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ABSTRACT
Modern cloud platforms have deployed neural processing units

(NPUs) like Google Cloud TPUs to accelerate online machine learn-

ing (ML) inference services. To improve the resource utilization

of NPUs, they allow multiple ML applications to share the same

NPU, and developed both time-multiplexed and preemptive-based

sharing mechanisms. However, our study with real-world NPUs

discloses that these approaches suffer from surprisingly low utiliza-

tion, due to the lack of support for fine-grained hardware resource

sharing in the NPU. Specifically, its separate systolic array and

vector unit cannot be fully utilized at the same time, which requires

fundamental hardware assistance for supporting multi-tenancy.

In this paper, we present V10, a hardware-assisted NPU multi-

tenancy framework for improving resource utilization, while en-

suring fairness for different ML services. We rethink the NPU ar-

chitecture for supporting multi-tenancy. V10 employs an operator

scheduler for enabling concurrent operator executions on the sys-

tolic array and the vector unit and offers flexibility for enforcing

different priority-based resource-sharing mechanisms. V10 also

enables fine-grained operator preemption and lightweight context

switch in the NPU. To further improve NPU utilization, V10 also

develops a clustering-based workload collocation mechanism for

identifying the best-matching ML services on a shared NPU. We

implement V10 with an NPU simulator. Our experiments with vari-

ous ML workloads from MLPerf AI Benchmarks demonstrate that

V10 can improve the overall NPU utilization by 1.64×, increase
the aggregated throughput by 1.57×, reduce the average latency
of ML services by 1.56×, and tail latency by 1.74× on average, in

comparison with state-of-the-art NPU multi-tenancy approaches.
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1 INTRODUCTION
Recently, we have seen an increasing demand for machine learning

as a service (MLaaS) on various cloud platforms [7, 9, 40, 45, 47].

These machine learning (ML) services are becoming the backbone

of cloud applications today, including smart AI assistants, language

translation, image and video analysis, and recommendations. To

support MLaaS, cloud platforms have deployed neural processing

units (NPUs) such as Google Cloud TPUs [23] that are specialized

hardware accelerators for deep neural networks (DNN).

A typical NPU design aims to accelerate the most common

matrix-matrix multiplication and convolution operations in DNN

models. Therefore, an NPU core usually consists of a large systolic

array (SA) that exploits the data reuse pattern of matrix multipli-

cations and a vector unit (VU) for other generic vector operations

such as activations and reductions, as shown in Figure 2. To maxi-

mize the efficiency of NPUs, their compilers, such as TensorFlow

XLA, usually conduct various code optimizations before offloading

the compiled ML model to the device memory [6, 14, 49].

To use NPUs in the cloud, a simple approach is to assign each

NPU core exclusively to an ML service, which completely disallows

resource sharing (Figure 1a). In order to best utilize NPUs, mod-

ern cloud platforms enable the sharing of NPUs by queuing the

incoming ML workloads and executing them following different

scheduling policies, such as the first-come first-served policy and

the priority-based policy [11, 12]. Such an approach enables the

time sharing of NPUs at kernel-level granularity. Most recently,

PREMA [16] proposed a preemption mechanism for NPUs, it can

interrupt an executing ML kernel in the middle and schedule an-

other kernel (Figure 1b). However, they conduct task scheduling at

a coarse granularity, and do not support concurrent execution of

multi-tenant ML workloads. This inevitably misses the opportunity

to explore the underutilized hardware in NPUs.

To understand NPU utilization, we first conduct a thorough study

on real Google Cloud TPUs. We run various ML workloads from

MLPerf AI Benchmarks [44], and profile the resource utilization of

the core components of a TPU, including the matrix multiplication

https://doi.org/10.1145/3579371.3589089
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Figure 1: Different approaches to using NPU cores for multi-tenant ML inference applications.

unit (MXU, the systolic array), the vector processing unit (VPU),

and the high-bandwidth memory (HBM).

We find that (1) for the majority of ML inference services, a

single workload with various input batch sizes can only utilize less

than half of the total available FLOPS (floating-point operations per

second) of a TPU core. (2) This ismostly due to the imbalanced use of

the MXU and VPU in an ML workload. According to our study, ML

inference workloads are either MXU-intensive or VPU-intensive.

As many common tensor operators can only be executed either on

MXU or VPU, it causes the idleness of compute units. (3) Even if

the operators on MXU and VPU are balanced in an ML workload,

we still cannot often occupy both compute units simultaneously,

due to the data dependencies between these tensor operators. (4)

The underutilized compute units further cause HBM bandwidth

underutilization, as the off-chip HBM is usually designed to match

the peak computation capability of the systolic array. (5) Although

we enable the time sharing of TPUs with multiple ML services and

apply state-of-the-art preemption mechanisms [16], we still cannot

significantly improve the compute utilization as discussed above.

Thus, we are motivated to rethink the NPU architecture for

achieving both improved resource utilization and fairness for multi-

tenant ML services. We develop a hardware-assisted NPU multi-

tenancy framework V10. It enables fine-grained concurrent execu-

tion of ML workloads by employing an operator scheduler in the

NPU. Such a scheduler exploits the idle cycles caused by the imbal-

anced use of SAs and VUs in an ML kernel and enables concurrent

execution of operators from different ML workloads (Figure 1c).

Since the size of tensor operators varies, different operators re-

quire different amount of hardware resources, which can cause

unfairness and starvations in the operator scheduling. For instance,

the large operators will block small operators of the collocated

ML workload. This not only causes severe unfairness, but also

prevents potential opportunities for overlapping the operator exe-

cutions on the SA and VU. To overcome this challenge, we develop

a fairness metric for multi-tenant ML workloads, and propose a

unique preemption mechanism for NPUs at the operator-level gran-

ularity with low context switch overhead. Instead of re-executing

an entire tensor operator after a context switch, we enable low-

overhead recomputation by asynchronously checkpointing input

data and overlapping the switching of two operators. In addition,

our design offers the flexibility for enforcing different priority-based

scheduling policies, such that we can satisfy different service-level

agreements (SLAs) for ML services (see §5.6).
As we scale multiple ML workloads deployment on the shared

NPUs, we wish to maximize the opportunities of exploring the

idle cycles of NPU compute units, while minimizing the resource

contention among these collocated ML workloads. Naïvely collo-

cating two SA-intensive workloads on the same NPU will cause not

only low resource utilization but also worse aggregated through-

put due to resource contention. Therefore, it is critical to identify

pairs of ML workloads that have compatible resource requirements.

Unfortunately, prior studies [17, 32, 35] on workload collocation

cannot be directly applied to ML workloads, as each ML work-

load has diverse computational characteristics. To this end, we

develop a learning-based clustering mechanism, with the intuition

that workloads having similar resource requirements would not be

compatible with each other. We first categorize ML workloads into

different clusters based on the similarities of their extracted features

(e.g., operator size and compute resource requirements). After that,

we pair ML workloads from disjoint clusters, and identify the com-

patible ones based on their estimated collocation performance. Our

experiments show that such an approach achieves high accuracy

(84.73%), compared to the brute-force methodology in which we

manually examine all the possible workload combinations.

We implement V10 with an NPU simulator based on public TPU

hardware parameters [37] as well as the profiled hardware behav-

iors on real Google Cloud TPUs. All the execution traces of ML

workloads fromMLPerf [44] are collected on the Google Cloud TPU

platform. V10 requires minimal hardware modifications (0.003% die

area overhead) to current NPU hardware. We show that V10 im-

proves NPU utilization by 1.64×, increases the aggregated through-

put by 1.57× for collocated ML workloads, reduces the average

latency of each workload by 1.56×, and decreases the tail latency

by 1.74×, compared to the state-of-the-art preemptive multitasking

approach. We summarize our contributions as follows:

• We conduct a thorough characterization study of the resource

utilization of NPUs using real hardware devices andML inference

workloads, and report our findings in §2.
• We develop a tensor operator scheduler and enable multi-tenancy

for NPUs at operator-level granularity to fully utilize the compute

units with multi-tenant workloads (§3.2).
• We enable a flexible fairness mechanism for shared NPUs by

developing a lightweight operator-level preemption scheme with

low context-switch overhead (§3.3).
• We propose a learning-based clustering scheme, which can ef-

ficiently identify compatible ML workloads with high accuracy

for further utilization improvement (§3.4).
• We develop an end-to-end hardware-assisted NPU multi-tenancy

framework V10 for multi-tenant ML services, and evaluate its

efficiency with various ML workloads (§5).
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Figure 2: System architecture of a typical NPU core.

2 CHARACTERIZATION STUDY OF NPU
UTILIZATION

To facilitate our study, we first introduce the baseline NPU archi-

tecture. Then, we show our study results.

2.1 NPU Architecture
Without loss of generality, we show the NPU architecture derived

from the state-of-the-art NPUs in production such as Google Cloud

TPUs [27]. As shown in Figure 2, an NPU consists of a systolic array,

a vector unit, a set of vector registers, and software-managed SRAM

buffers (i.e., instruction memory and vector memory). The SRAM

buffers are filled by DMA operations that execute independently

from the core pipeline, such that the NPU can overlap computation

and data movement between on-chip SRAM and off-chip HBM. The

vector unit has multiple SIMD units, which access the vector mem-

ory via load and store instructions and perform computations with

8 × 128 2D vector registers. It also orchestrates the push and pop

operations to stream data to/from the systolic array via dedicated

FIFO buffers. The systolic array consists of a set of processing ele-

ments (e.g., 128 × 128 PEs) to exploit the data reuse and parallelism

of matrix multiplications and convolutions. Each PE performs a

multiply-accumulate operation per cycle. During execution, the

systolic array first loads a weight matrix into the PEs, and then

streams in the input matrix from the left edge of the array. Simulta-

neously, the output will be streamed out to the vector register file

via the FIFO, and written back to the vector memory.

Given a compiled DNN model that has a stream of tensor op-

erators, each operator has diverse NPU instructions, including (1)

push/pushw %src, which sends eight 128-wide vectors (input ten-

sor or weight) from the vector register %src to the systolic array in

8 cycles; (2) pop %dst, which reads eight 128-wide vectors from the

systolic array and write into %dst in 8 cycles; (3) ld %dst, [vmem],
which loads from the vector memory; (4) st %dst, [vmem], which
stores into the vector memory; and (5) various ALU instructions in

the vector unit that perform element-wise SIMD operations.

To maximally exploit the parallelism of NPUs, various compiler

optimizations have been developed in popular ML frameworks such

as TensorFlow [14, 31, 48, 49]. In this study, we use TensorFlow

v2.10 with the XLA compiler to run the ML models.
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Figure 4: MXU temporal utilization of inference workloads.
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Figure 5: VPU temporal utilization of inference workloads.

2.2 Resource Utilization of Cloud NPUs
To study the utilization of NPUs in the cloud, we run various DNN

inference tasks from MLPerf benchmarks [44] and official TPU

reference models [5] on a real Google TPUv2 device that has mul-

tiple TPU cores. We profile the resource utilization using Tensor-

Board [4], which provides access to the hardware performance

counters on the TPU for tracing the execution time, category, HBM

bandwidth usage, and FLOPs of each tensor operator. We vary the

inference batch size until the ML kernel runs out of memory. We

list the ML workloads in Table 4. We report the resource utiliza-

tion of the core components in TPUs, including the matrix mul-

tiplication unit (MXU), the vector processing unit (VPU), and the

high-bandwidth memory (HBM). These components represent the

systolic array, the vector unit, and the off-chip HBM of a generic

NPU architecture (see §2.1). We present the profiling results of one

representative TPU core, since all cores perform identical computa-

tions independently with data parallelism.

Low NPU utilization for a single ML workload.We first under-

stand the NPU utilization when running a single ML workload on

the TPU. We show the total computation resource utilization mea-

sured in floating-point operations per second (FLOPS) in Figure 3.

Most DNN workloads utilize less than half of the total available

FLOPS on a TPU core. Although increasing the batch size may help

improve the compute utilization by increasing the computation

intensity, the utilization improvement is limited. Moreover, for on-

line ML inference services, it is not always possible to increase the

batch size, due to their latency requirements.

The major reason for the underutilization is that the MXU, which

provides the majority of FLOPS on the TPU core, is temporally

underutilized. As many common DNN operators, such as shuffle,
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Figure 6: Theoretical maximum speedup of a single DNN
inference workload with the operator-level parallelism.
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Figure 7: HBM bandwidth utilization of DNN inferences.

reshape, and element-wise, can only execute on the VPU, this leads

to MXU idleness during the absence of matrix multiplications or

convolutions. We show the temporal utilization of MXU and VPU in

Figure 4 and Figure 5, respectively. Many DNN workloads leave the

MXU idle for 48% of the total execution time on average. Likewise,

the VPU is also significantly underutilized.

Observation (O1): The compute resources on the TPU core

are significantly underutilized due to the temporal idleness of

MXU and VPU.

Imbalanced use of MXU and VPU. To reduce the idleness of

MXU and VPU, one solution is to overlap the execution of MXU

and VPU with compiler optimizations. However, this yields limited

benefits for the following reasons.

First, data dependencies limit operator-level parallelism. To over-

lap an MXU operator with a VPU operator, there must be no data

dependency between them. However, this is rarely the case in DNN

models. VPU favors element-wise operators like ReLU, while MXU

favors spatial-reduction operators like matrix multiplication and

convolution. In most DNN models, these two types of operators

belong to different dependent DNN layers, and have to run sequen-

tially. Therefore, within a DNN model, it is hard to overlap VPU

and MXU operators. Although it is possible to pipeline some MXU

and VPU operations in a fine-grained tile-by-tile manner (such as a

fully-connected layer followed by element-wise activations), the

VPU execution time is still much smaller than that of MXU [27].

To confirm this finding, we build a directed acyclic graph (DAG)

with operators as nodes and dependencies as edges. Any path inside

the DAG is a sequence of operators that cannot be parallelized. Thus,

the total execution time of operators on the longest path is a lower

bound of the execution time of the DNNmodel, with the assumption

that all operators without data dependencies are executed in parallel.

As shown in Figure 6, the speedup of such compiler-parallelized

execution over sequential execution is marginal (6.7% on average).

Second, even if there are no inter-operator data dependencies,

parallelism within a single DNN workload is still limited by the

imbalanced use of MXU and VPU, as shown in Figure 4 and Figure 5.

This limits operator-level parallelism, due to the fact that there are

simply not enough VPU operators to be parallelized with these
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Figure 8: Roofline plot for DNN inference workloads.

MXU operators, as the execution time of MXU operators in a DNN

workload overwhelms that of VPU operators (or vice versa). Thus,

DNN workloads with large MXU/VPU imbalances are bottlenecked

by the type of compute unit that receives higher demands.

The imbalanced use of MXU and VPU is determined by the

DNN model architecture and cannot be easily addressed by the

compiler. For example, BERT and ResNet are matrix multiplication

or convolution-intensive, so they involve more MXU operators. In

contrast, recommendation models like DLRM and detection models

like ShapeMask are bottlenecked by element-wise VPU operations.

Because larger batch sizes help reduce MXU padding overhead, the

XLA compiler will map more operators to the MXU for improved

performance. This will make the VPU utilization relatively worse.

Observation (O2): The temporal idleness of MXU and VPU is

caused by limited operator-level parallelism, a consequence of

data dependencies and imbalanced use of MXU and VPU. As

the limitations are inherent in the DNN model architectures,

it is hard to further improve NPU utilization of a single DNN

workload via compiler optimizations.

Correlation between compute and memory bandwidth uti-
lizations.We also profile the average memory bandwidth utiliza-

tion of each DNN workload in Figure 7. As the batch size increases,

the memory bandwidth utilization decreases (except for Trans-

former
1
). This is because the computational intensity increases

with larger batch sizes, so the DNN workloads observe more data

reuse. To further understand this, we use the roofline model to

demonstrate the correlations between the compute and memory

intensity in Figure 8. With a larger batch size, the operation in-

tensity (FLOPs/byte) increases for most DNN inference workloads.

However, they still cannot reach the peak FLOPS due to the limited

parallelism between MXU and VPU (O2). The corresponding mem-

ory bandwidth utilization also cannot achieve the peak bandwidth.

As the per-core HBM bandwidth (e.g., 330GB/s) was designed to

match the maximum input rate of the MXU (systolic array), the low

compute utilization causes low HBM bandwidth utilization.

Observation (O3): The off-chip HBM bandwidth is underuti-

lized as a consequence of FLOPS underutilization in NPUs, as

the HBM was usually designed to match the peak computation

capability of the systolic array.

1
The Transformer model uses a beam search decoder for generating the final outputs.

It incurs more memory accesses as we increase its batch size.
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Low NPU utilization with preemptive multi-tasking. NPU
multi-tenancy allows two or more inference tasks to share the same

NPU core, however, the current NPU support for multi-tenancy is

limited. The most advanced approach is preemptive multitasking

that enables the time sharing of an NPU core by preempting a

workload at the task level. To examine the effectiveness of this

approach, we collocate two DNN inference workloads from Table 4,

and implement a preemptive multitasking scheme (see the details

in §5.1). We show the MXU/VPU utilization of each collocated

workload in Figure 9. For half of the workload combinations (e.g.,

BERT+NCF), both MXU and VPU still have low utilization (50%

on average). As the preemptive multitasking scheme enables fair

time-sharing of an NPU core between workloads at the task level,

the overall MXU/VPU utilization appears “balanced”. However, this

does not fundamentally solve the underutilization problem, because

preemptive multitasking still cannot enable overlapping execution

of MXU and VPU operators at the architectural level. Even worse,

for some collocations (e.g., BERT+RsNt and DLRM+RtNt), there is

little room for overlapping execution as they intrinsically contend

for the same type of compute units.

Observation (O4): The state-of-the-art preemptive-based

multi-tasking scheme still suffers from low NPU utilization and

imbalanced use of MXU and VPU. Blindly collocating work-

loads on the sameNPU core causes resource contention, making

it harder to improve NPU utilization.

3 DESIGN AND IMPLEMENTATION
Our study (§2.2) motivates V10, a multi-tenant NPU that improves

resource utilization by simultaneously executing independent sys-

tolic array (SA) and vector unit (VU) operators from different work-

loads. This section presents the overview of V10 (§3.1) and the

details of each design component.

3.1 Overview of V10
The core of V10 is a tensor operator scheduler as shown in Figure 10.

It is located at the front end of the NPU pipeline, between the in-

struction memory and the SA/VU, to control the instruction fetch

and issue logic. The scheduler minimizes hardware modifications

by leveraging the existing hardware capability to dispatch SA and

VU operations in parallel. First, the operator dispatch logic enables

simultaneous execution of multiple operators on one NPU core

with a flexible priority-based scheduling policy to enforce differ-

ent SLAs for the ML services (§3.2). Second, since DNN operators

have vastly different execution times, long-running operators may

block short operators and cause severe unfairness and sub-optimal
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Figure 10: Architecture of V10’s tensor operator scheduler.

Op ID Op
Type Active Ready FU ID Active

Cycles
Total

Cycles Priority

4 SA 1 1 0 ... ... 80
8 VU 1 0 1 ... ... 20

32-bit 1-bit 1-bit 1-bit varies 64-bit 64-bit 7-bit

Workload 1
Workload 2 ...

Figure 11:Workload context table of V10’s operator scheduler.
The width of FU ID bits depends on the number of FUs. With
4 FUs, each row will only require 22 bytes of on-chip storage.

resource utilization. Thus, V10 employs a lightweight operator pre-

emption mechanism to balance operator execution time, which

greatly improves both utilization and fairness (§3.3). Third, even if

the scheduler makes perfect scheduling decisions, improvements

in resource utilization may still be marginal if the collocated work-

loads have conflicting resource demands. Thus, V10 minimizes

resource contention with a clustering-based collocation mechanism

to identify workloads with compatible resource demands (§3.4).

3.2 Tensor Operator Scheduler
To enable the simultaneous execution of multiple operators on func-

tional units (FU) like SAs and VUs, the tensor operator scheduler

selects independent operators from different DNN workloads and

dispatches them to multiple FUs.

Operator Dispatch Logic. To track the execution states of each

workload and their operators, V10’s scheduler maintains aworkload
context table shown in Figure 11. Because the operators within one

workload execute sequentially, each row only need to track the

most recent operator of the workload.

For each operator, the scheduler uses DMA to load the instruc-

tions from the off-chip HBM into the on-chip instruction memory.

The Ready bit indicates whether the DMA is completed and the

operator can start execution. Then, the scheduling policy uses the

context table to decide which operator will be executed next, which

will be elaborated on later. Periodically, a preemption timer will trig-
ger the scheduling policy to examine whether an operator should

be preempted. If so, the preemption module dynamically generates

instructions to save the context for the preempted operator (§3.3).
Once a set of ready operators are selected for execution, the

scheduler sets the Active bits and zeros out the Ready bits for

them. It then fetches the instructions of these operators from the

instruction memory and issues them to the corresponding FUs.
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Algorithm 1 Priority-Based Scheduling Policy.

1: function pick_next_workload(act_list, tot_list, fu_type)

2: for i in range(num_workloads) do
3: arp_list[i] = act_list[i] / tot_list[i] / priority_list[i]

4: end for
5: for i in range(num_workloads) do
6: idx = index of the i-th smallest element in arp_list

7: if workload_list[idx].running == False then
8: if workload_list[idx].op_type == fu_type then
9: return workload_list[idx]

10: end if
11: end if
12: end for
13: return NO_WORKLOAD_AVAILABLE

14: end function

For example, an SA operator will involve push/pop instructions,

while a VU operator will execute vector ALU instructions. Once an

operator starts execution, it will occupy the corresponding FU until

it finishes or is preempted. Then, if the DMA operation that fetches

instructions for the next operator is also done, the Active bit will

be zeroed, the Ready bit will be set, and the scheduling policy will

be invoked to assign the next operator to the free FU.

Scheduling Policies. To keep the FUs busy and maximize resource

utilization, the scheduler will issue an operator as soon as an oper-

ator is ready and an FU is idle. If there are more ready operators

than available FUs, the scheduling policy will be invoked to decide

which operator to execute next.

1) Round-Robin Scheduling Policy. The most basic scheduling

policy is Round-Robin (RR), which circulates through all workloads

with ready operators. This naïve policy enables the basic operator

scheduling logic on an NPU core, but it has at least two drawbacks.

First, RR only balances the number of executed operators between

workloads, rather than their execution time. As a result, workloads

with longer operator lengths will occupy an FU and starve work-

loads with shorter operators, which leads to sub-optimal utilization

and unfairness (see §3.3). Second, RR lacks the flexibility to support

SLAs for multi-tenancy, e.g., a cloud platform provider may con-

figure different priorities for different user workloads to guarantee

SLAs, but RR treats all workloads equally.

2) Priority-Based Scheduling Policy. To enable flexible priority
configuration on the multi-tenant NPU, and to reduce the unfair-

ness caused by imbalanced operator length between workloads, we

developed the priority-based scheduling policy in Algorithm 1. The

intuition is that a workload should spend computation cycles pro-

portional to its relative priority [20].With this, we define active_rate
of a workload as the ratio between the workload’s active execution

time (active_time) and its total time since it has arrived at the NPU

(total_time). Thus, active_rate =
active_time
total_time indicates the relative

throughput a workload gets compared with the ideal throughput

when it runs on a dedicated NPU core. For example, a workload

gets half of its ideal throughput when its active_rate = 1/2.
To maintain the proportionality between active rates and pri-

orities, the scheduler aims to keep the proportional active rate

Table 1: Average operator lengths of DNN models. The batch
size is 32 except for ShapeMask (8) and Mask-RCNN (16).

DNN Model Avg. SA Op. Len. (𝝁s) Avg. VU Op. Len. (𝝁s)
BERT 8.77 × 10

2
3.47 × 10

1

DLRM 1.70 × 10
1

4.43 × 10
0

EfficientNet 1.05 × 10
2

6.90 × 10
1

Mask-RCNN 1.38 × 10
2

1.46 × 10
1

MNIST 1.80 × 10
2

2.02 × 10
2

NCF 4.30 × 10
2

1.71 × 10
1

ResNet 1.54 × 10
2

1.28 × 10
1

ResNet-RS 3.20 × 10
3

6.19 × 10
1

RetinaNet 1.57 × 10
2

4.08 × 10
0

ShapeMask 1.91 × 10
3

2.02 × 10
1

Transformer 6.65 × 10
3

5.54 × 10
1
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Figure 12: Operator scheduling with or without preemption.

active_rate𝑝 =
active_rate
priority the same for all workloads. Thus, thework-

load with the lowest active_rate𝑝 suffers from the largest through-

put degradation compared to other workloads and should be sched-

uled and executed first. Specifically, the scheduler will prioritize the

workload that scores the lowest active_rate𝑝 , as specified in Algo-

rithm 1, where act_list, tot_list, priority_list, and arp_list are the lists
of active_time, total_time, priority, and active_rate𝑝 , respectively,
for all workloads. With this scheduling policy, V10 dynamically

controls the resource allocation to each workload.

3.3 Tensor Operator Preemption
Although the scheduling policy attempts to improve utilization

and maintain fairness, it will not work well if operator lengths are

imbalanced. As shown in Figure 12a, Workload 1 and Workload 2

have complementary SA and VU utilizations. Thus, we may expect

them to collocate well without severe resource contention. However,

in Figure 12b, we still observe surprisingly low utilization and severe

unfairness. The root cause is that a long SA operator in Workload

1 blocks a short SA operator that is a dependency of a future VU

operator inWorkload 2. This degrades the performance ofWorkload

2 and prevents efficient overlapping of SA and VU operators. This

issue happens frequently, since different workloads can have vastly

different operator lengths, as shown in Table 1.

We propose a low-overhead operator preemption mechanism.

In Figure 12c, by preempting long SA operators of Workload 1 and

executing short SA operators of Workload 2, the dependencies for
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Figure 13: SA operator preemption and restoration proce-
dure for an example 3×3 SA (left) and the corresponding
timeline for an example 128×128 SA (right). The cycle num-
ber indicates when a column/row of data is pushed/popped.
An output element labeled x’ is valid only after all input
elements labeled x have been pushed into the SA.

VU operators in Workload 2 can finish sooner, which increases the

chance of overlapping SA and VU execution.

Preempting a VU Operator. Since the VU contains no intermedi-

ate states, to preempt a VU operator, we pause its execution and

save the PC and register values into the on-chip vector memory.

Later, to resume the operator, we restore the register values and

continue execution from the saved PC.

Preempting an SA Operator. Preempting an SA operator is more

complicated because the SA contains intermediate states, including

inputs, weights, and partial sums, which are shared by consecutive

push/pop instructions. Since the PC and register saving mechanism

for VU cannot preserve intermediate data left inside the SA, we need

special context saving and restoration mechanisms to maintain the

intermediate states for the preempted SA operator.

A naïve solution is to drain all intermediate data from the SA

and save it into the on-chip vector memory for later restoration.

However, this requires significant hardware changes to the SA for

manipulating the registers in the PEs directly. It also incurs signif-

icant context storage overhead, as we must save 2×128×128×2B
inputs and weights and 128×128×4B partial sums

2
(128KB per SA).

Our first insight is that we can minimize hardware modification

by saving the inputs before they are pushed into the SA, instead of

reading them out from the SA itself. However, some previous inputs

are already pushed into the SA before invoking the preemption.

Thus, we continue execution until all computations related to them

complete. Meanwhile, we save any new inputs to the vectormemory

when they are being pushed into the SA. On restoration, we simply

recover the state of SA by replaying the saved inputs.

Our second insight is that we can minimize context storage

overhead by storing 2-byte inputs instead of 4-byte partial sums
2
,

which can be later recovered using the saved inputs. Thus, we only

save 128×256×2B inputs and 128×128×2B weights (96KB per SA),

which is 25% less than the naïve approach.

2
Most systolic array designs use 2-byte bfloat16 inputs and weights, and 4-byte

float32 partial sums for better accumulation accuracy [27].
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Figure 14: Training and inference procedures for the
clustering-based workload collocation mechanism.

We use a 3×3 SA in Figure 13 to demonstrate our SA context

switch mechanism. The preemption is invoked at cycle 1 ( 1 ). In-

stead of pausing the execution immediately, we keep the SA running

while saving all further inputs into the vector memory ( 2 ). No cy-

cles are wasted so far since the SA is still popping valid outputs.

After all partial sums depending on earlier inputs are popped, we

pause the execution ( 3 ). Then, we save the weight data of the

preempted operator from the SA, and simultaneously start the

restoration of the next operator by loading its weight data into the

SA ( 4 ). The preempted operator exits completely at cycle 9 ( 5 ).

Then, the next operator continues restoring its context by replaying

its inputs to the SA, and then resumes normal execution ( 6 ).

With our approach, 128 cycles are spent for preemption, which

is overlapped with 384 cycles for reinitialization. Thus, one context-

switch for a 128×128 SA costs 384 cycles in total, which is negligible

compared to the average SA operator length (Table 1). The storage

overhead of SA preemption is 96 KB per SA per workload context,

which is trivial compared to the vector memory capacity.

3.4 Clustering-based Workload Collocation
Although we have enabled workload collocation on an NPU core,

randomly collocating two arbitrary workloads may negatively im-

pact resource utilization if they have conflicting resource demands.

For example, two SA-intensive workloads on one NPU core will

keep contending for the SA while leaving the VU idle no matter

how we schedule the operators. To prevent this scenario, we need

a lightweight collocation mechanism to accurately identify work-

loads with compatible resource demands.

A simple heuristic-based mechanism is that the aggregated re-

source utilization of collocated workloads should not exceed the

total available resource. However, this is inaccurate because it ig-

nores dynamic resource contentions (such as operator length mis-

match). Another approach is to brute-force profile the collocation

performance of two workloads, and use the profiled result to decide

if they should be collocated. However, this is unrealistic due to

significant profiling overhead despite being accurate.

To achieve the benefits of both approaches, our key insight is that

DNN workloads with similar resource utilization patterns usually

have similar collocation performance, so we can classify workloads

into groups according to those patterns. Then, we can predict the

compatibility between given workloads using the profiled compat-

ibility between their groups. Thus, we can make more accurate
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Figure 15: The clustering of 11 ML models with different
batch sizes. Each point is a model with a distinct batch size.

Table 2: Prediction accuracy and worst-case performance of
different collocation schemes. Eachmethod predicts whether
collocating two given workloads can improve the overall
throughput by ≥ 1.3×. True/False means the prediction is
correct or not. Positive/Negative means the predicted perfor-
mance is ≥ 1.3× or not.

Overall True True False False Worst

Accuracy Positive Negative Positive Negative Perf.

Random 44.83% 100% 0 100% 0 0.965x

Heuristic 64.91% 93.21% 42.36% 57.64% 6.79% 0.992x

Clustering 84.73% 98.74% 73.19% 26.81% 1.26% 1.000x

collocation decisions than the heuristic-based approach without

suffering significant profiling overhead.

Based on this insight, we propose a clustering-based collocation

mechanism to predict the collocation performance of two given

workloads. As shown in Figure 14, it consists of an offline training

phase and an online inference phase. During offline training, we

build a database of clusters, where each cluster consists of similar

workloads, as shown in Figure 15. Specifically, we leverage compiler

techniques or offline profiling to extract workload features related

to resource contentions, including SA/VU utilizations, HBM band-

width consumption, and operator length statistics (e.g., mean, min,

max). With these features, we apply principal component analysis

(PCA) to extract important features, and then use K-Means [18]

to classify the workloads into different clusters. Then, we perform

offline profiling to obtain the pair-wise collocation performance

betweenworkloads from different clusters, andwe represent the col-

location performance of two clusters using the average collocation

performance for all workload pairs across the two clusters.

For online inference, we decide whether to collocate two given

workloads by first identifying which clusters they belong to, ac-

cording to their resource utilization features. Then, we predict their

collocation performance as the collocation performance of the rep-

resentative clusters. We dispatch them to the same NPU core if the

prediction is higher than a threshold, or to different cores otherwise.

To evaluate our clustering-based collocation mechanism, we

compare three collocation schemes: (1) Random (randomly collo-

cates two workloads), (2) Heuristic, and (3) Clustering. To prove

V10 can make efficient predictions for DNN workloads unseen dur-

ing training, we follow the classical cross-validation approach used

in ML community [3]. We select 9 workloads from Table 4 as the

training set to build the prediction model, and use the remaining 2

workloads as the testing set to evaluate the accuracy. The process

Table 3: Overhead of the tensor operator scheduler. Area and
power are normalized to a single Google TPUv3 core.

# SAs # VUs # Workloads Context Table Latency Area Power
1 1 2 43 bytes 22 cycles 0.001% 0.303%

1 1 4 86 bytes 24 cycles 0.002% 0.324%

2 2 4 86 bytes 82 cycles 0.002% 0.325%

4 4 8 173 bytes 284 cycles 0.003% 0.346%

is repeated for all possible combinations. As shown in Table 2, our

clustering mechanism achieves an accuracy of 84.73% and prevents

73.19% of the non-beneficial collocations.

3.5 Put It All Together
In cloud platforms, incoming tasks are usually queued in a workload

pool. After the pre-deployment compilation, the workloads will not

change unless their model architectures are updated.V10 leverages

such predictability of DNN inference workloads to perform offline

profiling and make online collocation decisions.

Before serving ML inference services, V10 trains the clustering

model offline. At runtime, V10 leverages the pre-built clustering

model to identify groups of workloads with complementary re-

source demands (§3.4), and dispatches each group to each NPU

core to maximize the potential of overlapped execution. The cloud

provider can also specify different priorities for the workloads to

guarantee SLAs. In each NPU core, the operator scheduler over-

laps the execution of multiple operators from different workloads

to maximize resource utilization. Periodically, the priority-based

scheduling policy is invoked to examine whether all workloads get

their fair share of resources with respect to their priorities (§3.2).
The operator scheduler will preempt operators that run longer than

they deserve and execute starved operators (§3.3).

3.6 V10 Implementation
V10 Framework. We implemented V10 with an NPU simulator

based on public literature on Google TPUs [27, 37]. The simulator

replays instruction traces captured on real TPUs and simulates

operator scheduling and dispatching, SA/VU execution, as well as

vector memory and HBM bandwidth. We show the detailed NPU

configuration in Table 5, which represents the state-of-the-art NPU

architecture. The clustering algorithm is implemented in Python

3.6 with numpy and scikit-learn, and it takes one millisecond on

an Intel Xeon E5-2687W v4 for each prediction. We also prototyped

V10’s core components in Verilog and synthesized the design in

Cadence Virtuoso using the FreePDK-15nm standard cell library [1].

Memory Management. V10 employs a simple yet effective mem-

ory management scheme to reduce hardware complexity and run-

time overhead. For vector memory, V10 partitions the address space

evenly among collocated workloads and adds the partition offset on

each memory access at runtime. Thus, operators in the same work-

load can share data in vector memory without interfering with

collocated workloads. We evaluate the impact of various vector

memory capacities in §5.8. For HBM, V10 uses the conventional seg-

mentation scheme to divide the address space into several memory

regions to host one workload per region. The region size depends

on the workload memory allocation (e.g., batch size and model size).

Thus, V10 incurs negligible address translation overhead.
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V10 Overhead. The major hardware overhead of V10 comes from

the tensor operator scheduler. We quantify the overhead by con-

figuring the number of SAs/VUs and the number of collocated

workloads. In Table 3, V10 incurs negligible area and power over-

head compared to a Google TPUv3 chip. The scheduler latency is

also negligible compared to the operator lengths (most are ≥ 10𝜇s

in Table 1), so it will not block the execution of already scheduled

operators. Since an NPU core has only a limited number of SAs/VUs,

and the number of workloads does not need to exceed twice the

number of SAs/VUs for optimal utilization (Figure 25), the scheduler

complexity is manageable in each NPU core.

4 DISCUSSION
Support for various scheduling policies. V10 developed a new

lightweight context-switching mechanism with minimal hardware

modifications (§3.3). With the priority-based operator scheduling

algorithm, V10 provides the flexibility for supporting various sched-

uling policies based on the demands of cloud providers. For example,

V10 enables equal- or fixed-share scheduler by setting different pri-

orities for the workloads. V10 also enables collocating low-priority

best-effort workloads with high-priority latency-sensitive ones to

improve resource utilization without violating SLO requirements.

Alternative software-based approach. Though we can imple-

ment the operator scheduler in host runtime, the software-based so-

lution has three limitations. First, the software scheduling overhead

is too large (about 20 𝜇s to schedule 2 operators from 2workloads on

1 SA and 1 VU) for most operators (Table 1). Second, for fine-grained

scheduling, the frequent communications between host software

and NPU hardware incur significant overhead. Third, even if the

scheduler runs in software, new hardware support for simultaneous

operator execution is still required. In contrast, implementing the

entire scheduler in hardware has negligible overhead (Table 3). As

commodity GPUs also employ hardware schedulers [2], we believe

V10’s hardware-assisted design for NPU multi-tenancy is feasible.

Generalizability of V10 approach. Our observations in §2.2 ap-
ply to all DNN accelerators that consist of SAs and VUs. For these

accelerators, we can improve the performance by pipelining SA

computations and VU post-processing. However, the SA/VU im-

balance still exists because the VUs are designed not only to post-

process the SA outputs but also to execute generic vector operations

that cannot run on the SAs. This allows the NPU to support more

operators in diverse DNN models. Therefore, the main source of

SA/VU imbalance comes from operators that can only run on VU.

V10 addresses this problem with a hardware-assisted approach.

5 EVALUATION
Compared with state-of-the-art NPU multi-tenancy designs, V10

• improves the overall NPU utilization by 1.64× (§5.2);
• increases the aggregated throughput by 1.57× (§5.3);
• reduces the average latency of ML services by 1.56×,
and tail latency by 1.74× (§5.4);

• incurs minimal operator preemption overhead (§5.5);
• supports flexible workload priority settings (§5.6);
• works with various scheduler time slice settings (§5.7);
• can benefit different vector memory capacities (§5.8);
• scales with multiple workloads and SAs/VUs (§5.9).

Table 4: ML models used in our evaluation. Batch size is 32
except for ShapeMask (8) and Mask-RCNN (16).

Name Abbrev. Description
BERT BERT Natural Language Processing

DLRM DLRM Recommendation

EfficientNet ENet Image Classification

Mask-RCNN MRCN Object Detection & Segmentation

MNIST MNST Image Classification

NCF NCF Recommendation

ResNet RsNt Image Classification

ResNet-RS RNRS Image Classification

RetinaNet RtNt Object Detection

ShapeMask SMask Object Detection & Segmentation

Transformer TFMR Natural Language Processing

Table 5: The configurations of the NPU simulator.
Systolic array (SA) dimension 128×128
Vector unit (VU) dimension 8×128×2 FP32 operations/cycle
Frequency 700MHz

Vector Memory 32MB

HBM Memory Size & Bandwidth 32GB, 330GB/s

Scheduler Time Slice 32768 cycles (≈ 46 𝜇s)

5.1 Experimental Setup
From MLPerf v2.1 benchmarks [44] and Google’s official TPU ref-

erence models [5], we choose 11 ML models representing common

MLaaS workloads from various domains (Table 4). We collocate

two ML workloads in each experiment based on our clustering

(§3.4), which identifies workloads with best-matching resource re-

quirements. To measure the steady-state multi-tenant performance,

we iteratively run inference requests for each collocated workload

until all workloads complete a certain number of requests.

We compare V10 with the state-of-the-art NPUmulti-tenancy so-

lution, i.e., preemptive time-sharing of NPUs [16]. We also evaluate

the effectiveness of the priority-based operator scheduling policy

and the operator preemption mechanism in V10. To summarize, we

compare the following designs:

• PMT: the baseline preemptive multi-tasking NPU, which sup-

ports time-sharing of anNPU corewithout simultaneous operator

execution. It preempts a workload at the ML inference task level

with 20𝜇s–40𝜇s context switch overhead.

• V10-Base: the basic V10 with simultaneous operator execution

and non-preemptive round-robin operator scheduling.

• V10-Fair: this V10 variant uses the priority-based scheduling

policy. We set equal priority for all workloads by default.

• V10-Full: the full V10 design with all proposed design compo-

nents. It enables operator preemption over V10-Fair.

5.2 Resource Utilization Improvement
Figure 16 shows the NPU utilization with two collocated workloads.

On average, the final design V10-Full improves the aggregated

utilization of all compute units on NPU core by 1.64× over PMT.

The utilization improvement of SA, VU, and HBM bandwidth over

PMT are 1.63×, 1.65×, and 1.47×, respectively.
The baseline PMT ensures fairness by assigning each workload

an equal amount of NPU core time without overlapped execution of

SA and VU. Thus, the aggregated utilization of PMT is the average,

instead of the sum, of each collocated workload’s single-tenant uti-

lization (see §2.2). For example, collocating the SA-intensive BERT
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(b) The utilization of the vector unit (VU) in the NPU core.
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(c) Memory bandwidth utilization.

Figure 16: Utilization of different hardware components
when collocating two DNN inference workloads.

with the VU-intensive NCF only makes the SA and VU utilization

both closer to 50%, instead of improving the aggregated utilization.

V10-Base achieves 1.29× better aggregated utilization than PMT

by enabling simultaneous execution of SA and VU (Figures 16a

and 16b). To better understand this, we profile the percentage of

simultaneously executed operators for each design in Figure 17.

V10-Base overlaps the execution of SA and VU for up to 48% of the

execution time, which significantly improves utilization.

To improve both fairness and utilization, V10-Full enables op-

erator preemption over V10-Fair to eliminate operator length con-

tention. For example, in BERT+DLRM, both V10-Base and V10-Fair

suffer low VU utilization despite improving SA utilization. Since

BERT is SA-intensive with long operators and DLRM is VU-intensive

with short operators, BERT starves DLRM during operator length

contentions. Hence, the BERT-dominated SA utilization is high, but

the DLRM-dominated VU utilization is low. With operator preemp-

tion, V10-Full eliminates the starvation of DLRM without significant

impacts on BERT. Thus, the VU utilization improves greatly, while

the SA utilization only degrades slightly. V10-Full achieves much

higher aggregated utilization than other designs.

Figure 16c shows the memory bandwidth utilization of all de-

signs. All variants of V10 improves bandwidth utilization over PMT,

except for BERT+DLRM without preemption. This is because the

less memory-intensive BERT starves the more memory-intensive

DLRM. With operator preemption, V10-Full always utilizes more

memory bandwidth than all other designs.

5.3 Improvement in System Throughput
V10 improves the overall performance for all collocated workloads,

as reflected by the system throughput of the NPU core in Figure 18.
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Figure 17: Execution time breakdown of SA operators and VU
operators (left to right: PMT, V10-Base, V10-Fair, V10-Full).
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Figure 18: Throughput improvement (normalized to PMT).
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Figure 19: V10 improves the average latency of collocated
DNN inference workloads (normalized to PMT).

Following previous literature [16, 20], we define the system through-

put as the sum of the normalized forward progress of each collo-

cated workload. On average, V10-Base and V10-Fair improves the

throughput by 1.25× over PMT, and V10-Full further achieves 1.57×
improvement. The throughput improvement of V10 directly reflects

the amount of overlapping operator execution time in Figure 17.

With preemption, V10-Full enables flexible operator scheduling by

balancing operator lengths. This leads to overlapped execution of

SA and VU for up to 81% (63% on average) of the time.

The clustering scheme also contributes to the throughput im-

provement, since less resource contention leads to more execution

overlapping between operators from different workloads. Evenwith

slightly imperfect resource compatibility (e.g., RNRS+MRCN), V10 still
achieves 1.33× higher throughput than PMT.

5.4 Latency of ML Inference Requests
Figures 19 and 20 show the average and tail latency for the ML

inference requests in each workload. On average, V10-Full reduces

the average and tail latency by 1.56× and 1.74× over PMT, respec-

tively. By utilizing more hardware resource than PMT, V10 allows

both collocated workloads to make forward progress at the same

time, which greatly improves the average and tail latency.
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Figure 20: V10 improves 95% tail latency of collocated DNN
inference workloads (normalized to PMT).
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Figure 21: Context switch overhead normalized to single-
tenant performance (left) and the number of preemptions
per request normalized to PMT (right).

We also observe that for both collocated workloads, operator

preemption is necessary for better latencies than PMT. In Figures 19

and 20, V10-Base causes up to 4.3× degradation on latency for one

of the collocated workloads. Despite its improvement over V10-

Base, V10-Fair is still not fair due to operator size contentions (e.g.,

BERT+DLRM). With operator preemption, V10-Full enforces fairness

by preventing long operators from blocking short ones and achieves

better latencies than PMT for both collocated workloads.

The preemption overhead of V10 is negligible (see §5.5), so the

tail latency of workloads is not affected significantly by preemp-

tions. Since resource contention between collocated workloads is a

major reason for high tail latency, as shown in Figure 20, operator

preemption reduces the latency by alleviating the contention.

5.5 Overhead of Preempting Tensor Operators
To evaluate V10’s operator preemption mechanism, we profile the

context switch overhead and the number of preemptions per in-

ference request for both V10 and PMT. As shown in Figure 21, the

context switch overheads for both designs are negligible (less than

2%). However, with similar overhead, V10 makes significantly more

preemptions than PMT with our lightweight operator preemption

mechanism. This means V10 shares the hardware resource at a

much finer granularity and allows more flexible workload schedul-

ing. In contrast, PMT can only preempt at a coarse granularity for

amortizing the high context switch overhead. Overall, the benefit

of V10’s finer-grained scheduling enabled by more frequent pre-

emptions clearly out-weights the negligible preemption overhead.

0
0.2
0.4
0.6
0.8
1.0

Pe
rf

. v
s 

Id
ea

l
(D

N
N

 2
)

50%-50% 60%-40% 70%-30% 80%-20% 90%-10%

BERT+NCF

BERT+RtNt

RsNt+RtNt

NCF+RsNt

BERT+TFMR

BERT+DLRM

RNRS+SMask

ENet+RsNt

MNST+NCF

DLRM+RsNt

RNRS+MRCN

Collocated Workloads (DNN1+DNN2)

0
0.2
0.4
0.6
0.8
1.0

Pe
rf

. v
s 

Id
ea

l
(D

N
N

 1
)

V10-Full PMT

(a) Performance of collocated workloads (normalized to the ideal
single-tenant performance). DNN 1 has a higher priority.

BERT+NCF

BERT+RtNt

RsNt+RtNt

NCF+RsNt

BERT+TFMR

BERT+DLRM

RNRS+SMask

ENet+RsNt

MNST+NCF

DLRM+RsNt

RNRS+MRCN
0

0.5
1.0
1.5
2.0

O
ve

ra
ll 

Th
ro

ug
hp

ut

50%-50% 60%-40% 70%-30% 80%-20% 90%-10%

(b) Throughput of V10-Full with various priority settings (w.r.t. PMT).

Figure 22: Effect of varying workload priorities in V10.

5.6 Impact of Varying Workload Priorities
The cloud platform provider may configure the priority of each user

application to guarantee different levels of SLAs. V10 can sustain the

performance for prioritized workloads while improving resource

utilization. For simplicity, we refer to the relative priorities of two

collocated workloads that sum to 100% [20].

Figure 22 shows the overall throughput of collocated workloads

as we vary the priorities. By assigning time slices proportionally

to each workload’s priority, PMT can only scale the performance

of workloads proportionally to their relative priorities. Despite

being fair, PMT cannot achieve better relative performance than a

workload’s relative priority level.

With V10 utilizing more hardware resources, a workload can

perform better than with PMT under the same priority. V10 also

allows low-priority workloads to harvest remaining resources and

improve the aggregated throughput. In cases such as MNST+NCF,
prioritizing one workload leads to even higher aggregated through-

put than assigning equal priority, as prioritizing workloads with

shorter operators creates less resource contention. V10 fails to sus-

tain performance for the prioritized workload in only DLRM+RsNt,
which oversubscribes HBM bandwidth.

5.7 Impact of Varying Scheduler Time Slices
The scheduler time slice of the operator scheduler decides how

frequently operators are preempted. Small time slices enable fine-

grained scheduling to improve utilization and fairness but increase

preemption overhead. Large time slices reduce preemption over-

head but cause more head-of-line blocking on contending operators.

By studying various scheduler time slices in Figure 23, we observe

that a 32768-cycle time slice (≈46𝜇s) achieves an optimized through-

put by balancing preemption overhead and scheduling granularity.
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Figure 23: Throughput of V10-Full with various scheduler
time slices (normalized to PMT).
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Figure 25: V10 scales as we increase the number of FUs and
collocate more workloads (deeper color is more workloads).

5.8 Impact of Varying Vector Memory Capacity
As shown in Figure 24, V10 outperforms PMT regardless of vector

memory capacity. As V10 partitions the capacity evenly among col-

located workloads, large operators are partitioned by the compiler

to fit into smaller vector memory, which may slightly increase HBM

bandwidth consumption due to lower data reuse. However, most

inference workloads are not affected, since they underutilize HBM

bandwidth even with smaller vector memory. In addition, vector

memory bandwidth contention never occurs as vector memory is

designed to satisfy the peak bandwidth from both SA and VU.

5.9 Scalability of V10
As we scale the NPU, we pick workloads randomly from the 11

DNN models listed in Table 4, increase the number of collocated

workloads, and evaluate the throughput of V10 over single-tenant

execution. V10 scales easily by having more NPU cores (each has

one SA and one VU), since each core runs independently and can

host two or more collocated workloads grouped by our clustering

mechanism. Alternatively, we scale V10 by increasing the number

of SAs/VUs in each NPU core and map all the workloads to these

SAs/VUs in the shared NPU. As a common practice, NPU hardware

designers scale the HBM bandwidth with the increasing number of

SAs/VUs to balance compute and memory. As shown in Figure 25,

V10 improves the throughput linearly until the number of work-

loads reaches the number of FUs. V10 dispatches operators from

different workloads to keep all the FUs busy. With more FUs and

collocated workloads, V10 tolerates more contentions, as it has a

higher chance to identify operators that demand different FUs.

6 RELATEDWORK
Accelerator support for multi-tenancy.Accelerator-based cloud
[8, 9, 45, 52] motivates many studies on supporting multi-tenancy

with hardware accelerators [10–12, 16, 29, 30, 34, 53, 54]. For in-

stance, PREMA [16] developed a preemptive-based multi-tasking

scheme. Upon preemption, it context-switches the entire NPU core

and stores a large context in the off-chip HBM. In contrast, V10

enables fine-grained preemption of each SA/VU and manages a

negligible amount of context in the on-chip SRAM. AI-MT [10] and

Layerweaver [39] addressed the imbalance of compute and memory

by employing DNN multi-tasking on NPUs. NB-SMT [46] exploited

the resiliency of DNNs to avoid task blocking. Planaria [22] ex-

ploited the spatial underutilization caused by SA padding. However,

it cannot address VU idleness. Orthogonal to Planaria, V10 spatially

partitions the NPU core into individual SAs/VUs and temporally

partitions each of them among different workloads.

Hardware accelerators forMLworkloads.Hardware accelerator
developments attract much attention in both industry and academic

communities [24, 28]. Notable examples of systolic array architec-

tures include Google TPU [37], Graphcore IPU [24], NVIDIAT4 [38],

and Microsoft Brainwave [21]. Many studies on the NPU architec-

ture are conducted in academia [13, 15, 19, 26, 41, 43, 51]. However,

they mostly focused on high performance, and few investigated

hardware utilization at the microarchitectural level. Our work V10

improves the NPU utilization for multi-tenancy by enabling simul-

taneous execution across compute units in NPUs.

Accelerator resource management. Researchers have proposed
various techniques to improve the resource utilization of hardware

accelerators in data centers [25, 33, 36, 42, 50, 55]. However, most

studies focused on the system-level task scheduling, but cannot

fully utilize the compute units in a single accelerator device, even

with compiler optimizations [6]. As we scale out the deployment

of cloud NPUs, it is desirable to have architecture-level resource

management. V10 aims for such purpose by enabling fine-grained

operator-level scheduling in hardware.

7 CONCLUSION
We conduct a thorough study on the NPU utilization with real

TPU devices and identify the imbalanced use of compute units

in NPUs as the main reason for low NPU utilization. To support

multi-tenant NPUs with improved resource utilization, we develop

a hardware-assisted NPU multi-tenancy framework V10, which

enables operator-level scheduling, flexible priority-based resource

management, and a unique workload collocation mechanism for

ML services. Compared with the state-of-the-art multi-tenant NPU

design, V10 greatly improves NPU utilization and performance

while maintaining fairness for multi-tenant ML inference services.
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