR message specification by introducing a new
opcode called SkyByte-Delay. This opcode indicates that
the corresponding MemRd request will suffer from a long access
delay (e.g., an SSD DRAM cache miss).
C3 Triggering context switch with hardware exception. SkyByte
leverages the existing hardware exception mechanism in
modern CPUs to precisely track which load/store instruction
in which core should trigger a context switch. SkyByte defines
a new SkyByte Long Delay Exception. Once the host CPU
receives the SkyByte-Delay NDR message from the CXL
controller, it looks up the LLC MSHR entry of this memory
request and traverses the upper-level cache hierarchy (e.g., L1
and L2) to find all uncommitted memory instructions waiting
for this response. When any of these instructions enter the
retire stage, it will trigger the SkyByte Long Delay Exception
(similar to how a load/store instruction triggers a Page Fault
Exception) on the corresponding core. The address of this
instruction will be saved upon the context switch, such that
when the thread is switched back, it will resume from this
instruction and re-issue this memory access to the CXL-SSD.

Such a design eliminates false-positive context switches,
where a load/store triggers a context switch but is later squashed,
at no extra hardware cost, since modern processors by default
delay the exception handling to the retire stage. For example,

1-bit 3-bit 4-bit 16-bit 16-bit
Valid Opcode ... Tag ...

Opcode Description Encoding
Cmp Completions for Writebacks, Reads, and Invalidates 000b

Cmp-S,
Cmp-E,

BI-ConflictAck
Cache coherence-related opcodes for CXL.cache

001b,
010b,
100b

SkyByte-Delay Indication from the SSD to the Host for Long Access Delay 111b
Reserved Other reserved opcodes Others

Fig. 8: No Data Response (NDR) message format and opcode
definitions in CXL.mem. SkyByte uses one of the reserved opcodes
(shaded in green) to indicate a long access delay.

speculative load/store and hardware prefetch will not trigger
any exception even if they miss in the SSD DRAM.

SkyByte installs a special handler for the SkyByte Long
Delay Exception in the x86 interrupt descriptor table (IDT).
The exception handler invokes a CXL-aware thread scheduling
policy to decide which thread is executed next and performs
the context switch, which will be discussed later.
C4 Resuming the original thread. When the original thread
is scheduled back, it will resume from the previously missed
memory instruction that triggered the SkyByte Long Delay
Exception. This memory access is then issued again to the
CXL-SSD. If the replayed instruction hits in the SSD DRAM,
the data will be returned with a CXL.mem MemData response.

When a thread is context-switched, all its pending load/store
instructions are squashed. However, the MSHRs in the cache
hierarchy may or may not be freed depending on the imple-
mentation [25], [47]. This can cause severe MSHR contention
between threads given the long flash access latency. In the
worst case, a thread performs accesses to 64 cache lines in
multiple 4KB pages, all of which miss in the SSD DRAM
cache. These requests will occupy at least 64 MSHRs for a few
microseconds, easily exhausting all the MSHRs. To address this
issue, we free the MSHR entry as soon as the corresponding
instruction squashes. Since this approach can also benefit host
DRAM accesses, we enable it in SkyByte by default.

When a thread is scheduled again after it has been context-
switched away a while ago, it may trigger the same SSD
DRAM cache miss again if the requested page has already
been evicted due to a cache conflict. This is less of a concern,
since the LRU eviction policy in the SSD DRAM cache already
prevents the requested page from being evicted for most of
the time. For instance, in our experiments with various data-
intensive applications, we did not observe a page being evicted
before the original thread resumes execution and accesses it.
Context switch trigger policy. Upon an SSD DRAM cache
miss, the SSD controller can choose to either trigger a context
switch or let the host CPU wait for the data. Intuitively, if the
context switch overhead is smaller than the CXL-SSD access
delay, we can perform a context switch to hide the delay.

SkyByte uses a threshold-based policy to decide whether
a context switch should be triggered. The SSD controller
estimates the latency of fetching the requested page from flash
chips. If the estimated latency is higher than the threshold, a
context switch will be triggered. The threshold can be tuned

Algorithm 1 Threshold-based context switch trigger policy.
1: function SHD CTX SWTC(req, threshold, read lat, write lat, erase lat)
2: PPA = translate address(req);
3: queue = get channel queue(PPA);
4: num read, num write, num erase = queue.get counters();
5: est lat = read lat * (num read + 1) + write lat * num write
6: + erase lat * num erase;
7: return est lat > threshold;
8: end function

based on the host context switch overhead.
We show the details of the threshold-based context switch

trigger policy in Algorithm 1. SkyByte first looks up the
FTL mapping table to get the physical page address (PPA),
which determines which flash channel this request will be
issued to (Line 2–3). It employs a simple approach to estimate
the flash access latency by querying the corresponding flash
controller’s queue status, i.e., the number of requests placed
in the queue (Line 4). Typically, the requests in the channel
queue will be served in FIFO order [44]. Therefore, similar
to the approach studied in prior work [38], [60], SkyByte
can accurately estimate the delay of the request by summing
the latency of all requests in the queue (Line 5–6). If the
estimated delay is longer than the threshold, SkyByte will
trigger a context switch (Line 7). If a request is blocked by an
ongoing garbage collection (GC), SkyByte will immediately
trigger a context switch, as GCs typically last for milliseconds.
While the GC process will block the issuing of requests in the
queue, its impact is already considered in the latency prediction
algorithm by querying the flash channel queue status.

To set an appropriate threshold, we can measure the average
overhead of context switches of the host CPU. Figure 9
shows the performance of various thresholds for representative
workloads. Since the flash page read latency (3 µs by default) of
our SSD is longer than the regular context switch overhead (2
µs, as examined with the hardware setup described in Table II),
we set the threshold to 2 µs. In practice, the threshold can be
tuned empirically for different CPUs and system configurations.
SkyByte allows the host OS to configure it.
OS support for CXL-aware context switch. To enable the
Long Delay Exception, we install a new exception handler
into the x86 IDT. When the exception is raised, the exception
handler yields the CPU resources owned by the current thread.
The system scheduler then decides the thread to run next based
on the predefined policy. The yield thread is re-enqueued back
to the run queue in OS, allowing it to be scheduled again later.

We explore three scheduling policies for the scheduler to pick
the next runnable thread in Linux OS: (1) Round-Robin (RR)
policy, in which the threads take turns to execute; (2) Random
policy, in which a thread is chosen randomly to execute next;
(3) Complete Fairness Scheduler (CFS) policy [2], in which it
prioritizes the thread which has the shortest received execution
time for ensuring a fair share of CPU cycles among threads.

We evaluate the performance of these policies and show the
execution time breakdown in Figure 10, following the same
definition of boundedness in Figure 4. The three policies deliver
similar performance. This is because all the threads are mainly
bounded by memory I/O, and all three policies allow the threads

2 10 20 40 60 80
100%

110%

120%

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

2 10 20 40 60 80
100%

125%

150%

175%

200%

2 10 20 40 60 80
Context Switch Trigger

Threshold (μs)

100%

125%

150%

175%

200%

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

2 10 20 40 60 80
Context Switch Trigger

Threshold (μs)

100%

120%

140%

(a) bc (b) bfs-dense

(c) srad (d) tpcc

Fig. 9: Impact of the thresholds defined in the in the coordinated
context switch trigger policy.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

RR RR RR RR

Ran
do

m

Ran
do

m

Ran
do

m

Ran
do

m
CFS

CFS
CFS

CFS

bc radix srad tpcc

Context Switch Bounded by Compute Bounded by Memory

Fig. 10: Normalized execution time of SkyByte with different thread
scheduling policies (lower is better).

to have equal or similar opportunities to issue memory requests
to the SSD, even though these threads may trigger a context
switch immediately after they are scheduled. This improves the
SSD bandwidth utilization with multi-threading (see §VI-C).
For some workloads (e.g., srad), context switching takes
a considerable amount of time because context switches are
repeatedly triggered by all threads when they are all waiting
for flash accesses. The CFS policy may perform slightly worse
in a few workloads, because it needs to enforce fair sharing for
all the threads, which may cause the OS to select the threads
that have just been scheduled away due to the context switch
in SkyByte. But its impact on the end-to-end performance is
trivial. Since CFS has become a standard scheduling policy in
modern OSes like Linux, we employ it by default in SkyByte.

B. CXL-Aware SSD DRAM Management

As discussed in §II-C, the internal DRAM cache of SSDs
can be suboptimal due to the mismatch of the access granularity
between the CXL interface and the flash memory. A cacheline
request would trigger a flash page access, which will cause a
long delay, and waste precious SSD DRAM capacity.

To address these issues, we re-architect the SSD DRAM, as
shown in Figure 11. SkyByte deploys a cache-line granular
double-buffered write log to buffer all write requests from the
host. All cacheline writes are directly appended to the log
without flash access along the critical path. They are flushed
to the flash memory later. Compared to a page-granular cache,
the write log has two benefits: (1) caching at a finer granularity
saves the precious SSD DRAM space when the write locality
is bad, and (2) the write log provides a larger write coalescing
window, which reduces the flash write traffic. We maintain a

Flash Translation Layer
Write Log

Read Log
R2

Data Cache

CXL Memory Interface

Log Index

Append
Cacheline

Load Page

Read
Cacheline

Update
Cacheline

 Flash Memory

Update
Index

CXL-SSD

Host

R1

R3

W1

W2

W3

Host

Fig. 11: The architecture of CXL-aware SSD DRAM.

log indexing table to index the latest data in the write log array
for read requests or log compaction.

For read operations, when flash access is inevitable upon
an SSD DRAM miss, we still need to fetch the entire page.
Thus, SkyByte caches the fetched page with a read-write data
cache managed in page granular to exploit data locality. To
maintain data consistency between the write log and data cache,
we update both the write log and cache upon a write request,
and during a read, we check the write log first. To speed up
the requests, SkyByte performs parallel updates and parallel
lookups on both sides. The write log and the data cache use
logical addresses for indexing, as they are built on top of the
Flash Translation Layer (FTL). We discuss them as follows.
Write log structure. Figure 12 shows the structure of the
write log. The log records all written 64B cache lines within a
circular buffer with head and tail pointers. To achieve a fast
lookup of log entries, SkyByte uses the hash table for indexing,
as it provides an amortized O(1) lookup latency. However, a
plain hash table will randomly distribute the stored entry, and
it would require multiple lookups when finding all cache lines
within the same page during compaction. To solve the problem,
SkyByte breaks the indexing structure into two levels. At the
first level, we employ a hash table indexed by the logical page
address (LPA). Each valid entry points to a second level hash
table that tracks all logged cache lines in this logical flash
page with their offset within the page. The log offset of the
tracked cache line in the log is indexed in the second-level
table. We can easily find all updated cache lines in the same
page by traversing the corresponding second-level hash table.

In the first-level hash table, each entry stores the 8B LPA
and 8B second-level hash table pointer for each page. Since
each page (4KB) has 64 cache lines, we only need 6 bits
to index the page offset. The second-level hash table entry
is 4B, which includes the 6-bit page offset and a 26-bit log
offset. Consider a 64MB write log with 1M entries, if all
second-level hash tables are initially allocated with full 64
entries, it requires 272MB of memory under the worst case
when each page only contains a single dirty cache line. To
reduce the memory footprint, we instead allocate small-sized

63
12

11
6

5

0

Lo
gi

ca
l P

ag
e

Ad
dr

es
s

Pa
ge

 O
ffs

et

000000

01
10

00
11

00
...

00

1st Level Hash TableLPA

3
... ...

2nd Level Hash Table

2nd Level Hash Tables

2nd Level
Hash Table

...

Log

Log Head Log Tail

2nd Level Hash Table

Page
Offset

...

6
...

Log Offset

...

...

2nd Level
Hash Table

C
ac

he
lin

e
O

ffs
et

... ...

2nd Level Hash
Table Pointer

...

Fig. 12: The two-level hash table structure for indexing the write log.

second-level hash tables and allow them to resize on demand.
SkyByte initiates each second-level hash table with four entries
(16B), and doubles the table size whenever the table load factor
exceeds a threshold (0.75 by default). With resizing, under the
worst case, our memory footprint only occupies up to 32MB
(1M 16B first-level hash entries and 1M 16B second-level hash
tables). Our experiments with real workload traces (§VI) show
that the log index occupies 5.6MB of memory on average.
Read operation. We show the read/write operation in Figure 11.
When a read request arrives, the SSD controller looks up both
the data cache and the write log in parallel. If the requested
data is cached, we directly read from the data cache and return
to the host (R1). When the data cache misses but the write log
holds the cache line, SkyByte will retrieve it from the write
log (R2). When both write log and data cache miss, the entire
page is fetched from the flash into the data cache, and SkyByte
returns the target cache line (R3). The write log may contain
the recently updated cache lines, and we need to keep the
cached page up-to-date. After fetching the page to the cache,
SkyByte performs a lookup on the first-level hash table. If it
contains the entry of this page, we traverse its second-level
table to merge all cache lines in the log to the fetched page.
Write operation. On a write request, SkyByte directly appends
the written cache line at the tail of the write log (W1). An
update to the data cache is issued in parallel if it contains
the corresponding page (W2). SkyByte will also update the
indexing table (W3). If the write updates an existing cache line
in the write log, SkyByte updates the index table entry pointing
to the newest log offset. SkyByte serves multiple read/write
requests in parallel and leverages lock-free hash tables [55]
and queues for synchronization.
Write log compaction. Figure 13 shows how SkyByte performs
the log compaction. To reduce write traffic to the flash chips,
SkyByte coalesces the writes during log compaction. Since
we only track the newest data in the indexing table, the old
updates will be dropped during the compaction. SkyByte scans
the first level hash table to find all pages that need to be
flushed (L1). For each page, if it is cached, we directly flush
the cached page back to flash memory (L2). Otherwise, we
load the missing page from the flash memory to a coalescing

Flash Translation Layer

 Flash Memory

Write Log

1st Level
Hash Table

Traverse
L1

2nd Level
Hash Tables

Data Cache

...

Write Page

CXL-SSD

Merge Dirty
Data

Load Page

...

Write Page

Coalescing
 Buffer

L2

L3

L4

L5

Fig. 13: Log compaction in CXL-SSD.

buffer (L3). SkyByte then traverse the second level table entries
for dirty cache lines in this page and merge them with the
loaded page (L4). The merged page is then written back to the
flash (L5). When performing flash writes, SkyByte batches the
pages in the write buffer, and distributes writes across multiple
channels to exploit SSD channel parallelism.

SkyByte maintains a double-buffered log to avoid block-
ing incoming requests and performs the compaction in the
background. When one log becomes full, SkyByte triggers the
log compaction process and switches to a new log. During
compaction, incoming write requests will be directed to the
new log, following the normal write procedure. An incoming
read request requires a parallel lookup in both the new log and
the old log for the latest data. As the background compaction
is not on the critical path of serving memory requests, it does
not introduce much overhead, and a single compaction takes
146 µs on average. After compaction, we remove the indexing
table and reclaim the memory used by the previous log.

C. Adaptive Page Migration

As the SSD DRAM size is limited, we use the host memory
to expand SSD DRAM cache. SkyByte develops an adaptive
page migration mechanism to migrate frequently accessed pages
to the host. To decide which pages to migrate, SkyByte uses
a similar policy developed in prior work [7], [8], [14], [19],
[35], [48], [61]. The SSD controller tracks the access count of
flash pages and selects pages whose access counts exceed a
threshold as the migration candidates. SkyByte only migrate
pages in the SSD DRAM cache, as it includes the candidate hot
pages. After choosing the target page for migration, the SSD
triggers the migration by sending a PCIe MSI-X interrupt with
the SSD page address to the host. The host OS then allocates
a physical page in the host DRAM memory with the default
buddy allocator and copies the page content to the new page.

We need to ensure data consistency during page migrations.
To achieve this, a simple approach is to leverage the OS
techniques by setting the page under migration as not presented
in PTE before the migration, and revising the page fault handler
to resume the request after the migration. However, this causes
high performance overheads. In SkyByte, we follow the prior
approach [7] and track the migration progress with a Promotion
Look-aside Buffer (PLB) in the root complex. The PLB has 64
entries, each entry (24B) records all ongoing migrations with

the addresses of source/destination pages (8B each), a bitmap
for the migrated cache line (8B), and a valid bit. Therefore, a
read request to a page under promotion can be served from
the SSD DRAM. For writes, if the migrated bit has been set
for the requested cache line, the request is forwarded to the
most recent copy of that cache line in the host DRAM.

After data migration, the host OS modifies the page table
entry (PTE) to map the original virtual address to the new host
DRAM page, with the corresponding TLB entry also updated.
The host OS will acknowledge the migration request, and the
SSD removes the page from the data cache and invalidates the
write log index by setting the corresponding entry as NULL.

Since the host DRAM space is limited, SkyByte also enables
the host to evict pages back to SSD for free space. SkyByte
leverages the existing page reclamation policy [3] in Linux to
select the page for eviction, finding a relatively “cold” page
tracked by the active/inactive list [6]. We then allocate a new
page in the CXL memory space and perform the page copy.
The host OS will update the corresponding page table entry to
point at the SSD page and update the TLB.

IV. DISCUSSION

Data persistence support. By default, SkyByte assumes the
user application does not require data persistence, so it can
transparently promote pages to the host DRAM for performance
improvement. To support data persistence, SkyByte offers the
option for users to pin memory pages in the CXL-SSD, such
that these pages will not be promoted to the host. Programmers
can use clwb instruction to ensure a cacheline has reached
the battery-backed SSD DRAM.
Support for NUMA architecture. SkyByte can work with a
multi-socket NUMA machine. The CXL-SSD appears to the
system as a “CPU-less” NUMA node. All processors treat the
CXL-SSD as non-local memory. The CXL-SSD is attached
to the PCIe slot of one CPU socket, referred to as the “home
node”. Accesses from other NUMA nodes to the CXL-SSD
may experience slightly higher latency compared to accesses
from the home node, but since the inter-socket latency is much
smaller (less than 100 ns) than the flash latency (µs-level),
SkyByte uses the same context switch threshold for all NUMA
nodes. Since the SSD controller is unaware of which NUMA
nodes have accessed each page, when a page migration is
triggered, the page is migrated to the home node first. If the
home node has no free memory, the page will be migrated to
the NUMA node with the most free memory space. After that,
if the page is needed by other nodes, the NUMA balancing
mechanism of the OS is responsible for further migrations.
Support for multiple page sizes. The adaptive page migration
of SkyByte can support multiple page sizes (e.g., 2MB huge
pages). When the host OS receives the MSI-X interrupt from
the SSD with a 4KB-page address, it first checks whether this
address belongs to a huge page. If it does, the host OS allocates
a physical huge page in the host DRAM, and migrates the
entire page by copying all 4KB data chunks from the SSD.
Once the migration finishes, the host sends a custom NVMe

command to notify the SSD to remove all corresponding 4KB
chunks from its internal DRAM caches.

To migrate a huge page, the PLB needs to track all cachelines
in the huge page. However, tracking all 32,768 cachelines in a
2MB page requires a 4KB bitmap per PLB entry. To reduce
the hardware cost of PLB, we extend the original PLB into a
two-level structure. The first-level entry contains a 64B bitmap
that indicates whether a 4KB chunk in a 2MB page has been
migrated. The second-level entry contains an 8B bitmap to track
which cachelines in a 4KB chunk have been migrated. The PLB
migrates the huge page chunk-by-chunk, and it only needs one
first-level entry to track the 2MB page and one second-level
entry to track the current 4KB chunk under migration.

V. IMPLEMENTATION

SkyByte simulation framework. We implement SkyByte
with a cycle-accurate simulator based on MacSim [41] and
SimpleSSD [21]. MacSim replays multi-threaded instruction
traces captured by Intel’s PIN tool [30] on multiple simulated
CPU cores. To implement SkyByte’s coordinated context switch
mechanism, we extend it to support task scheduling by selecting
which set of instructions to execute on the simulated cores based
on the scheduling policy discussed in §III-A. We measured
the context switch overhead with an Intel E5 CPU under real
systems, and we set our experiment timing model accordingly
(see Table II). We also simulate the side effects of context
switching, including cache contention or branch mispredictions.
We implement the PLB (§III-C) in MacSim and enable the CPU
to issue CXL memory requests to the SSD. To simulate the side
effects of page migration, we also modified MacSim to perform
a TLB shootdown for all cores when a page finishes migration.
To simulate the CXL.mem interface and flash accesses in SSDs,
we extend MacSim’s memory controller logic to redirect all
CXL.mem requests to the SSD simulator. The SSD simulator
simulates the SSD firmware, including the core FTL functions
(e.g., address translation and GC), SkyByte’s write log and
data cache in the SSD DRAM, and flash accesses.
FPGA SoC prototype. We prototype the write log and SSD
DRAM cache (§III-B) on a Xilinx Zynq UltraScale+ ZU3EG
MPSoC board. The board features a quad-core ARM Cortex
A53 processor commonly deployed in SSD controllers [1],
an LPDDR4 memory, and programmable logic resources. We
implement critical-path operations such as indexing the write
log and data cache on FPGA. Other off-critical-path tasks like
log compaction and garbage collection are managed by the
ARM cores. We use a red-black tree to index the page-granular
data cache. The average lookup latency is 72 ns for a 64 MB
write log and 49 ns for a 512 MB data cache. The latency
grows slightly (by less than 10 ns) with a larger log size. Our
prototype achieves a peak throughput of 11.93/9.37 GB/s for
cacheline reads/writes. We verified the performance model used
in our simulator with these measurements.

VI. EVALUATION

Our evaluation shows that: (1) SkyByte outperforms state-
of-the-art CXL-SSD designs by 6.11× on average (§VI-B);

TABLE I: Benchmarks used in our experiments.

Category Suite Name Memory Write LLC
Footprint Ratio MPKI

Graph Rodinia [17] bfs-dense 9.13GB 25% 122.9
Processing GAP [13] bc 8.18GB 11% 39.4

HPC Splashv3 [51] radix 9.60GB 29% 7.1
Image Rodinia [17] srad 8.16GB 24% 7.5Processing

Database WHISPER [45] ycsb 9.61GB 5.0% 92.2
tpcc 15.77GB 36% 1.0

Machine DLRM [46] dlrm 12.35GB 32% 5.1Learning

TABLE II: Parameters defined in our CXL-SSD simulator.

CPU

Cores 8 cores, 4.0 GHz, 256 ROB entries per core
L1 I/D Cache 32/32 KB, 8/8 ways per core, 8 MSHRs

L2 Cache 512 KB, 32 ways per core, 128 MSHRs
L3 Cache 16 MB, 16 ways, shared by all cores, 1024 MSHRs

DRAM DDR5 4800 MHz, 8 channels, 36-38-38
Max. Total Size of Promoted Pages: 2 GB

SSD

Interface CXL over PCIe 5.0 x4 (16 GB/s, 40 ns protocol latency)

Organization
16 channels, 8 chips/channel, 8 dies/chip,

1 plane/die, 128 blocks/plane,
256 pages/block, 4KB page (Total: 128 GB)

Flash Latency Read (tR): 3 µs, Program (tProg): 100 µs,
Erase (tBERS): 1000 µs

DRAM LPDDR4 3200 MHz, 2 channels, 16-18-18
Data Cache Size: 512 MB, 2048 MSHRs

GC Policy Threshold: 80%, # of Blocks to Erase: 19660
Context Switch Overhead: 2 µs; Context Switch Trigger Threshold: 2 µs

Write Log: 64 MB; Data Cache: 448 MB

(2) SkyByte scales the performance with more threads by
exploiting the context-switching opportunities to hide SSD ac-
cess latency (§VI-C); (3) SkyByte reduces the average memory
access time by 14.19× and the flash write traffic by 23.08× over
the state-of-the-art CXL-SSD design (§VI-D); (4) SkyByte’s
write log design uses the SSD DRAM capacity efficiently
(§VI-E); (5)SkyByte benefits CXL-SSDs with various internal
DRAM sizes and flash chip latencies (§VI-F and §VI-G).

A. Experiment Setup

Workloads. We evaluate representative multi-threaded data-
intensive workloads of various domains, including scientific
computing, machine learning training, and database queries,
as shown in Table I. All benchmarks are configured to have
a total memory footprint of at least 8GB. The write ratio of
the workloads ranges from 5% to 36%, and the LLC misses
per kilo-instructions (MPKI) range from 1.0 to 122.9. We run
the workloads on a server with Intel Xeon processors and
capture the instruction traces for each thread using Intel’s PIN
tool [30]. The traces for ycsb and tpcc are collected using
the in-memory database nstore [10], and we use workload
B in ycsb. For each workload, we capture the traces for at
least 100 million instructions per thread, and replay them in
our simulator. In our experiments, all data are initially stored
in CXL-SSD. We use the traces to warm up the simulator,
including the CPU caches, the host memory, the SSD DRAM
cache, and the write log. Page tables and program binaries
are in the host memory. We precondition the SSD to ensure
garbage collections will be triggered.
System configurations. Table II lists the simulator parameters.
Following Samsung’s recent 2TB CXL-SSD prototype with
16GB DRAM [24], [50], we scale down the configuration

bc bfs-dense dlrm radix srad tpcc ycsb geo. mean
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e Base-CSSD

SkyByte-P
SkyByte-C
SkyByte-W

SkyByte-CP
SkyByte-WP

SkyByte-Full
DRAM-Only

Fig. 14: Normalized execution time of SkyByte variants over
Base-CSSD (lower is better).

with the same flash-to-DRAM capacity ratio (i.e., 128GB flash
with 512MB DRAM cache, excluding the FTL mapping table
cache), as it is impractical to simulate a TB-scale SSD at cache
line granularity. We use the NAND flash latency of Samsung
Z-SSD SZ985, which uses ultra-low-latency (ULL) flash chips.
Since modern servers usually have 64GB or larger DRAM
(4× the DRAM size of Samsung’s CXL-SSD), we configure
the maximum host DRAM size for storing migrated pages as
2GB (4× our simulated SSD DRAM size). We also conduct
sensitivity analysis on SSD DRAM cache size and flash latency.

We conduct an ablation study by testing SkyByte with subsets
of design components enabled. When the coordinated context
switch mechanism is enabled, we run 24 threads on 8 cores for
all workloads. We also conduct sensitivity analysis by varying
the number of threads. For other cases, we run 8 threads on
8 cores since more threads will not improve the performance.
We run each workload multiple times with different numbers
of threads. In each run, we collect a separate trace for each
thread. We ensure that all traces represent the same section of
the program. We compare the following designs:
• Base-CSSD: the state-of-the-art CXL-based SSD device

that incorporates all optimizations developed in recent
works [32], [62], including prefetching from flash to SSD
DRAM, optimized cache replacement policy, and MSHRs in
the SSD controller for tracking accesses to the flash chips.

• SkyByte-C: Base-CSSD with SkyByte’s coordinated context
switch mechanism.

• SkyByte-P: Base-CSSD with adaptive page migration.
• SkyByte-W: Base-CSSD with SkyByte’s CXL-aware SSD

DRAM management (the write log and data cache).
• SkyByte-CP: Base-CSSD with both SkyByte’s coordinated

context switch mechanism and adaptive page migration.
• SkyByte-WP: Base-CSSD with both page migration and

CXL-aware SSD DRAM management.
• SkyByte-Full: the complete version of SkyByte that enables

context switches upon SkyByte-WP.
• DRAM-Only: the ideal case assuming we run the workload

with infinite host DRAM.

B. Overall Performance Improvement

Figure 14 shows the performance of different SkyByte
variants normalized to Base-CSSD. Overall, SkyByte-Full
outperforms Base-CSSD by up to 16.35× (6.11× on average).

SkyByte-P’s performance reflects the benefit from page
promotions (§III-C). It outperforms Base-CSSD by 1.84× on
average by using host memory to expand the SSD DRAM
cache size. Workloads with better locality (e.g., bc, tpcc,

bc bfs-dense dlrm radix srad tpcc ycsb geo. mean
0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

8(Skybyte-WP) 16 24 32 40 48

0

1

2

3

N
or

m
al

iz
ed

M

em
. B

an
dw

id
th

Fig. 15: Throughput (bars) and SSD bandwidth utilization (lines) of
SkyByte-Full as we increase the number of threads (normalized to
SkyByte-WP with 8 threads).

and ycsb) benefit more from page promotions, while other
workloads (e.g., radix and srad) benefit less.

SkyByte-W’s performance reflects the benefit of the write
log (§III-B). It outperforms Base-CSSD by 2.16× on average.
By buffering and coalescing write requests, SkyByte-W signifi-
cantly reduces the writeback traffic to the flash chips and hence
reduces the overall latency of flash access requests. The benefit
is especially obvious for temporally sparse workloads like
bc and dlrm, which are otherwise frequently bottlenecked
by write misses in Base-CSSD. Workloads that have many
sparse writes (e.g., srad) benefit more from SkyByte-W, while
workloads that are sensitive to the DRAM cache size and have
relatively fewer sparse writes (e.g., tpcc) benefit more from
SkyByte-P. When combining both optimizations, SkyByte-WP
outperforms Base-CSSD by 2.95× on average.

SkyByte-CP leverages host DRAM as a cache and uses
context switches to hide I/O latency. It outperforms Base-CSSD
by 2.79×. SkyByte-Full further outperforms SkyByte-CP by
1.64× on average, as it also utilizes the write log to address
the granularity mismatch issue of CXL-SSD.

SkyByte-Full outperforms SkyByte-WP by 1.55× on average
and Base-CSSD by 1.61–16.35×. While SkyByte-WP already
represents a well-optimized CXL-SSD device, its ideal perfor-
mance is still bottlenecked by the long flash accesses. SkyByte-
Full enables opportunistic context switches and leverages multi-
threading to further hide long flash delays. By comparing the
performance improvement of SkyByte-C over Base-CSSD and
that of SkyByte-Full over SkyByte-WP (both are 1.49× on
average), we observe that the benefit of context switching is
orthogonal to that of write log and page migration, except for
tpcc, where the benefit of page migration dominates.

Compared to infinite host DRAM (DRAM-Only), SkyByte-
Full achieves 75% of the ideal performance with CXL-SSD.
Given the unit cost of DDR5 DRAM [5] and ULL SSD [4]
is $4.28/GB and $0.27/GB respectively based on their market
price in summer 2024, SkyByte-Full costs 15.9× less than the
DRAM-only setup and improves cost-effectiveness by 11.8×.

C. Benefit of Context Switch with Varying Number of Threads

We analyze the throughput improvements of the coordinated
context switch mechanism (§III-A) by varying the number
of threads with SkyByte-Full on 8 CPU cores, as shown in
Figure 15. The throughput is strongly correlated to the memory
bandwidth utilization improvement with multi-threading. The
potential of such improvement depends on the flash read latency
(Table III) and the percentage of flash reads over all memory
accesses (Figure 16). If most accesses are absorbed by the host

TABLE III: Average flash read latency of SkyByte-WP.

Workload bc bfs-dense dlrm radix srad tpcc ycsb
Latency (µs) 3.5 25.7 3.4 4.9 22.5 19.6 3.3

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

bc
bfs-dense

dlrm
radix
srad
tpcc
ycsb

H-R/W S-R-H S-R-M S-W

Fig. 16: Breakdown of all memory requests of SkyByte1. H-R/W:
host DRAM read/write. S-R-H: CXL-SSD DRAM read hit. S-R-M:
CXL-SSD DRAM read miss. S-W: CXL-SSD write.

and SSD DRAM, context switching among multiple threads
has limited benefits. Otherwise, with more flash accesses, the
throughput scales linearly with the number of threads because
of higher SSD bandwidth utilization. The benefit diminishes
once the context switch overhead exceeds the flash read latency.

Table III and Figure 16 shows the average latency and the
percentage of flash reads for SkyByte-WP. Workloads that
suffer from more flash accesses and higher average flash read
latency (e.g., srad, bfs-dense) benefit more from more
threads. If the workload frequently triggers log compaction,
the long flash writes will interfere with the flash reads, hence
increasing the read latency. In this case, more threads can better
hide the long latency. On the other hand, if the average flash
read latency is already close to the context switch latency (e.g.,
for bc and dlrm in Table III), having two threads per core is
sufficient to achieve optimal throughput. For some workloads
(e.g., dlrm), the throughput drops when the context switch
overhead becomes high with too many threads. With more
threads, the latency of accessing flash chips may increase due
to queuing delays. However, the end-to-end performance is
improved, since the SSD bandwidth utilization is higher.

D. Benefit of CXL-Aware SSD DRAM Management

Average memory access time (AMAT). We break down the
AMAT of Base-CSSD and SkyByte variants in Figure 17. To
analyze the end-to-end memory latency observed by the host
CPU, we consider the accesses to the promoted pages in the
host DRAM as “host DRAM hits”, while all other accesses go
to the CXL-SSD and will suffer the CXL protocol latency (40
ns, see Table II). For all CXL-SSD accesses, we classify them
as “SSD DRAM hits” (hits in write log or data cache) or “SSD
DRAM misses” (which suffer the flash access latency). The
latency of a CXL-SSD access consists of (1) the SSD DRAM
cache indexing time (72 ns for the write log, 49 ns for the data
cache, see §V), (2) the SSD DRAM access time (based on the
timing in Table II), and (3) the flash chip latency (see Table II)
in case of an SSD DRAM miss. Together, we calculate AMAT
by modeling host DRAM, SSD DRAM, and flash chips as a
three-level memory hierarchy, where access to SSD DRAM

1As we focus on the memory requests served by the CXL-SSD, we do not
distinguish host reads and writes. We also do not distinguish CXL-SSD write
hits and misses, as all CXL-SSD writes will append to the write log.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Av
g.

 L
at

en
cy

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

bc bfs-dense dlrm radix srad tpcc ycsb

Host DRAM
CXL Protocol

Indexing
SSD DRAM

Flash

(a) Average memory access time (normalized to Base-CSSD).

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 L
at

en
cy

B
re

ak
do

w
n

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Ba
se

-C
SS

D

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

P

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

W
P

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

Sk
yB

yt
e-

Fu
ll

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

DR
AM

-o
nl

y

bc bfs-dense dlrm radix srad tpcc ycsb

Host DRAM
CXL Protocol

Indexing
SSD DRAM

Flash

(b) Average memory access time breakdown.

Fig. 17: Average memory access time (AMAT) in SkyByte. (a)
compares the AMAT across different designs. (b) shows the percentage
breakdown of different AMAT components.

bc bfs-dense dlrm radix srad tpcc ycsb
10−3

10−2

10−1

100

N
or

m
al

iz
ed

N
um

be
r

of
 W

ri
te

s Base-CSSD
SkyByte-P

SkyByte-C
SkyByte-W

SkyByte-CP
SkyByte-WP

SkyByte-Full

Fig. 18: Write traffic of SkyByte to flash chips.

will bypass host DRAM. For SkyByte-Full, a memory access
triggering a context switch is excluded from calculating AMAT
since this instruction is squashed. The replayed instruction that
eventually retires is included in AMAT.

With SkyByte-W, the write log greatly reduces the flash
access latency for three reasons. First, writes are buffered in
SSD DRAM without expensive flash accesses on the critical
path. Second, by coalescing writes to the flash, SkyByte-
W reduces the number of flash writes, which leads to less
interference to flash reads and triggers GC less frequently.
Third, by buffering the writes at cacheline granularity, SkyByte-
W caches much fewer unused cachelines. This improves the
efficiency of the SSD DRAM cache. With SkyByte-P, the page
migration reduces the number of SSD accesses, and more
memory requests are served by the faster host DRAM. With
both optimizations, SkyByte-WP improves the overall AMAT.

With coordinated context switch, SkyByte-Full achieves
better AMAT than SkyByte-WP, because the flash latency can
be hidden from applications. Although the AMAT of SkyByte-
Full is still 1.39× that of the ideal DRAM-Only case on
average, the end-to-end performance degradation is only 1.33×
on average (see Figure 14). This is because SkyByte-Full
exploits the parallelism from more threads than DRAM-Only
(24 vs. 8 threads on 8 CPU cores) to tolerate higher AMAT.
Flash write traffic. Figure 18 shows the flash write traffic.

bc bfs-dense dlrm radix srad tpcc ycsb
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e 0.5MB

1MB
2MB
4MB

8MB
16MB

32MB
64MB

128MB
256MB

Fig. 19: SkyByte performance with various write log sizes.

bc bfs-dense dlrm radix srad tpcc ycsb
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 F
la

sh
 W

ri
te

 T
ra

ff
ic

0.5MB
1MB

2MB
4MB

8MB
16MB

32MB
64MB

128MB
256MB

Fig. 20: Flash write traffic in SkyByte with various write log sizes.

Compared to Base-CSSD, both SkyByte-P and SkyByte-W
reduce the flash write traffic by coalescing writes in the host or
SSD DRAM. However, SkyByte-W is more effective because it
enables a larger coalescing window with the cacheline-granular
write log. The write log utilizes the limited DRAM space more
efficiently, so it can buffer more writes in the limited SSD
DRAM. SkyByte-WP achieves the benefits of both designs.

The context switch mechanism may slightly increase the
flash write traffic (e.g., SkyByte-Full v.s. SkyByte-WP, and
SkyByte-CP v.s. SkyByte-P). This is because context switches
enable multiple threads to access the SSD simultaneously,
increasing the contention in the SSD DRAM. As a result, the
log compaction is triggered more frequently. This overhead is
acceptable given its performance benefits.

E. Impact of Varying Write Log Size

We study the performance impact of varying write log size
in Figure 19. We keep the total size of the write log and data
cache in the SSD DRAM fixed (i.e., 512MB). The impact of
the write log size mainly depends on the flash write traffic that
can be reduced during log compaction, as shown in Figure 20.
Workloads with more CXL-SSD writes (see Figure 16) and
better temporal write locality will be more sensitive to write
log size, as a larger write log can coalesce more flash writes
(e.g., srad and tpcc). For most workloads, a small write log
(e.g., no more than 64 MB, or 1/8 of the total SSD DRAM size)
already provides a sufficiently large write coalescing window.

F. Impact of Varying SSD DRAM Size

To further understand the efficiency of the SSD DRAM
management in SkyByte, we vary the SSD DRAM data cache
size. In practice, the host DRAM size should scale with a larger
SSD DRAM. Hence, we keep the ratio between the maximum
size of the promoted pages in the host DRAM and the SSD
DRAM cache size the same as the default (i.e., 4:1) in Table II.
We also keep the ratio between the size of the write log and
the data cache to 1:7 for a fair comparison.

Figure 21 shows the performance of SkyByte variants with
various SSD DRAM cache sizes. In all cases, SkyByte-Full is
better than all other baselines. The major benefit comes from
the efficiency of the cacheline-granular write log, as it enables

TABLE IV: The NAND flash parameters used in our evaluation.

NAND
Type SSD Device Read

Time
Program

Time
Erase
Time

ULL Samsung Z-NAND SSD [52] 3 µs 100 µs 1000 µs
ULL2 Toshiba XL-Flash [33] 4 µs 75 µs 850 µs
SLC [62] 25 µs 200 µs 1500 µs
MLC [62] 50 µs 600 µs 3000 µs

a larger effective cache size compared to a page-granular cache.
SkyByte helps reduce the cost of CXL-SSDs, as it can achieve
similar or better performance with a smaller SSD DRAM
compared to Base-CSSD with a much larger SSD DRAM.

G. Impact of Varying Flash Latency

Figure 22 shows SkyByte’s performance with different flash
chips, including fast ULL flash chips and slower SLC/MLC
chips [62] (see Table IV). With a higher flash latency, both
SkyByte-WP and SkyByte-Full achieve higher improvement
over SkyByte-P. As the benefits of write log and context
switching come from the ability to hide flash latency, their
benefits are more obvious with a higher flash latency. SkyByte-
Full can utilize more threads to hide the flash latency and
improve the application performance. As long as the SSD
bandwidth is enough, SkyByte-Full can scale the performance
using more threads until the context switch latency dominates
the execution, which aligns with our findings in §VI-C. SkyByte
demonstrates that it is promising to use slower yet cheaper
commodity flash chips to build CXL-SSDs for parallelizable
applications, as they can achieve similar performance with
SkyByte compared to the cutting-edge Z-NAND flash chips.

H. Comparison with Alternative Page Migration Mechanisms

Prior studies have proposed various page management mech-
anisms for tiered memory systems. While SkyByte employs
an adaptive page migration mechanism (see §III-C) by default,
in this section, we study the effect of applying alternative page
management policies in SkyByte. We introduce the following
designs: (1) SkyByte-CT and (2) SkyByte-WCT. They replace
SkyByte’s adaptive page migration with the software-based
page migration mechanism of TPP [43]. TPP extends Linux’s
NUMA balancing and uses periodic sampling and Linux’s
LRU list to identify hot pages to promote from CXL memory
to the host DRAM. SkyByte-WCT enables the write log in
SSD DRAM, while SkyByte-CT does not. (3) AstriFlash-CXL
applies AstriFlash [23] on Base-CSSD. It employs the host
DRAM as a hardware-managed set-associative cache of SSD
at 4KB page granularity. It also uses user-level thread switches
triggered by host DRAM misses to hide the SSD I/O latency.
Since AstriFlash always accesses the SSD at page granularity,
we do not integrate it with SkyByte’s write log design.

Compared to SkyByte-C, all of SkyByte-CT, SkyByte-CP,
and AstriFlash-CXL improve performance by caching hot
pages in the host DRAM (see Figure 23). SkyByte-CT performs
slightly worse than SkyByte-CP on average because TPP uses
periodic sampling to estimate page hotness, which is less
accurate than the per-page tracking in SkyByte. SkyByte-CP
outperforms AstriFlash-CXL by up to 1.21× (1.09× on

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

5

10

15

20
N

or
m

al
iz

ed
E

xe
cu

tio
n

Ti
m

e

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

1

2

3

4

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

5

10

15

20

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

1.0

1.5

2.0

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

1.0

1.5

2.0

2.5

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

1

2

3

0.125 0.25 0.5 1.0 2.0
SSD DRAM Cache Size (GB)

2

4

6

(a) bc (b) bfs-dense (c) dlrm (d) radix (e) srad (f) tpcc (g) ycsb

Base-CSSD SkyByte-P SkyByte-W SkyByte-WP SkyByte-Full

Fig. 21: Performance of SkyByte with varying SSD DRAM cache size (normalized to SkyByte-Full with default SSD DRAM cache size).

ULL ULL2 SLC MLC
0

20

40

60

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

ULL ULL2 SLC MLC
0

10

20

ULL ULL2 SLC MLC
0

20

40

60

ULL ULL2 SLC MLC
0

10

20

ULL ULL2 SLC MLC
0

10

20

ULL ULL2 SLC MLC

2.5

5.0

7.5

ULL ULL2 SLC MLC
0

5

10

(a) bc (b) bfs-dense (c) dlrm (d) radix (e) srad (f) tpcc (g) ycsb

SkyByte-P SkyByte-W SkyByte-WP SkyByte-Full-16 SkyByte-Full-24 SkyByte-Full-32

Fig. 22: SkyByte performance with varying flash latency. We vary the thread count in SkyByte-Full (e.g. SkyByte-Full-16 uses 16 threads).

bc bfs-dense dlrm radix srad tpcc ycsb geo. mean
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e SkyByte-C

AstriFlash-CXL
SkyByte-CT
SkyByte-CP

SkyByte-WCT
SkyByte-Full

Fig. 23: Execution time of SkyByte with different page migration
mechanisms (normalized to SkyByte-C).

average), as SkyByte utilizes the host DRAM more efficiently
since it only promotes hot pages and effectively uses the host
DRAM as a fully associative cache. In contrast, AstriFlash
relies on on-demand paging and manages the host DRAM as a
set-associative cache. SkyByte-WCT outperforms SkyByte-CT
by 1.10× on average, demonstrating that SkyByte’s CXL-aware
SSD DRAM management design can be applied to improve
the performance of TPP with CXL-SSD. SkyByte-Full further
improves over SkyByte-WCT by 1.16× on average.

VII. RELATED WORK

CXL-based Memory Architecture. The recent development
of CXL technology [18] motivates researchers to rethink the
design and deployment of existing memory techniques [9],
[31], [37], [43], [59], [62], [63]. For instance, they investigated
the impact of CXL on disaggregated memory [9], [22], [37],
and identified new opportunities to facilitate the deployment
of tiered memory [43], [64]. CXL has also been applied to
SSDs [62]. We target such a new architecture, investigate its
bottlenecks, and propose a holistic approach to make CXL-
based SSDs truly usable with software/hardware co-design.
Memory-Semantic SSDs. Using SSDs to expand main memory
capacity has been explored in prior studies [16], [27], [53],
[56]. However, they still treated SSDs as block devices and
relied on OS paging mechanisms to manage the data movement
between the SSD and host memory. A few studies exploited the
byte-accessibility of SSDs [7], [11] and examined its impact
on software systems such as ByteFS [39]. SkyByte advances
the CXL-SSD with new OS and storage architecture supports.

New and Emerging Memory Architecture. To overcome
the memory wall, alternative memory technologies such as
non-volatile memories have been developed [15], [28], [34],
[36]. Compared to these memory technologies, memory-
semantic SSDs provide the generic memory interface while
offering scalable memory capacity with much lower cost. To
enhance SSD performance, prior studies have developed various
architecture-level [27], [57] and device-level optimization
techniques [40], [52]. SkyByte is compatible with these works,
with a focus on addressing the performance challenges in
the context of CXL. Prior studies have proposed informing
memory operations that enable the software to proactively react
to specific memory events such as cache misses [25]. They
provided new instruction primitives and hardware support for
informing memory events. Inspired by these studies, SkyByte
uses the SSD controller to inform the host CPU when a long
flash access will happen. AstriFlash [23] uses the host DRAM
as a hardware-managed cache of the SSD, and hides the flash
latency using user-level thread switches triggered by host
DRAM misses. However, it still treats the SSD as a black
box and manages it at page granularity. SkyByte co-designs
the host and the SSD to address the challenges of CXL-SSDs.

VIII. CONCLUSION

We investigate the performance bottlenecks of CXL-based
SSDs and their impact on the application performance. We
employ a holistic approach to develop SkyByte by co-designing
the host OS and SSD, with coordinated context switch and
CXL-aware SSD DRAM management. We show that SkyByte
outperforms current CXL-based SSDs by 6.11× on average.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments and feedback. We thank Yuan Xu for his help with
memory trace collection. We thank Alaric Yuxiang Chen for
his help with our CXL-SSD simulator and discussions at the
early stage of this project. This work was partially supported
by NSF grant CCF-2107470.

REFERENCES

[1] “Arm storage solution for ssd controllers,” https://armkeil.blob.core.
windows.net/developer/Files/pdf/solution-brief/arm-storage-solution-
for-ssd-solutions-brief.pdf.

[2] “Cfs scheduler - the linux kernel documentation.” [Online]. Available:
https://docs.kernel.org/scheduler/sched-design-CFS.html

[3] “Page reclaim – the linux kernel documentation.” [Online]. Avail-
able: https://www.kernel.org/doc/gorman/html/understand/understand013.
html

[4] “Pm1733/pm1735 — enterprise ssd — samsung semiconductor usa.”
[Online]. Available: https://semiconductor.samsung.com/us/ssd/enterprise-
ssd/pm1733-pm1735/

[5] “Userbenchmark: Samsung-m321r8ga0bb0-cqkzj-2x315gb.” [Online].
Available: https://ram.userbenchmark.com/SpeedTest/2269793/Samsung-
M321R8GA0BB0-CQKZJ-2x315GB

[6] “workingset.c - mm/workingset.c - Linux source code (v6.10) - Bootlin.”
[Online]. Available: https://elixir.bootlin.com/linux/v6.10/source/mm/
workingset.c

[7] A. Abulila, V. S. Mailthoday, Z. Qureshi, J. Huang, N. S. Kim, J. jun
Xiong, and W. mei Hwu, “FlatFlash: Exploiting the Byte-Accessibility
of SSDs within A Unified Memory-Storage Hierarchy,” in Proceedings
of the 24th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’19),
Providence, RI, 2019.

[8] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
Page Management for Two-tiered Main Memory,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17,
Xi’an, China, 2017, pp. 631–644.

[9] M. K. Aguilera, E. Amaro, N. Amit, E. Hunhoff, A. Yelam, and
G. Zellweger, “Memory disaggregation: why now and what are the
challenges,” SIGOPS Operating System Review, vol. 57, no. 1, p. 38–46,
June 2023.

[10] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage
& recovery methods for non-volatile memory database systems,” in
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 707–722. [Online].
Available: https://doi.org/10.1145/2723372.2749441

[11] D.-H. Bae, I. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-G. Lee, and
J. Jeong, “2B-SSD: The Case for Dual, Byte- and Block-Addressable
Solid-State Drives,” in Proceedings of the 45Th Annual International
Symposium on Computer Architecture, ser. ISCA ’18, Los Angeles, CA,
2018, pp. 425–438.

[12] C.-H. C. M. M. H. S. C. based SSD for the Memory-centric Comput-
ing Era, https://semiconductor.samsung.com/us/news-events/tech-blog/
webinar-memory-semantic-ssd/.

[13] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
2017.

[14] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. Oreilly & Associates Inc, 2005.

[15] M. Cai, C. C. Coats, and J. Huang, “Hoop: Efficient hardware-
assisted out-of-place update for non-volatile memory,” in Proceedings
of ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA’20), 2020, pp. 584–596.

[16] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: Using
Flash Memory to Build Fast, Power-efficient Clusters for Data-intensive
Applications,” in Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIV, Washington, DC, 2009, pp. 217–228.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[18] Compute Express Link Specification 3.0, https://computeexpresslink.org/
cxl-specification/.

[19] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but
Effective Heterogeneous Main Memory with On-Chip Memory Controller
Support,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10, Washington, DC, 2010, pp. 1–11.

[20] S. K. Gonugondla, M. Kang, Y. Kim, M. Helm, S. Eilert, and
N. Shanbhag, “Energy-efficient deep in-memory architecture for nand

flash memories,” in Proceedings of 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018.

[21] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,
and M. Jung, “Amber: Enabling precise full-system simulation with
detailed modeling of all ssd resources,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 469–
481.

[22] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access, High-
Performance memory disaggregation with DirectCXL,” in Proceedings of
2022 USENIX Annual Technical Conference (USENIX ATC’22), Carlsbad,
CA, Jul. 2022, pp. 287–294.

[23] S. Gupta, Y. Oh, L. Yan, M. Sutherland, A. Bhattacharjee, B. Falsafi,
and P. Hsu, “Astriflash a flash-based system for online services,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2023, pp. 81–93.

[24] J. Handy, “Understand how the cxl ssd can aid performance,”
https://www.techtarget.com/searchstorage/feature/Understand-how-the-
CXL-SSD-can-aid-performance, 2023.

[25] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith, “Informing
memory operations: providing memory performance feedback in modern
processors,” in Proceedings of the 23rd Annual International Symposium
on Computer Architecture, ser. ISCA ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 260–270. [Online].
Available: https://doi.org/10.1145/232973.233000

[26] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma,
and M. K. Qureshi, “FlashBlox: Achieving Both Performance Isolation
and Uniform Lifetime for Virtualized SSDs,” in Proceedings of the 15th
Usenix Conference on File and Storage Technologies (FAST’17), Santa
clara, CA, 2017.

[27] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified Address
Translation for Memory-mapped SSDs with FlashMap,” in Proceedings
of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15, Portland, OR, 2015, pp. 580–591.

[28] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-award Logging
in Transaction Systems,” in Proceedings of the 41th International
Conference on Very Large Data Bases (VLDB’15), Kohala Coast, HI,
2015.

[29] Intel, “Cpu metrics reference,” https://www.intel.com/content/www/us/
en/docs/vtune-profiler/user-guide/2023-0/cpu-metrics-reference.html.

[30] Intel Corporation, “Pin - A Dynamic Binary Instrumentation Tool.”
[31] J. Jang, H. Choi, H. Bae, S. Lee, M. Kwon, and M. Jung, “CXL-

ANNS: Software-Hardware collaborative memory disaggregation and
computation for Billion-Scale approximate nearest neighbor search,” in
Proceedings of 2023 USENIX Annual Technical Conference (USENIX
ATC 23), Boston, MA, Jul. 2023.

[32] M. Jung, “Hello bytes, bye blocks: Pcie storage meets compute express
link for memory expansion (cxl-ssd),” in Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage’22),
Virtual Event, 2022.

[33] Kioxia, “Xl-flash storage class memory (scm),” https://americas.kioxia.
com/en-us/business/memory/xlflash.html.

[34] A. Kokolis, A. Psistakis, B. Reidys, J. Huang, and J. Torrellas, “Dis-
tributed data persistency,” in Proceedings of the 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’21), Virtual
Event, Greece, 2021.

[35] J. Lee and H. Kim, “TAP: A TLP-aware Cache Management Policy for
a CPU-GPU Heterogeneous Architecture,” in Proceedings of the 2012
IEEE 18th International Symposium on High-Performance Computer
Architecture (HPCA’12), Washington, DC, 2012, pp. 1–12.

[36] D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang, “Uniheap:
managing persistent objects across managed runtimes for non-volatile
memory,” in Proceedings of the 14th ACM International Conference on
Systems and Storage (SYSTOR’21), Haifa, Israel, 2021.

[37] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: Cxl-based memory pooling systems for cloud
platforms,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’23), Vancouver, BC, Canada, 2023.

[38] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling,
and H. S. Gunawi, “The CASE of FEMU: Cheap, accurate,
scalable and extensible flash emulator,” in 16th USENIX Conference
on File and Storage Technologies (FAST 18). Oakland, CA:
USENIX Association, Feb. 2018, pp. 83–90. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/li

https://armkeil.blob.core.windows.net/developer/Files/pdf/solution-brief/arm-storage-solution-for-ssd-solutions-brief.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/solution-brief/arm-storage-solution-for-ssd-solutions-brief.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/solution-brief/arm-storage-solution-for-ssd-solutions-brief.pdf
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://semiconductor.samsung.com/us/ssd/enterprise-ssd/pm1733-pm1735/
https://semiconductor.samsung.com/us/ssd/enterprise-ssd/pm1733-pm1735/
https://ram.userbenchmark.com/SpeedTest/2269793/Samsung-M321R8GA0BB0-CQKZJ-2x315GB
https://ram.userbenchmark.com/SpeedTest/2269793/Samsung-M321R8GA0BB0-CQKZJ-2x315GB
https://elixir.bootlin.com/linux/v6.10/source/mm/workingset.c
https://elixir.bootlin.com/linux/v6.10/source/mm/workingset.c
https://doi.org/10.1145/2723372.2749441
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://www.techtarget.com/searchstorage/feature/Understand-how-the-CXL-SSD-can-aid-performance
https://www.techtarget.com/searchstorage/feature/Understand-how-the-CXL-SSD-can-aid-performance
https://doi.org/10.1145/232973.233000
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/cpu-metrics-reference.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/cpu-metrics-reference.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://www.usenix.org/conference/fast18/presentation/li

[39] S. Li, Y. E. Zhou, H. Ren, and J. Huang, “Bytefs: System support for (cxl-
based) memory-semantic solid-state drives,” in Proceedings of the 30th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’25), Rotterdam, Netherlands,
2025.

[40] C.-Y. Liu, J. B. Kotra, M. Jung, M. T. Kandemir, and C. R. Das,
“Soml read: Rethinking the read operation granularity of 3d nand
ssds,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’19), Providence, RI, USA, 2019.

[41] MacSim: A Cycle-Level, Heterogeneous Architecture Simulator, http:
//comparch.gatech.edu/hparch/macsim.html.

[42] V. S. Mailthoday, Z. Qureshi, W. Liang, Z. Feng, S. G. de Gonzalo,
Y. Li, H. Franke, J. Xiong, J. Huang, and W. mei Hwu, “DeepStore: In-
Storage Acceleration for Intelligent Queries,” in Proceedings of the 52nd
IEEE/ACM International Symposium on Microarchitecture (MICRO’19),
Columbus, OH, Oct. 2019.

[43] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“Tpp: Transparent page placement for cxl-enabled tiered-memory,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS’23), Vancouver, BC, Canada, 2023.

[44] R. Micheloni and L. Crippa, Solid-State-Drives (SSDs) Modeling.
Springer, 2017.

[45] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, pp.
13 –148. [Online]. Available: https://doi.org/10.1145/3037697.3037730

[46] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

[47] M. Nemirovsky and D. Tullsen, Multithreading Architecture, ser.
Synthesis Lectures on Computer Architecture. Springer International
Publishing, 2022. [Online]. Available: https://books.google.com/books?
id=SYZyEAAAQBAJ

[48] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in Proceedings of the International Conference on
Supercomputing, ser. ICS ’11, Tucson, AZ, 2011, pp. 85–95.

[49] B. Reidys, J. Sun, A. Badam, S. Noghabi, and J. Huang, “BlockFlex:
Enabling storage harvesting with Software-Defined flash in modern cloud
platforms,” in Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’22), Carlsbad, CA, Jul. 2022.

[50] C. Robinson, “Samsung memory-semantic cxl ssd at fms 2022 powered
by amd-xilinx,”
https://www.servethehome.com/samsung-memory-semantic-cxl-ssd-at-
fms-2022-powered-by-amd-xilinx/, 2022.

[51] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly
synchronized benchmark suite for contemporary research,” in 2016
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2016, pp. 101–111.

[52] Samsung Z-NAND, https://www.samsung.com/semiconductor/ssd/z-ssd/.
[53] M. Saxena and M. M. Swift, “FlashVM: Virtual Memory Management

on Flash,” in Proceedings of the 2010 USENIX Conference on USENIX

Annual Technical Conference, ser. USENIXATC’10, Boston, MA, 2010,
pp. 187–200.

[54] S. Semiconductor, “Cmm-h (cxl memory module - hybrid): Samsung’s
cxl-based ssd for the memory-centric computing era,”
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-
memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url
Cashback+on+Bing+for+Edge+browser&utm source=url Cashback+
on+Bing+for+Edge+browser&utm medium=affiliate&utm campaign=
1&utm content=3829940&rktevent=Cashback+on+Bing+for+Edge+
browser jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=
47773&ranEAID=%2FjZHTpnCvx8&ranSiteID= jZHTpnCvx8-
u7RSEurkbuqr0ZUBaUdkiw, 2023.

[55] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible
hash tables,” J. ACM, vol. 53, no. 3, p. 379–405, may 2006. [Online].
Available: https://doi.org/10.1145/1147954.1147958

[56] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient Memory-
Mapped I/O on Fast Storage Device,” Trans. Storage, vol. 12, no. 4, pp.
19:1–19:27, May 2016.

[57] J. Sun, S. Li, Y. Sun, C. Sun, D. Vucinic, and J. Huang, “Leaftl: A
learning-based flash translation layer for solid-state drives,” in Proceed-
ings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’23),
Vancouver, BC, Canada, 2023.

[58] J. Sun, B. Reidys, D. Li, J. Chang, M. Snir, and J. Huang, “Fleetio:
Managing multi-tenant cloud storage with multi-agent reinforcement
learning,” in Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’25), Rotterdam, Netherlands, 2025.

[59] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S. Kim,
“Demystifying cxl memory with genuine cxl-ready systems and devices,”
in Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’23), Toronto, ON, Canada, 2023.

[60] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and
O. Mutlu, “MQSim: A framework for enabling realistic studies of
modern Multi-Queue SSD devices,” in 16th USENIX Conference
on File and Storage Technologies (FAST 18). Oakland, CA:
USENIX Association, Feb. 2018, pp. 49–66. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/tavakkol

[61] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
System Support for Improving Data Locality on CC-NUMA Compute
Servers,” in Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS VII, Cambridge, MA, 1996, pp. 279–289.

[62] S.-P. Yang, M. Kim, S. Nam, J. Park, J. yong Choi, E. H. Nam, E. Lee,
S. Lee, and B. S. Kim, “Overcoming the memory wall with CXL-Enabled
SSDs,” in 2023 USENIX Annual Technical Conference (USENIX ATC 23).
Boston, MA: USENIX Association, Jul. 2023, pp. 601–617. [Online].
Available: https://www.usenix.org/conference/atc23/presentation/yang-
shao-peng

[63] M. Zhang, T. Ma, J. Hua, Z. Liu, K. Chen, N. Ding, F. Du, J. Jiang, T. Ma,
and Y. Wu, “Partial failure resilient memory management system for (cxl-
based) distributed shared memory,” in Proceedings of the 29th Symposium
on Operating Systems Principles (SOSP’23), Koblenz, Germany, 2023.

[64] Y. Zhong, D. S. Berger, C. Waldspurger, R. Wee, I. Agarwal, R. Agarwal,
F. Hady, K. Kumar, M. D. Hill, M. Chowdhury, and A. Cidon, “Managing
memory tiers with CXL in virtualized environments,” in 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24).
Santa Clara, CA: USENIX Association, Jul. 2024, pp. 37–56. [Online].
Available: https://www.usenix.org/conference/osdi24/presentation/zhong-
yuhong

http://comparch.gatech.edu/hparch/macsim.html
http://comparch.gatech.edu/hparch/macsim.html
https://doi.org/10.1145/3037697.3037730
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://books.google.com/books?id=SYZyEAAAQBAJ
https://books.google.com/books?id=SYZyEAAAQBAJ
https://www.servethehome.com/samsung-memory-semantic-cxl-ssd-at-fms-2022-powered-by-amd-xilinx/
https://www.servethehome.com/samsung-memory-semantic-cxl-ssd-at-fms-2022-powered-by-amd-xilinx/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/?CID=afl-ecomm-rkt-cha-040122-url_Cashback+on+Bing+for+Edge+browser&utm_source=url_Cashback+on+Bing+for+Edge+browser&utm_medium=affiliate&utm_campaign=1&utm_content=3829940&rktevent=Cashback+on+Bing+for+Edge+browser__jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw&ranMID=47773&ranEAID=%2FjZHTpnCvx8&ranSiteID=_jZHTpnCvx8-u7RSEurkbuqr0ZUBaUdkiw
https://doi.org/10.1145/1147954.1147958
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong

APPENDIX

A. Abstract

We implemented SkyByte with a cycle-accurate simulator
based on MacSim and SimpleSSD. This artifact includes
the source code for SkyByte’s simulation framework and
detailed instructions for reproducing the key performance
results presented in our paper.

This artifact can run on any x86 machine with at least
32 GB of RAM and 128 GB of disk space. For optimal
performance, we recommend using a workstation with multiple
high-performance CPU cores and at least 64 GB of RAM. The
artifact requires a Linux environment (preferably Ubuntu 20.04
or later) and a compiler supporting the C++11 standard.

B. Artifact check-list (meta-information)
• Algorithm: The threshold-based context-switch trigger policy
• Program: Benchmarks from Rodinia, GAP, Splashv3, WHIS-

PER, and DLRM. Their traces are included in the artifact.
• Compilation: g++ 11.4.0 or newer versions.
• Model: The meta DLRM model. Its traces are included.
• Run-time environment: Ubuntu 20.04 or newer versions.
• Metrics: Execution time, flash write traffic, and average memory

access time.
• Output: Files and graphs, expected results included.
• Experiments: Generate experiments using provided scripts.
• How much disk space required (approximately)?: 128 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Around 40 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 3 days on a server with 32 CPU cores.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache-2.0.
• Data licenses (if publicly available)?: Apache-2.0.
• Archived (provide DOI)?: 10.5281/zenodo.14660184.

C. Description

1) How to access: The source code can be downloaded
from Zenodo at https://zenodo.org/records/14660185. For the
latest version, you can access our Github repo: git@github.com:
platformxlab/skybyte.git.

2) Hardware dependencies: This artifact can run on any
x86 machine with a minimum of 32 GB of RAM and 128 GB
of disk space.

3) Software dependencies: The artifact requires a Linux
environment (preferably Ubuntu 20.04 or later) and a compiler
that supports the C++11 standard.

D. Installation

1) Start by downloading the SkyByte artifact from Zenodo:

1 wget https://zenodo.org/records/
14660185/files/SkyByte-Artifact.tar.gz

2 tar -xvf SkyByte-Artifact.tar.gz

2) Please make sure all prerequisites are successfully in-
stalled:

1 sudo apt update
2 sudo apt-get install libboost-all-dev
3 sudo apt install scons htop
4 sudo apt upgrade g++

5 pip3 install matplotlib networkx pandas PyPDF2
gdown scipy

3) Build the simulator for SkyByte:

1 cd SkyByte-Artifact
2 python3 build.py macsim.config -j NUM_THREADS
3 # e.g., python3 build.py macsim.config -j 30

E. Experiment workflow

This section describes the steps required to generate and
execute the necessary experiments. We strongly recommend
referring to scripts-skybyte/README.md for detailed explana-
tions of each script used in this process.
Preparing the Multi-threaded Instruction Traces.

We provide the instruction traces captured using Intel’s PIN
tool for the workloads discussed in the paper. The traces can
be downloaded from Zenodo:

1 wget https://zenodo.org/records/
14660185/files/skybyte_new_traces.tar.gz

2 tar -xvf skybyte_new_traces.tar.gz

After extracting the files, ensure that the skybyte new traces
folder and the codebase (the SkyByte-Artifact folder) are located
in the same directory.

Each set of traces (e.g., the traces for bc with 16 threads)
includes a trace configuration file (trace.txt) and several raw
trace files (trace XX.raw). The trace file format is consistent
with that of the Macsim simulator. For more details, refer to
Section 3.4 of doc/macsim.pdf.
Configuration Files.

The configs directory contains configuration files tailored
for various workloads, design baselines, and specific settings
(e.g., context-switch policies). For detailed information about
these files, refer to configs/README.md.
Launching A Single Experiment.

After compiling the simulation framework, a symbolic link
named macsim will appear in the bin directory. Within the
same directory, the file trace file list specifies the location of
the instruction trace configuration file (i.e., the corresponding
trace.txt). This artifact includes scripts to automate the setup of
individual experiments, which are described in a later section.

To launch a single experiment, use the following command:

1 cd bin
2 ./macsim -b ../configs/baselines/XX.config -w

../configs/workloads/XX.config (-t

../configs/settings/XX.config) -c {corenum} -o
{terminal} -p -f {outputfile_name} (-d) (-r)

The command-line arguments are defined as follows:

1 -b baseline_setting_config_file_name
2 -w workload_config_filename
3 -t additional_setting_config_file_name (optional)
4 -c number_of_logical_cores_to_simlute
5 -o terminal_for_printing_warmup_logs (e.g. /dev/pts/6)
6 -p: print detailed runtime information (optional)
7 -f output_file_name
8 -d: run with infinite host DRAM (optional)
9 -r: output DRAM-only performance results (optional)

https://zenodo.org/records/14660185
git@github.com:platformxlab/skybyte.git
git@github.com:platformxlab/skybyte.git

This command sets up the specified configurations (e.g., de-
sign baseline), performs a warmup, and replays the instruction
traces on multiple simulated CPU cores and the simulated
CXL-SSD. Results will be stored in the output directory.
Launching Batched Experiments.

To execute a large number of experiments simultaneously,
we provide the scripts-skybyte/run all.sh shell script. This
script uses regular expressions to match multiple configuration
files and automatically spawns experiments in separate tmux
windows for parallel execution.

For convenience, we also provide the artifact run.sh script,
which automates the setup and execution of all required
experiments. To launch all experiments, simply run:

1 ./artifact_run.sh

The variable MAX_CORES_NUM in the script specifies the
maximum number of CPU cores allowed for simulations.
Users may need to adjust this value based on their machine’s
specifications before running the script.

The artifact run.sh script performs the following
tasks: 1. Creates multiple directories named
bin-<workload>-<thread_num>-<baseline>
for different experiments. 2. Sets up the corresponding
trace file list file in each directory. 3. Generates a run one.sh
script in each directory to facilitate running individual
experiments. 4. Uses the run all.sh script to launch parallel
experiments.

See lines 23-29 of the artifact run.sh script:

1 # Set up experiment configurations for figures 2, 3, 4,
14, 15, 16, 17, 18, and Table 3

2 ./run_full.sh
3

4 # After running this, a folder named
bin-<workload_name>-<thread_num>-<baseline_name>
will be created for each experiment

5 # Inside each folder, there will be a script named
run_one.sh to run the individual experiment

6

7 # Run experiments for figures 2, 3, 4, 14, 15, 16, 17,
18, and Table 3 concurrently using multiple cores

8 ./run_all.sh -p "bc|tpcc|srad|radix|ycsb|dlrm|bfs-dense"
-dr -j $MAX_CORES_NUM

F. Evaluation and expected results

To evaluate the artifact results, run the following command:

1 ./artifact_draw_figs.sh

This script collects all results from the output folder
and generates the required figures sequentially. A detailed

description of each command and the locations of the generated
figures is provided within the script.

We provide the expected result data files and figures in the
same directory where the figures will be generated. To verify
the results, you can compare the generated figures directly
with those presented in the paper, or compare the data for each
figure with the example results we have provided.

G. Experiment customization

Custom Simulation Configurations.
In addition to the provided configurations, users can cus-

tomize their own configuration files and evaluate them. Below
is a list of configurable knobs that can be used to customize
experiments:

1) promotion_enable: Enables or disables the adaptive
page migration mechanism.

2) write_log_enable: Enables or disables CXL-Aware
SSD DRAM management.

3) device_triggered_ctx_swt: Enables or disables
the coordinated context switch mechanism.

4) cs_threshold: Defines the threshold for the context
switch trigger policy. (Unit: ns)

5) ssd_cache_size_byte: Specifies the size of the SSD
DRAM cache. (Unit: Byte)

6) ssd_cache_way: Defines the associativity of the SSD
DRAM cache.

7) host_dram_size_byte: Specifies the size of the host
main memory. (Unit: Byte)

8) t_policy: Defines the thread scheduling policy. Options
include ”RR”, ”RANDOM”, and ”FAIRNESS” (CFS).

Capturing Custom Program’s Traces.
Users can generate custom traces for their own programs on

their machines. To assist with this, we include a sub-repository
called macsim-x86trace in the artifact. This sub-repo contains
the Intel PIN 3.13 tool and scripts that generate both instruction
traces and memory warmup traces, which are required by our
simulation framework for a custom application. For detailed
instructions on how to generate these traces, refer to macsim-
x86trace/README.md. Please note that PIN 3.13 only runs on
Ubuntu 18.04. Users may need to build a new OS environment
for collecting custom traces.

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• https://cTuning.org/ae

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Introduction
	Background and Motivation
	CXL and Memory Expansion
	Architecture of CXL-based SSDs
	Challenges of Using CXL-Based SSDs

	Design of SkyByte
	Coordinated Context Switch Mechanism
	CXL-Aware SSD DRAM Management
	Adaptive Page Migration

	Discussion
	Implementation
	Evaluation
	Experiment Setup
	Overall Performance Improvement
	Benefit of Context Switch with Varying Number of Threads
	Benefit of CXL-Aware SSD DRAM Management
	Impact of Varying Write Log Size
	Impact of Varying SSD DRAM Size
	Impact of Varying Flash Latency
	Comparison with Alternative Page Migration Mechanisms

	Related Work
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Methodology

